Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Article in English | MEDLINE | ID: mdl-35882668

ABSTRACT

The transient receptor potential (TRP) channels, classified into six (-A, -V, -P, -C, -M, -ML, -N and -Y) subfamilies, are important membrane sensors and mediators of diverse stimuli including pH, light, mechano-force, temperature, pain, taste, and smell. The mammalian TRP superfamily of 28 members share similar membrane topology with six membrane-spanning helices (S1-S6) and cytosolic N-/C-terminus. Abnormal function or expression of TRP channels is associated with cancer, skeletal dysplasia, immunodeficiency, and cardiac, renal, and neuronal diseases. The majority of TRP members share common functional regulators such as phospholipid PIP2, 2-aminoethoxydiphenyl borate (2-APB), and cannabinoid, while other ligands are more specific, such as allyl isothiocyanate (TRPA1), vanilloids (TRPV1), menthol (TRPM8), ADP-ribose (TRPM2), and ML-SA1 (TRPML1). The mechanisms underlying the gating and regulation of TRP channels remain largely unclear. Recent advances in cryogenic electron microscopy provided structural insights into 19 different TRP channels which all revealed close proximity of the C-terminus with the N-terminus and intracellular S4-S5 linker. Further studies found that some highly conserved residues in these regions of TRPV, -P, -C and -M members mediate functionally critical intramolecular interactions (i.e., within one subunit) between these regions. This review provides an overview on (1) intramolecular interactions in TRP channels and their effect on channel function; (2) functional roles of interplays between PIP2 (and other ligands) and TRP intramolecular interactions; and (3) relevance of the ligand-induced modulation of intramolecular interaction to diseases.


Subject(s)
Transient Receptor Potential Channels , Animals , Humans , Transient Receptor Potential Channels/chemistry , Transient Receptor Potential Channels/metabolism , Protein Structure, Secondary , Menthol , Temperature , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism , Mammals/metabolism
2.
J Physiol ; 601(1): 83-98, 2023 01.
Article in English | MEDLINE | ID: mdl-36420836

ABSTRACT

Autosomal dominant polycystic kidney disease is caused by mutations in the membrane receptor PKD1 or the cation channel PKD2. TACAN (also termed TMEM120A), recently reported as an ion channel in neurons for mechanosensing and pain sensing, is also distributed in diverse non-neuronal tissues, such as kidney, heart and intestine, suggesting its involvement in other functions. In this study, we found that TACAN is in a complex with PKD2 in native renal cell lines. Using the two-electrode voltage clamp in Xenopus oocytes, we found that TACAN inhibits the channel activity of PKD2 gain-of-function mutant F604P. TACAN fragments containing the first and last transmembrane domains interacted with the PKD2 C- and N-terminal fragments, respectively. The TACAN N-terminus acted as a blocking peptide, and TACAN inhibited the function of PKD2 by the binding of PKD2 with TACAN. By patch clamping in mammalian cells, we found that TACAN inhibits both the single-channel conductance and the open probability of PKD2 and mutant F604P. PKD2 co-expressed with TACAN, but not PKD2 alone, exhibited pressure sensitivity. Furthermore, we found that TACAN aggravates PKD2-dependent tail curvature and pronephric cysts in larval zebrafish. In summary, this study revealed that TACAN acts as a PKD2 inhibitor and mediates mechanosensitivity of the PKD2-TACAN channel complex. KEY POINTS: TACAN inhibits the function of PKD2 in vitro and in vivo. TACAN N-terminal S1-containing fragment T160X interacts with the PKD2 C-terminal fragment N580-L700, and its C-terminal S6-containing fragment L296-D343 interacts with the PKD2 N-terminal A594X. TACAN inhibits the function of the PKD2 channel by physical interaction. The complex of PKD2 with TACAN, but not PKD2 alone, confers mechanosensitivity.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Zebrafish , Animals , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Ion Channels/genetics , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Kidney/metabolism , Mammals/metabolism
3.
Dev Neurosci ; 44(6): 518-531, 2022.
Article in English | MEDLINE | ID: mdl-35728564

ABSTRACT

Fast excitatory synaptic transmission in the CNS is mediated by the neurotransmitter glutamate, binding to and activating AMPA receptors (AMPARs). AMPARs are known to interact with auxiliary proteins that modulate their behavior. One such family of proteins is the transmembrane AMPAR-related proteins, known as TARPs. Little is known about the role of TARPs during development or about their function in nonmammalian organisms. Here, we report on the presence of TARP γ-4 in developing zebrafish. We find that zebrafish express 2 forms of TARP γ-4: γ-4a and γ-4b as early as 12 h post-fertilization. Sequence analysis shows that both γ-4a and γ-4b shows great level of variation particularly in the intracellular C-terminal domain compared to rat, mouse, and human γ-4. RT-qPCR showed a gradual increase in the expression of γ-4a throughout the first 5 days of development, whereas γ-4b levels were constant until day 5 when levels increased significantly. Knockdown of TARP γ-4a and γ-4b via either splice-blocking morpholinos or translation-blocking morpholinos resulted in embryos that exhibited deficits in C-start escape responses, showing reduced C-bend angles. Morphant larvae displayed reduced bouts of swimming. Whole-cell patch-clamp recordings of AMPAR-mediated currents from Mauthner cells showed a reduction in the frequency of mEPCs but no change in amplitude or kinetics. Together, these results suggest that γ-4a and γ-4b are required for proper neuronal development.


Subject(s)
Membrane Proteins , Receptors, AMPA , Synaptic Transmission , Zebrafish Proteins , Zebrafish , Animals , Membrane Proteins/metabolism , Morpholinos , Nuclear Proteins/metabolism , Receptors, AMPA/chemistry , Receptors, AMPA/metabolism , Synaptic Transmission/physiology , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
4.
J Cell Physiol ; 236(4): 2934-2949, 2021 04.
Article in English | MEDLINE | ID: mdl-33037615

ABSTRACT

Transient receptor potential melastatin member 8 (TRPM8), a Ca2+ -permeable nonselective cation channel activated by cold and cooling agents, mediates allodynia. Dysfunction or abnormal expression of TRPM8 has been found in several human cancers. The role of ubiquitination in the regulation of TRPM8 function remains poorly understood. Here, we identified the ubiquitin (Ub)-ligase E3, tripartite motif-containing 4 (TRIM4), as a novel interaction partner of TRPM8 and confirmed that the TRIM4-TRPM8 interaction was mediated through the SPRY domain of TRIM4. Patch-clamp assays showed that TRIM4 negatively regulates TRPM8-mediated currents in HEK293 cells. Moreover, TRIM4 reduced the expression of TRPM8 on the cell surface by promoting the K63-linked ubiquitination of TRPM8. Further analyses revealed that the TRPM8 N-terminal lysine residue at 423 was the major ubiquitination site that mediates its functional regulation by TRIM4. A Ub-activating enzyme E1, Ub-like modifier-activating enzyme 1 (UBA1), was also found to interact with TRPM8, thereby regulating its channel function and ubiquitination. In addition, knockdown of UBA1 impaired the regulation of TRPM8 ubiquitination and function by TRIM4. Thus, this study demonstrates that TRIM4 downregulates TRPM8 via K423-mediated TRPM8 ubiquitination and requires UBA1 to regulate TRPM8.


Subject(s)
Lysine/metabolism , TRPM Cation Channels/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitination , Amino Acid Sequence , Animals , HEK293 Cells , Humans , MCF-7 Cells , Protein Binding , Protein Domains , Rats , Sequence Deletion , Tripartite Motif Proteins/chemistry , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Activating Enzymes/metabolism
5.
FASEB J ; 34(12): 16662-16675, 2020 12.
Article in English | MEDLINE | ID: mdl-33124722

ABSTRACT

We previously showed that calnexin (Canx)-deficient mice are desensitized to experimental autoimmune encephalomyelitis (EAE) induction, a model that is frequently used to study inflammatory demyelinating diseases, due to increased resistance of the blood-brain barrier to immune cell transmigration. We also discovered that Fabp5, an abundant cytoplasmic lipid-binding protein found in brain endothelial cells, makes protein-protein contact with the cytoplasmic C-tail domain of Canx. Remarkably, both Canx-deficient and Fabp5-deficient mice commonly manifest resistance to EAE induction. Here, we evaluated the importance of Fabp5/Canx interactions on EAE pathogenesis and on the patency of a model blood-brain barrier to T-cell transcellular migration. The results demonstrate that formation of a complex comprised of Fabp5 and the C-tail domain of Canx dictates the permeability of the model blood-brain barrier to immune cells and is also a prerequisite for EAE pathogenesis.


Subject(s)
Calnexin/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Fatty Acid-Binding Proteins/metabolism , Neoplasm Proteins/metabolism , Animals , Biological Transport/physiology , Blood-Brain Barrier/metabolism , Brain/metabolism , Cell Line , Cell Movement/physiology , Disease Models, Animal , Endothelial Cells/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Permeability
6.
EMBO Rep ; 20(11): e48336, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31441214

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2 gene, encoding the polycystic kidney disease protein polycystin-1 and the transient receptor potential channel polycystin-2 (also known as TRPP2), respectively. Polycystin-1 and polycystin-2 form a receptor-ion channel complex located in primary cilia. The function of this complex, especially the role of polycystin-1, is largely unknown due to the lack of a reliable functional assay. In this study, we dissect the role of polycystin-1 by directly recording currents mediated by a gain-of-function (GOF) polycystin-1/polycystin-2 channel. Our data show that this channel has distinct properties from that of the homomeric polycystin-2 channel. The polycystin-1 subunit directly contributes to the channel pore, and its eleven transmembrane domains are sufficient for its channel function. We also show that the cleavage of polycystin-1 at the N-terminal G protein-coupled receptor proteolysis site is not required for the activity of the GOF polycystin-1/polycystin-2 channel. These results demonstrate the ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex, enriching our understanding of this channel and its role in ADPKD.


Subject(s)
Ion Channels/metabolism , Protein Multimerization , TRPP Cation Channels/metabolism , Animals , Calcium/metabolism , Electrophysiological Phenomena , Ion Channel Gating , Ion Channels/chemistry , Ion Channels/genetics , Ion Transport , Kinetics , Models, Molecular , Mutation , Oocytes/metabolism , Permeability , Protein Conformation , Protein Transport , TRPP Cation Channels/chemistry , TRPP Cation Channels/genetics , Xenopus
7.
Mol Cancer ; 19(1): 118, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32727463

ABSTRACT

BACKGROUND: Pancreatic cancer is one of the most lethal malignancies and has an extremely poor diagnosis and prognosis. The development of resistance to gemcitabine is still a major challenge. The long noncoding RNA PVT1 was reported to be involved in carcinogenesis and chemoresistance; however, the mechanism by which PVT1 regulates the sensitivity of pancreatic cancer to gemcitabine remains poorly understood. METHODS: The viability of pancreatic cancer cells was assessed by MTT assay in vitro and xenograft tumor formation assay in vivo. The expression levels of PVT1 and miR-619-5p were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Western blotting analysis and qRT-PCR were performed to assess the protein and mRNA levels of Pygo2 and ATG14, respectively. Autophagy was explored via autophagic flux detection under confocal microscopy and autophagic vacuole investigation under transmission electron microscopy (TEM). The functional role and mechanism of PVT1 were further investigated by gain- and loss-of-function assays in vitro. RESULTS: In the present study, we demonstrated that PVT1 was up-regulated in gemcitabine-resistant pancreatic cancer cell lines. Gain- and loss-of-function assays revealed that PVT1 impaired sensitivity to gemcitabine in vitro and in vivo. We further found that PVT1 up-regulated the expression of both Pygo2 and ATG14 and thus regulated Wnt/ß-catenin signaling and autophagic activity to overcome gemcitabine resistance through sponging miR-619-5p. Moreover, we discovered three TCF/LEF binding elements (TBEs) in the promoter region of PVT1, and activation of Wnt/ß-catenin signaling mediated by the up-regulation of Pygo2 increased PVT1 expression by direct binding to the TBE region. Furthermore, PVT1 was discovered to interact with ATG14, thus promoting assembly of the autophagy specific complex I (PtdIns3K-C1) and ATG14-dependent class III PtdIns3K activity. CONCLUSIONS: These data indicate that PVT1 plays a critical role in the sensitivity of pancreatic cancer to gemcitabine and highlight its potential as a valuable target for pancreatic cancer therapy.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Autophagy-Related Proteins/genetics , Autophagy/genetics , Drug Resistance, Neoplasm/genetics , Intracellular Signaling Peptides and Proteins/genetics , MicroRNAs/genetics , Pancreatic Neoplasms/genetics , RNA, Long Noncoding/genetics , Wnt Signaling Pathway , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic , Humans , Mice , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Binding , RNA Interference , Xenograft Model Antitumor Assays , Gemcitabine
8.
FASEB J ; 33(8): 8892-8904, 2019 08.
Article in English | MEDLINE | ID: mdl-31051095

ABSTRACT

The endoplasmic reticulum (ER) plays a central role in cellular stress responses via mobilization of ER stress coping responses, such as the unfolded protein response (UPR). The inositol-requiring 1α (IRE1α) is an ER stress sensor and component of the UPR. Muscle cells also have a well-developed and highly subspecialized membrane network of smooth ER called the sarcoplasmic reticulum (SR) surrounding myofibrils and specialized for Ca2+ storage, release, and uptake to control muscle excitation-contraction coupling. Here, we describe 2 distinct pools of IRE1α in cardiac and skeletal muscle cells, one localized at the perinuclear ER and the other at the junctional SR. We discovered that, at the junctional SR, calsequestrin binds to the ER luminal domain of IRE1α, inhibiting its dimerization. This novel interaction of IRE1α with calsequestrin, one of the highly abundant Ca2+ handling proteins at the junctional SR, provides new insights into the regulation of stress coping responses in muscle cells.-Wang, Q., Groenendyk, J., Paskevicius, T., Qin, W., Kor, K. C., Liu, Y., Hiess, F., Knollmann, B. C., Chen, S. R. W., Tang, J., Chen, X.-Z., Agellon, L. B., Michalak, M. Two pools of IRE1α in cardiac and skeletal muscle cells.


Subject(s)
Endoribonucleases/metabolism , Muscle Fibers, Skeletal/metabolism , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Binding Sites , COS Cells , Calcium Signaling , Calsequestrin/metabolism , Cells, Cultured , Chlorocebus aethiops , Endoribonucleases/chemistry , Mice , Protein Binding , Protein Serine-Threonine Kinases/chemistry , Rabbits , Sarcoplasmic Reticulum/metabolism
9.
Biochemistry ; 58(16): 2105-2115, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30931564

ABSTRACT

Kelch-like 3 (KLHL3) is a substrate adaptor of an E3 ubiquitin ligase complex that regulates the degradation of its substrates, including with-no-lysine [K] kinase 4 (WNK4). Mutations in KLHL3 are associated with pseudohypoaldosteronism type II (PHAII), a hereditary form of hypertension. Many PHAII-causing mutations are located in the Kelch domain of KLHL3 that binds with WNK4; however, detailed mechanisms by which these mutations disrupt the binding are not well-understood. In the present study we use molecular dynamics simulations and Western blot analyses to examine the effects of these mutations on the interaction between the Kelch domain of KLHL3 and the acidic motif (AM) of WNK4. The simulation results correlated well with those from Western blot analyses with the exception of the L387P mutation, which led to deregulation of AM degradation by KLHL3 but not recapitulated by simulations. On the basis of the simulation results, a mutation on the binding surface of the Kelch domain affected the Kelch-AM interaction through two major mechanisms: altering the electrostatic potential of the AM binding site and disrupting the Kelch-AM hydrogen bonds. The mutations buried inside the Kelch domain were predicted by our simulations to have no or modest effects on the Kelch-AM interaction. Buried mutations R384Q and S410L disrupted intramolecular hydrogen bonds within the Kelch domain and affected the Kelch-AM interaction indirectly. No significant effect of buried mutation A340V or A494T on the AM degradation or Kelch-AM interaction was observed, implying these mutations may disrupt mechanisms other than Kelch-AM interaction.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs/genetics , Kelch Repeat/genetics , Microfilament Proteins/genetics , Molecular Dynamics Simulation , Mutation, Missense , Protein Serine-Threonine Kinases/genetics , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Genetic Predisposition to Disease/genetics , Humans , Hydrogen Bonding , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Protein Binding , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Pseudohypoaldosteronism/genetics , Pseudohypoaldosteronism/metabolism
10.
J Biol Chem ; 293(11): 4180-4190, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29367340

ABSTRACT

The exact transport characteristics of the vacuolar dicarboxylate transporter tDT from Arabidopsis are elusive. To overcome this limitation, we combined a range of experimental approaches comprising generation/analysis of tDT overexpressors, 13CO2 feeding and quantification of 13C enrichment, functional characterization of tDT in proteoliposomes, and electrophysiological studies on vacuoles. tdt knockout plants showed decreased malate and increased citrate concentrations in leaves during the diurnal light-dark rhythm and after onset of drought, when compared with wildtypes. Interestingly, under the latter two conditions, tDT overexpressors exhibited malate and citrate levels opposite to tdt knockout plants. Highly purified tDT protein transports malate and citrate in a 1:1 antiport mode. The apparent affinity for malate decreased with decreasing pH, whereas citrate affinity increased. This observation indicates that tDT exhibits a preference for dianion substrates, which is supported by electrophysiological analysis on intact vacuoles. tDT also accepts fumarate and succinate as substrates, but not α-ketoglutarate, gluconate, sulfate, or phosphate. Taking tDT as an example, we demonstrated that it is possible to reconstitute a vacuolar metabolite transporter functionally in proteoliposomes. The displayed, so far unknown counterexchange properties of tDT now explain the frequently observed reciprocal concentration changes of malate and citrate in leaves from various plant species. tDT from Arabidopsis is the first member of the well-known and widely present SLC13 group of carrier proteins, exhibiting an antiport mode of transport.


Subject(s)
Arabidopsis Proteins/isolation & purification , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Citric Acid/metabolism , Malates/metabolism , Organic Anion Transporters/isolation & purification , Organic Anion Transporters/metabolism , Vacuoles/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Biological Transport , Organic Anion Transporters/genetics
SELECTION OF CITATIONS
SEARCH DETAIL