Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Chem Chem Phys ; 24(31): 18824-18829, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35904074

ABSTRACT

How to enhance the ion transport between MXene layers is a critical topic in the fields of electrochemical storage (especially supercapacitors) and water treatment. Vertical structure design of MXene nanosheets and single-molecule organic pre-intercalation are proposed, but the methods to enhance the ion transport through MXene nanochannels by modulating MXene's surface state have not been investigated yet. The interaction mechanism between Mg2+ and MXene 2D nanochannels during the transport process has not been thoroughly explored. In our work, we used a facile infiltration method to immerse the Ti3C2Tx membranes in MgCl2 solution for ion pre-intercalation. We found that the pre-intercalation of Mg2+ has a significant effect on the increase of the ion transport rate of Ti3C2Tx membranes, especially for Li+ which reached 268.49% compared with those of non-intercalation membranes. Through multiple characterization methods, we discovered that the enhancement of ion transport rate by pre-intercalation of Mg2+ mainly originated from the fact that the pre-intercalation of Mg2+ increased the layer spacing of MXene films as the channel support between layers while Mg2+ increased the work function (WF) of 2D nanochannels thereby reducing the interaction of other ions with the channel surface. The acceleration phenomenon of ion transport by surface state modulation proposed in our work will provide new strategies for the design of structure and regulation of surface states, revealing the mechanism of capacity improvement.

2.
Front Cell Neurosci ; 16: 845215, 2022.
Article in English | MEDLINE | ID: mdl-35634461

ABSTRACT

Stroke is a leading cause of death worldwide. Vascular calcification (VC), defined as deposition of calcium-phosphate complexes in the vessels, is considered as the characteristic of vascular aging. Calcifications at different vessel layers have different implications. Intimal calcification is closely related to atherosclerosis and affects plaque stability, while medial calcification can cause arterial stiffening and reduce compliance. Accumulating evidence suggested that arterial calcifications, including calcifications in the intracranial artery, coronary artery, and carotid artery, are associated with the risk, prognosis, and treatment response of stroke. VC can not only serve as a marker of atherosclerosis, but cause cerebral hemodynamic impairment. In addition, calcifications in large arteries are associated with cerebral small vessel disease. In this review, we summarize the findings of recently published studies focusing on the relationship between large artery calcification and the risk, prognosis, treatment response, and prevention of stroke and also discuss possible mechanisms behind those associations.

3.
Int J Biol Sci ; 18(2): 552-571, 2022.
Article in English | MEDLINE | ID: mdl-35002509

ABSTRACT

As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today's intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.


Subject(s)
Brain/blood supply , Imaging, Three-Dimensional/methods , Stroke/diagnostic imaging , Animals , Contrast Media/chemistry , Humans
4.
J Food Sci ; 84(6): 1411-1419, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31132162

ABSTRACT

To improve the mechanical and antibacterial properties of chitosan (CS) films, a ternary blend edible film was prepared by incorporating CS, gelatin (GE), and natural cinnamon essential oil (CEo). Scanning electron microscopy (SEM), Atomic force microscopy (AFM), Fourier transform infrared spectroscopy, and X-ray diffraction were performed to evaluate the films. The mechanical properties, light transmission, thermal stability, hydrophilicity, and antibacterial activity of the films were also determined. The results confirmed all of the films exhibited excellent UV protection with low transparency at 600 nm. Compared with the CS films, the ternary composite film (CSGEo film, containing CS, GE, and CEo) had a higher elongation at break but a lower tensile strength. SEM images revealed that all films had smooth surfaces, although some obvious differences between CS and CSGEo films were observed by AFM. Additionally, the incorporation of GE and CEo to the films enhanced their thermal stability and contact angle, but decreased their crystallinity and wettability. The antimicrobial activity results showed that CSGEo films had excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, for which the antibacterial rate exceeded 98%. The minimum inhibitory concentrations of the CSGEo solution against E. coli and S. aureus were both 52.06 µg/mL, and the minimal bactericidal concentrations were 104.12 and 52.06 µg/mL, respectively. These results suggest that CSGEo films possess good mechanical and antibacterial properties, and therefore, their application in the food packaging industry is promising. PRACTICAL APPLICATION: The main raw materials of the edible films developed in this study are aquatic by-products, so the films are edible and biodegradable. The addition of gelatin and CEo improved the UV barrier and thermal properties but decreased the crystallinity and hydrophilicity of the films, making them suitable for use as packaging materials. CEo-incorporated films exhibited excellent mechanical properties and antibacterial activity and can, therefore, be used in the food packaging industry.


Subject(s)
Anti-Infective Agents , Chitosan , Food Packaging/instrumentation , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Chitosan/chemistry , Cinnamomum zeylanicum/chemistry , Escherichia coli/drug effects , Food Packaging/methods , Gelatin/chemistry , Microbial Sensitivity Tests , Microscopy, Atomic Force , Oils, Volatile , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Tensile Strength , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL