Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Res ; 251(Pt 2): 118725, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38518915

ABSTRACT

To achieve rapid enrichment of the targeted hydrogen-producing bacterial population and reconstruction of the microbial community in the biological hydrogen-producing reactor, the activated sludge underwent multiple pretreatments using micro-aeration, alkaline treatment, and heat treatment. The activated sludge obtained from the multiple pretreatments was inoculated into the continuous stirred tank reactor (CSTR) for continuous operations. The community structure alteration and hydrogen-producing capability of the activated sludge were analyzed throughout the operation of the reactor. We found that the primary phyla in the activated sludge population shifted to Proteobacteria, Firmicutes, and Bacteroidetes, which collectively accounted for 96.69% after undergoing several pretreatments. This suggests that the multiple pretreatments facilitated in achieving the selective enrichment of the fermentation hydrogen-producing microorganisms in the activated sludge. The CSTR start-up and continuous operation of the biological hydrogen production reactor resulted in the reactor entering a highly efficient hydrogen production stage at influent COD concentrations of 4000 mg/L and 5000 mg/L, with the highest hydrogen production rate reaching 8.19 L/d and 9.33 L/d, respectively. The main genus present during the efficient hydrogen production stage in the reactor was Ethanoligenens, accounting for up to 33% of the total population. Ethanoligenens exhibited autoaggregation capabilities and a superior capacity for hydrogen production, leading to its prevalence in the reactor and contribution to efficient hydrogen production. During high-efficiency hydrogen production, flora associated with hydrogen production exhibited up to 46.95% total relative abundance. In addition, redundancy analysis (RDA) indicated that effluent pH and COD influenced the distribution of the primary hydrogen-producing bacteria, including Ethanoligenens, Raoultella, and Pectinatus, as well as other low abundant hydrogen-producing bacteria in the activated sludge. The data indicates that the multiple pretreatments and reactor's operation has successfully enriched the hydrogen-producing genera and changed the community structure of microbial hydrogen production.


Subject(s)
Bioreactors , Hydrogen , Sewage , Hydrogen/metabolism , Bioreactors/microbiology , Sewage/microbiology , Bacteria/metabolism , Bacteria/genetics , Waste Disposal, Fluid/methods , Fermentation , Microbiota
2.
Antioxidants (Basel) ; 13(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38539829

ABSTRACT

This research evaluated the impacts of selenomethionine (Se-Met) on hepatic functions, oxidative stress, mitochondrial function, and apoptosis of piglets fed deoxynivalenol (DON)-contaminated diets. Twenty-four piglets were allocated four dietary treatments (n = 6) in a 28-day feeding trial. The four treatments included the control group, which received 0.3 mg/kg of Se (as Se-Met) without DON treatment, and the DON treatment groups received 0, 0.3, or 0.5 mg/kg Se as Se-Met. A dietary addition of 0.5 mg/kg Se improved liver pathology and reduced serum aspartate aminotransferase and lactate dehydrogenase levels in piglets fed DON-contaminated diets. Furthermore, 0.5 mg/kg Se mitigated the oxidative stress and apoptosis of piglets fed DON-contaminated diets, as indicated by the decreased reactive oxygen species level, and the down-regulated mRNA levels of NRF-1, Bax, and CASP9 in the liver. Importantly, 0.5 mg/kg Se enhanced the hepatic antioxidant capacity, as evidenced by increased hepatic total antioxidant capacity, catalase, glutathione peroxidase, and total superoxide dismutase activities, as well as the up-regulated mRNA levels of Nrf2, Gclm, NQO1, SOD1, and GPX1 in the liver. Moreover, 0.5 mg/kg Se down-regulated the p-JNK protein level in the liver of piglets fed DON-contaminated diets. Collectively, Se-Met supplementation mitigated liver dysfunction, oxidative injury, and apoptosis through enhancing antioxidant capacity and inhibiting the JNK MAPK pathway in piglets fed DON-contaminated diets.

3.
Antioxidants (Basel) ; 13(3)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38539889

ABSTRACT

Deoxynivalenol (DON) is a prevalent contaminant in feed and food, posing a serious threat to the health of both humans and animals. The pig stands as an ideal subject for the study of DON due to its recognition as the most susceptible animal to DON. In this study, the IPEC-J2 cells were utilized as an in vitro model to explore the potential of SeMet in alleviating the intestinal toxicity and oxidative injury in intestinal epithelial cells when exposed to DON. Cells were treated either with or without 4.0 µM SeMet, in combination with or without a simultaneous treatment with 0.5 µg/mL DON, for a duration of 24 h. Then, cells or related samples were analyzed for cell proliferation, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) level, gene expressions, and protein expressions. The results showed that SeMet mitigated the cellular toxicity caused by DON, evidenced by elevated cell proliferation and the reduced LDH release of IPEC-J2 cells in the SeMet + DON group vs. the DON group. Moreover, the SeMet treatment markedly promoted antioxidant functions and decreased the oxidative injury in IPEC-J2 cell, which is indicated by the decreased ROS level and up-regulated mRNA levels of GPX1, TXNRD1, Nrf2, and GCLC in IPEC-J2 cells in the SeMet + DON group vs. the DON group. However, in both the absence and presence of exposure to DON, the SeMet treatment did not affect the protein expression of MAPK (JNK, Erk1/2, and P38) and phosphorylated MAPK (p-JNK, p-Erk1/2, and p-P38) in IPEC-J2 cells. Collectively, SeMet alleviated the DON-induced oxidative injury in porcine intestinal epithelial cells independent of the MAPK pathway regulation.

4.
Int J Biol Macromol ; 261(Pt 2): 129733, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307433

ABSTRACT

The function of miRNAs in intestinal inflammatory injury regulation has been studied extensively. However, the targeted delivery of these functional nucleic acid molecules to specific organs through encapsulation carriers and exerting their functional effects remain critical challenges for further research. Here, we constructed miR-146a-5p overexpression plasmid and validated the anti-inflammatory properties in the cell model. Then, the plasmid was encapsulated by the Pickering double emulsion system to investigate the role of Pickering double emulsion system in LPS-induced acute intestinal inflammatory injury. The results showed that the Pickering double emulsion system could effectively protect the integrity of plasmids in the intestinal tract, alleviate intestinal inflammatory injury, and upregulate the relative abundance of Lactobacillus reuteri. Mechanically, in vivo and in vitro experiments have shown that miR-146a-5p inhibits TLR4/NF-κB pathway to alleviate intestinal inflammation. In addition, miR-146a-5p can also regulate intestinal homeostasis by targeting the RNA polymerase sigma factor RpoD and α-galactosidase A, thereby affecting the growth of Lactobacillus reuteri. Above all, this study reveals a potential mechanism for miR-146a-5p to treat intestinal inflammation and provides a new delivery strategy for miRNAs to regulate intestinal homeostasis.


Subject(s)
Gastrointestinal Microbiome , MicroRNAs , Humans , Emulsions , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Inflammation/drug therapy , Inflammation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL