Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 496
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(6): e2300644120, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38306481

ABSTRACT

It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , Endothelial Cells , Proteome , Peptides
2.
J Immunol ; 212(7): 1207-1220, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38345351

ABSTRACT

Teleost fish type I IFNs and the associated receptors from the cytokine receptor family B (CRFB) are characterized by remarkable diversity and complexity. How the fish type I IFNs bind to their receptors is still not fully understood. In this study, we demonstrate that CRFB1 and CRFB5 constitute the receptor pair through which type I subgroup d IFN (IFNd) from large yellow croaker, Larimichthys crocea, activates the conserved JAK-STAT signaling pathway as a part of the antiviral response. Our data suggest that L. crocea IFNd (LcIFNd) has a higher binding affinity with L. crocea CRFB5 (LcCRFB5) than with LcCRFB1. Furthermore, we report the crystal structure of LcIFNd at a 1.49-Å resolution and construct structural models of LcIFNd in binary complexes with predicted structures of extracellular regions of LcCRFB1 and LcCRFB5, respectively. Despite striking similarities in overall architectures of LcIFNd and its ortholog human IFN-ω, the receptor binding patterns between LcIFNd and its receptors show that teleost and mammalian type I IFNs may have differentially selected helices that bind to their homologous receptors. Correspondingly, key residues mediating binding of LcIFNd to LcCRFB1 and LcCRFB5 are largely distinct from the receptor-interacting residues in other fish and mammalian type I IFNs. Our findings reveal a ligand/receptor complex binding mechanism of IFNd in teleost fish, thus providing new insights into the function and evolution of type I IFNs.


Subject(s)
Interferon Type I , Perciformes , Animals , Humans , Phylogeny , Fishes/metabolism , Interferon Type I/metabolism , Fish Proteins/genetics , Mammals/metabolism
3.
BMC Cancer ; 24(1): 39, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182995

ABSTRACT

PURPOSE: This investigation sought to examine the efficacy and safety of low-dose apatinib used alongside chemotherapy in the clinical management of patients with metastatic triple-negative breast cancer (TNBC) within a real-world setting, whilst comparing the outcomes with those treated solely with chemotherapy. METHODS: This case series study analyzed clinical data and treatment outcomes of 163 patients with metastatic TNBC who underwent rescue treatment at the Medical Oncology Department of Clinical Oncology, Fujian Cancer Hospital, School of Fujian Medical University, China, between October 2011 and January 2023. All the patients underwent rescue treatment with either chemotherapy alone or apatinib (250 mg/day) combined with chemotherapy. The study's primary outcome was progression-free survival (PFS), whereas the secondary outcomes included overall survival (OS), objective response rate (ORR), disease control rate (DCR), and safety profiles. RESULTS: The study was designed to compare two groups [1]. Out of the 163 TNBC patients who participated in the study, 107 individuals (65.6%) received treatment based on chemotherapy, whereas 56 patients (34.4%) were given treatment based on a combination of low-dose apatinib (250 mg/day) and other treatments, including chemotherapy. After propensity score matching (PSM), the objective response rate (ORR) and disease control rate (DCR) of patients with advanced triple-negative breast cancer (TNBC) who received apatinib-based treatment were 50.0 and 90.0%, respectively, while they were 6.7 and 20.0%, respectively, for the chemotherapy-based group (P < 0.001). The group that received apatinib-based treatment showed superior results in both PFS and OS compared to the group that received chemotherapy. The median PFS and OS for the apatinib-based group were 7.8 and 20.3 months, respectively, while they were only 2.2 months and 9.0 months, respectively, for the chemotherapy-based group (P < 0.001) [2]. Patients who were administered combo therapies, including PD-1 inhibitors, were excluded. In total, 97 patients received chemotherapy alone, while 34 patients were treated with apatinib in combination with chemotherapy. After propensity score matching (PSM), the ORR and DCR for the total group who received combo therapies were 44.4 and 81.5%, respectively, while they were 11.1 and 22.2%, respectively, for the chemotherapy alone group (P < 0.001). The group receiving both apatinib and chemotherapy displayed notable advantages over the group solely receiving chemotherapy in regards to PFS and OS for the entirety of the population. The PFS was found to be 7.8 months in comparison to 2.1 months (P < 0.001) and the OS was 21.1 months in contrast to 9.0 months (P < 0.001). Apatinib combined with chemotherapy induced grade 3/4 hematological toxicities, including neutropenia (8.8%) and thrombocytopenia (2.9%). Additionally, non-hematological toxicities were commonly observed, such as Hand-foot syndrome (35.3%), proteinuria (26.5%), hypertension (61.8%), higher alanine aminotransferase levels (26.5%), and fatigue (35.3%). The most frequent non-hematological grade 3/4 toxicities were Hand-foot syndrome (2.9%) and hypertension (5.9%). The study did not report any fatal adverse effects. CONCLUSIONS: The combination of low-dose apatinib with chemotherapy has proven to be more effective than chemotherapy alone in treating metastatic triple-negative breast cancer (TNBC). Additionally, the occurrence of grade 3/4 non-hematologic toxicities was significantly lower compared to the recommended dose of apatinib.


Subject(s)
Hand-Foot Syndrome , Hypertension , Leukopenia , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Clinical Protocols
4.
BMC Cancer ; 24(1): 26, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166756

ABSTRACT

BACKGROUND: Epigenetic alterations contribute greatly to the development and progression of colorectal cancer, and effect of aberrant miR-622 expression is still controversial. This study aimed to discover miR-622 regulation in CRC proliferation. METHODS: miR-622 expression and prognosis were analyzed in clinical CRC samples from Nanfang Hospital. miR-622 regulation on cell cycle and tumor proliferation was discovered, and FOLR2 was screened as functional target of miR-622 using bioinformatics analysis, which was validated via dual luciferase assay and gain-of-function and loss-of-function experiments both in vitro and in vivo. RESULTS: miR-622 overexpression in CRC indicated unfavorable prognosis and it regulated cell cycle to promote tumor growth both in vitro and in vivo. FOLR2 is a specific, functional target of miR-622, which negatively correlates with signature genes in cell cycle process to promote CRC proliferation. CONCLUSIONS: miR-622 upregulates cell cycle process by targeting FOLR2 to promote CRC proliferation, proposing a novel mechanism and treatment target in CRC epigenetic regulation of miR-622.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Folate Receptor 2 , MicroRNAs , Humans , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Epigenesis, Genetic , Folate Receptor 2/genetics , Folate Receptor 2/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism
5.
Fish Shellfish Immunol ; 146: 109427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316347

ABSTRACT

Large yellow croaker (Larimichthys crocea) farming dominates the marine aquaculture industry in China. However, the epidemic outbreaks of visceral white nodules disease (VWND), caused by bacterial pathogen Pseudomonas plecoglossicida, have emerged as a significant concern within the large yellow croaker industry. Although vaccination is considered to be an effective method for preventing and controlling P. plecoglossicida infection, there is currently no commercially available vaccine targeting this bacterium. In the present study, the outer membrane porin F (OprF) of P. plecoglossicida was characterized and revealed a high sequence similarity with that of other Pseudomonas species. The recombinant OprF protein (rOprF) produced in Escherichia coli was then evaluated for its immunogenicity and protective role against P. plecoglossicida in large yellow croaker. The rOprF was identified to have immunogenicity by Western blot using large yellow croaker anti-P. plecoglossicida sera. Additionally, the indirect immunofluorescence assay (IIFA) provided evidence indicating the surface exposure of OprF in P. plecoglossicida. Fish vaccinated twice via intraperitoneal (IP) injection with the purified rOprF combined with commercial adjuvant ISA 763A VG exhibited a relative percent survival (RPS) of 70.60% after challenge with virulent P. plecoglossicida strain through immersion. The administration of rOprF resulted in a notable increase in specific serum antibody levels and serum lysozyme activity compared to the control groups. The immune-related genes in the spleen and head kidney of rOprF-vaccinated fish were remarkably upregulated compared with the PBS-vaccinated sham group after the P. plecoglossicida challenge. In summary, the findings of this study suggest that rOprF exhibits considerable potential in inducing a robust immune response, making it a viable candidate for vaccination against P. plecoglossicida infection in large yellow croaker.


Subject(s)
Fish Diseases , Perciformes , Pseudomonas Infections , Animals , Pseudomonas Infections/prevention & control , Pseudomonas Infections/veterinary , Pseudomonas/genetics , Spleen , Fish Proteins
6.
Fish Shellfish Immunol ; 144: 109271, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065295

ABSTRACT

Laminarin (LAM) is widely used as an immunopotentiator in aquaculture, but its protective mechanism is still unclear. In this study, the effects of LAM on the growth performance and resistance against Pseudomonas plecoglossicida of large yellow croaker were studied in vitro and in vivo. The 42 d-feeding trial in large yellow croaker showed that dietary LAM could obviously promote the fish growth by improving the weight gain rate (WGR), specific growth rate (SGR), and feed conversion rate (FCR). Dietary LAM could also improve the survival rate of large yellow croakers subjected to P. plecoglossicida infection, and 500 mg/kg LAM produced the highest relative percent survival (RPS) of 35.00 %. LAM improved fish antioxidant level by enhancing serum total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity, and reducing malondialdehyde (MDA) content. In addition, LAM also improved fish innate immunity by increasing serum acid phosphatase (ACP) and alkaline phosphatase (AKP) activities and complement 3 (C3) content under P. plecoglossicida infection. What is more, on 9 d post P. plecoglossicida challenge, LAM could significantly decrease the bacteria load in head kidneys, spleens and livers of fish, and the lowest bacterial load was found in 500 mg/kg LAM group. In vitro, LAM exerted a protective role against inactivated P. plecoglossicida-triggered inflammatory injury in primary head kidney macrophages (PKM) of large yellow croaker by recovering cell viability, suppressing NO production, and reversing pro-inflammatory cytokine expression (IL-1ß, IL-6, and IL-8). All these findings therefore will provide insights into the protection mechanism of LAM in fish, facilitating its application in prevention and control of fish bacteriosis.


Subject(s)
Fish Diseases , Perciformes , Animals , Antioxidants/metabolism , Pseudomonas , Fish Proteins/genetics , Fish Proteins/metabolism
7.
Fish Shellfish Immunol ; 149: 109535, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582231

ABSTRACT

Mucosal immunity in mucosa-associated lymphoid tissues (MALTs) plays crucial roles in resisting infection by pathogens, including parasites, bacteria and viruses. However, the mucosal immune response in the MALTs of large yellow croaker (Larimichthys crocea) upon parasitic infection remains largely unknown. In this study, we investigated the role of B cells and T cells in the MALTs of large yellow croaker following Cryptocaryon irritans infection. Upon C. irritans infection, the total IgM and IgT antibody levels were significantly increased in the skin mucus and gill mucus. Notably, parasite-specific IgM antibody level was increased in the serum, skin and gill mucus following parasitic infection, while the level of parasite-specific IgT antibody was exclusively increased in MALTs. Moreover, parasitic infection induced both local and systemic aggregation and proliferation of IgM+ B cells, suggesting that the increased levels of IgM in mucus may be derived from both systemic and mucosal immune tissues. In addition, we observed significant aggregation and proliferation of T cells in the gill, head kidney and spleen, suggesting that T cells may also be involved in the systemic and mucosal immune responses upon parasitic infection. Overall, our findings provided further insights into the role of immunoglobulins against pathogenic infection, and the simultaneous aggregation and proliferation of both B cells and T cells at mucosal surfaces suggested potential interactions between these two major lymphocyte populations during parasitic infection.


Subject(s)
B-Lymphocytes , Ciliophora Infections , Ciliophora , Fish Diseases , Perciformes , T-Lymphocytes , Animals , Fish Diseases/immunology , Fish Diseases/parasitology , Perciformes/immunology , Ciliophora Infections/veterinary , Ciliophora Infections/immunology , B-Lymphocytes/immunology , Ciliophora/physiology , T-Lymphocytes/immunology , Immunity, Mucosal , Lymphoid Tissue/immunology , Immunoglobulin M/immunology , Immunoglobulin M/blood , Cell Proliferation
8.
J Immunol ; 208(7): 1616-1631, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35321881

ABSTRACT

IL-2 is a pleiotropic cytokine that is critical for T cell immunity. Although the IL-2-mediated regulation of T cell immunity in mammals is relatively well understood, it remains largely unknown whether and how IL-2 regulates T cell immunity in lower vertebrates. To address this knowledge gap, we investigated the role played by IL-2 in the regulation of T cell response, as well as the associated underlying mechanisms in a teleost fish, large yellow croaker (Larimichthys crocea). We found that large yellow croaker (L. crocea) IL-2 (LcIL-2) significantly promoted T cell proliferation both in vivo and in vitro; significantly induced the differentiation of Th1, Th2, regulatory T, and cytotoxic T cells while inhibiting Th17 differentiation; and participated in the elimination of invading pathogenic bacteria. Mechanistically, the binding of LcIL-2 to its heterotrimer receptor complex (LcIL-15Rα/LcIL-2Rß/Lcγc) triggered the conserved JAK-STAT5 pathway, which in turn regulated the expression of genes involved in T cell expansion, differentiation, and biological function. The MAPK and mammalian target of rapamycin complex 1 (mTORC1) axes, which are involved in TCR-mediated signaling, were also required for LcIL-2-mediated T cell response. Collectively, our results demonstrated that fish IL-2 plays a comprehensive regulatory role in T cell response and highlighted the complex and delicate network regulating T cell-driven immune response. We propose that T cell immunity is regulated by the interplay between TCR signaling and cytokine signaling, and that this basic strategy evolved before the emergence of the tetrapod lineage. Our findings provide valuable insights into the regulatory mechanisms underlying T cell response in teleosts.


Subject(s)
Fish Proteins , Interleukin-2 , Mechanistic Target of Rapamycin Complex 1 , Mitogen-Activated Protein Kinases , T-Lymphocytes , Animals , Cell Proliferation , Fish Proteins/metabolism , Fishes , Interleukin-2/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mitogen-Activated Protein Kinases/metabolism , T-Lymphocytes/cytology
9.
J Immunol ; 209(4): 806-819, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35906001

ABSTRACT

In mammals, type I IFNs, which commonly contain one or two disulfide bonds, activate the JAK-STAT signaling pathway through binding to the common cell surface receptor formed by IFN-α/ß receptor (IFNAR)1 and IFNAR2 subunits. Although type I IFNs are also known to be essential for antiviral defense in teleost fish, very little is known about mechanisms underlying the recognition of fish type I IFNs by associated receptors. In this study, we demonstrate that a type I IFN of large yellow croaker Larimichthys crocea (LcIFNi), belonging to a new subgroup of fish type I IFNs, triggers antiviral response via the conserved JAK-STAT pathway through stable binding with a heterodimeric receptor comprising subunits LcCRFB5 and LcCRFB2. LcIFNi binds to LcCRFB5 with a much higher affinity than to LcCRFB2. Furthermore, we determined the crystal structure of LcIFNi at a 1.39 Å resolution. The high-resolution structure is, to our knowledge, the first reported structure of a type I IFN with three disulfide bonds, all of which were found to be indispensable for folding and stability of LcIFNi. Using structural analysis, mutagenesis, and biochemical assays, we identified key LcIFNi residues involved in receptor interaction and proposed a structural model of LcIFNi bound to the LcCRFB2-LcCRFB5 receptor. The results show that LcIFNi-LcCRFB2 exhibits a similar binding pattern to human IFN-ω-IFNAR2, whereas the binding pattern of LcIFNi-LcCRFB5 is quite different from that of IFN-ω-IFNAR1. Altogether, our findings reveal the structural basis for receptor interaction and signaling of a type I IFN with three disulfide bonds and provide new insights into the mechanisms underlying type I IFN recognition in teleosts.


Subject(s)
Perciformes , Signal Transduction , Animals , Antiviral Agents , Disulfides/metabolism , Fishes/metabolism , Humans , Janus Kinases/metabolism , Mammals/metabolism , Receptor, Interferon alpha-beta/metabolism , STAT Transcription Factors/metabolism
10.
Environ Res ; 241: 117602, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37951379

ABSTRACT

Abyssal and hadal sediments represent two of the most type ecosystems on Earth and have the potential interactions with geochemistry. However, little is known about the prokaryotic community assembly and the response of prokaryotic communities to metal(loid)s in trench sediments due to the lack of adequate and appropriate samples. In this study, a systematic investigation combined the assembly mechanisms and co-occurrence patterns of prokaryotic communities between the hadal and abyssal sediments across the Yap Trench. The results revealed that the hadal prokaryotes had less species diversity, but more abundant function than the abyssal prokaryotes. The prokaryotic communities in the abyssal sediments had more core taxa than the hadal sediments. Twenty-one biomarkers mostly affiliated with Nitrosopumilaceae were detected using Random-Forests machine learning algorithm. Furthermore, stochasticity was dominant in the prokaryotic community assembly processes of the Yap Trench sediments. Meanwhile, homogeneous selection (32.6%-52.9%) belonging to deterministic processes governed the prokaryotic community assembly in hadal sediments with increasing of sediment depth. In addition to total nitrogen and total organic carbon, more metal(loid)s were significantly correlated with the prokaryotic community in the hadal sediments than that in the abyssal sediments. The hadal prokaryotic communities was most positively related to bismuth (r = 0.31, p < 0.01), followed by calcium, chromium, cerium, potassium, plumbum, scandium, titanium, and vanadium. Finally, co-occurrence networks revealed two potential dominant prokaryotic modules in Yap Trench sediments covaried across oceanographic zonation. By contrast, the hadal network had relatively more complexity, more bacterial taxa, and more associations among prokaryotic taxa, relative to the abyssal network. This study reveals potentially metal variables and community assembly mechanisms of the prokaryotic community in abyssal and hadal sediments and provides a better understanding on the prokaryotic diversity and ecology in trench sediment ecosystems.


Subject(s)
Bacteria , Ecosystem , Archaea , Ecology , Chromium , Geologic Sediments
11.
Environ Res ; 252(Pt 2): 118821, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615793

ABSTRACT

How microzooplanktonic ciliate adaptative strategies differ across diatom bloom and non-diatom bloom areas in the Arctic Ocean remains poorly documented. To address this gap, two different situations were categorized in the Arctic Ocean at summer 2023: diatom bloom stations (DBS) (genus Thalassiosira, chain-like) and non-diatom bloom stations (nDBS). Total abundance of ciliate at 3 m and 25 m in DBS was 2.8 and 1.8 folds higher than in nDBS, respectively. Aloricate ciliates were singled out in both DBS and nDBS, whilst their average abundance and biomass of large size-fraction (>50 µm) in former were 4.5-5.6 folds higher than in latter. Regarding tintinnids, high abundance of Ptychocylis acuta (Bering Strait species) mainly occurred at DBS, coupled with distribution of co-occurring Pacific-origin species Salpingella sp.1, collectively suggested a strong intrusion of Pacific Inflow during summer 2023. Additionally, presence of high abundance of Acanthostomella norvegica and genus Parafavella in nDBS might indicate the trajectory of the Transpolar Drift. Alternatively, tintinnids can serve as credible bioindicators for either monitoring currents or evaluating microzooplankton Borealization. Average abundance of total ciliate within 15-135 µm body-size spectrum in DBS was higher than nDBS. Moreover, spearman's rank correlation between biotic and abiotic analysis revealed that temperature and dissolved oxygen at DBS determined tintinnid species richness and ciliate total abundance, respectively. The results clearly demonstrate that remarkable divergences in large size-fraction of ciliate abundance between DBS and nDBS validate their irreplaceable role in controlling phytoplankton outbreak and associated biological processes in polar seas.


Subject(s)
Ciliophora , Diatoms , Arctic Regions , Ciliophora/physiology , Diatoms/physiology , Eutrophication , Zooplankton/physiology , Animals , Oceans and Seas , Body Size , Seawater/chemistry
12.
PLoS Genet ; 17(5): e1009530, 2021 05.
Article in English | MEDLINE | ID: mdl-33983934

ABSTRACT

Hadal environments (depths below 6,000 m) are characterized by extremely high hydrostatic pressures, low temperatures, a scarce food supply, and little light. The evolutionary adaptations that allow vertebrates to survive in this extreme environment are poorly understood. Here, we constructed a high-quality reference genome for Yap hadal snailfish (YHS), which was captured at a depth of ~7,000 m in the Yap Trench. The final YHS genome assembly was 731.75 Mb, with a contig N50 of 0.75 Mb and a scaffold N50 of 1.26 Mb. We predicted 24,329 protein-coding genes in the YHS genome, and 24,265 of these genes were successfully functionally annotated. Phylogenetic analyses suggested that YHS diverged from a Mariana Trench snailfish approximately 0.92 million years ago. Many genes associated with DNA repair show evidence of positive selection and have expanded copy numbers in the YHS genome, possibly helping to maintain the integrity of DNA under increased hydrostatic pressure. The levels of trimethylamine N-oxide (TMAO), a potent protein stabilizer, are much higher in the muscles of YHS than in those of shallow-water fish. This difference is perhaps due to the five copies of the TMAO-generating enzyme flavin-containing monooxygenase-3 gene (fmo3) in the YHS genome and the abundance of trimethylamine (TMA)-generating bacteria in the YHS gut. Thus, the high TMAO content might help YHS adapt to high hydrostatic pressure by improving protein stability. Additionally, the evolutionary features of the YHS genes encoding sensory-related proteins are consistent with the scarce food supply and darkness in the hadal environments. These results clarify the molecular mechanisms underlying the adaptation of hadal organisms to the deep-sea environment and provide valuable genomic resources for in-depth investigations of hadal biology.


Subject(s)
Acclimatization/genetics , Extreme Environments , Fishes/genetics , Genome/genetics , Oceans and Seas , Whole Genome Sequencing , Animals , DNA Repair/genetics , Darkness , Evolution, Molecular , Fishes/classification , Hydrostatic Pressure , Methylamines/metabolism , Oxygenases/genetics , Oxygenases/metabolism , Phylogeny , Protein Stability
13.
J Biol Chem ; 298(12): 102665, 2022 12.
Article in English | MEDLINE | ID: mdl-36334626

ABSTRACT

The glucagon receptor (GCGR) is a potential target for diabetes therapy. Several emerging GCGR antagonism-based therapies are under preclinical and clinical development. However, GCGR antagonism, as well as genetically engineered GCGR deficiency in animal models, are accompanied by α-cell hyperplasia and hyperglucagonemia, which may limit the application of GCGR antagonism. To better understand the physiological changes in α cells following GCGR disruption, we performed single cell sequencing of α cells isolated from control and gcgr-/- (glucagon receptor deficient) zebrafish. Interestingly, beyond the α-cell hyperplasia, we also found that the expression of gcga, gcgb, pnoca, and several glucagon-regulatory transcription factors were dramatically increased in one cluster of gcgr-/- α cells. We further confirmed that glucagon mRNA was upregulated in gcgr-/- animals by in situ hybridization and that glucagon promoter activity was increased in gcgr-/-;Tg(gcga:GFP) reporter zebrafish. We also demonstrated that gcgr-/- α cells had increased glucagon protein levels and increased granules after GCGR disruption. Intriguingly, the increased mRNA and protein levels could be suppressed by treatment with high-level glucose or knockdown of the pnoca gene. In conclusion, these data demonstrated that GCGR deficiency not only induced α-cell hyperplasia but also increased glucagon expression in α cells, findings which provide more information about physiological changes in α-cells when the GCGR is disrupted.


Subject(s)
Glucagon , Receptors, Glucagon , Animals , Receptors, Glucagon/genetics , Receptors, Glucagon/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Hyperplasia , RNA, Messenger
14.
Clin Infect Dis ; 76(3): e1467-e1475, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35906836

ABSTRACT

BACKGROUND: Despite advances in the understanding and diagnosis of Clostridioides difficile infection (CDI), clinical distinction within the colonization-infection continuum remains an unmet need. METHODS: By measuring stool cytokines and antitoxin antibodies in well-characterized cohorts of CDI (diarrhea, nucleic acid amplification test [NAAT] positive), non-CDI diarrhea (NCD; diarrhea, NAAT negative), asymptomatic carriers (ASC; no diarrhea, NAAT positive) and hospital controls (CON; no diarrhea, NAAT negative), we aim to discover novel biological markers to distinguish between these cohorts. We also explore the relationship of these stool cytokines and antitoxin antibody with stool toxin concentrations and disease severity. RESULTS: Stool interleukin (IL) 1ß, stool immunoglobulin A (IgA), and immunoglobulin G (IgG) anti-toxin A had higher (P < .0001) concentrations in CDI (n = 120) vs ASC (n = 43), whereas toxins A, B, and fecal calprotectin did not. Areas under the receiver operating characteristic curve (ROC-AUCs) for IL-1ß, IgA, and IgG anti-toxin A were 0.88, 0.83, and 0.83, respectively. A multipredictor model including IL-1ß and IgA anti-toxin A achieved an ROC-AUC of 0.93. Stool IL-1ß concentrations were higher in CDI compared to NCD (n = 75) (P < .0001) and NCD + ASC+ CON (CON, n = 75) (P < .0001), with ROC-AUCs of 0.83 and 0.86, respectively. Stool IL-1ß had positive correlations with toxins A (ρA = +0.55) and B (ρB = +0.49) in CDI (P < .0001) but not in ASC (P > .05). CONCLUSIONS: Stool concentrations of the inflammasome pathway, proinflammatory cytokine IL-1ß, can accurately differentiate CDI from asymptomatic carriage and NCD, making it a promising biomarker for CDI diagnosis. Significant positive correlations exist between stool toxins and stool IL-1ß in CDI but not in asymptomatic carriers.


Subject(s)
Clostridioides difficile , Clostridium Infections , Diarrhea , Feces , Interleukin-1beta , Humans , Antitoxins , Bacterial Toxins , Clostridium Infections/complications , Clostridium Infections/diagnosis , Clostridium Infections/immunology , Diarrhea/etiology , Enterotoxins , Feces/chemistry , Immunoglobulin A , Immunoglobulin G
15.
Ann Surg Oncol ; 30(5): 2729-2738, 2023 May.
Article in English | MEDLINE | ID: mdl-36658250

ABSTRACT

INTRODUCTION: Overlap guiding tube (OGT)-assisted overlap oesophagojejunostomy (EJS), which was first designed and reported by our team, has shown feasibility. However, its safety and efficiency have not yet been compared with the conventional overlap approach. METHODS: We retrospectively analysed the data of 155 gastric/gastroesophageal junction (G/GEJ) cancer patients who underwent laparoscopic total gastrectomy by conventional (conventional group, n = 83) or OGT-assisted (OGT group, n = 72) overlap methods at Nanfang Hospital. The anastomotic efficiency and surgical outcomes were compared between the two groups. RESULTS: The success rate of inserting an anvil fork into the oesophageal lumen at the first attempt in the OGT group was much higher than in the conventional group (86.7% vs. 97.2%, P = 0.019). Consistently, the duration of EJS (P < 0.001) in the OGT group was significantly shorter than that in the conventional group. Operatively, there was one case in which oesophageal pseudocanals developed; another case was converted to thoracoscopic surgery in the conventional group, but there were no such cases in the OGT group. In terms of postoperative recovery, the OGT group was superior to the conventional group. The incidence of postoperative complications (28.9% vs. 20.8%, P = 0.247) and the classification of complication severity (P = 0.450) were milder in the OGT group, although the difference was not statistically significant. Notably, the conventional group had four cases (4.8%) of oesophagojejunal anastomotic leakage (EJAL) and one case (1.2%) of anastomotic stenosis. In the OGT group, two patients (2.8%) developed EJAL, but none developed anastomotic stenosis or anastomotic bleeding. Neither group had any cases of unplanned secondary surgery or perioperative deaths. CONCLUSIONS: The OGT-assisted method reduced the surgical difficulty of overlap EJS with good safety. This study provides new perspectives for optimizing EJS.


Subject(s)
Laparoscopy , Stomach Neoplasms , Humans , Retrospective Studies , Constriction, Pathologic , Laparoscopy/methods , Anastomosis, Surgical/adverse effects , Gastrectomy/methods , Stomach Neoplasms/pathology , Postoperative Complications/etiology , Esophagogastric Junction/surgery , Esophagogastric Junction/pathology , Treatment Outcome
16.
BMC Cancer ; 23(1): 64, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653759

ABSTRACT

BACKGROUND: Peritoneal metastasis (PM) is not uncommon in patients with gastric cancer(GC), which affects clinical treatment decisions, but the relevant examination measures are not efficiently detected. Our goal was to develop a clinical radiomics nomogram to better predict peritoneal metastases. METHODS: A total of 3480 patients from 2 centers were divided into 1 training, 1 internal validation, and 1 external validation cohort(1949 in the internal training set, 704 in the validation set, and 827 in the external validation cohort) with clinicopathologically confirmed GC. We recruited 11 clinical factors, including age, sex, smoking status, tumor size, differentiation, Borrmann type, location, clinical T stage, and serum tumor markers (STMs) comprising carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 72-4 (CA72-4), and carcinoembryonic antigen (CEA), to develop the radiomics nomogram. For clinical predictive feature selection and the establishment of clinical models, statistical methods of analysis of variance (ANOVA), relief and recursive feature elimination (RFE) and logistic regression analysis were used. To develop combined predictive models, tumor diameter, type, and location, clinical T stage and STMs were finally selected. The discriminatory ability of the nomogram to predict PM was evaluated by the area under the receiver operating characteristic curve(AUC), and decision curve analysis (DCA) was conducted to evaluate the clinical usefulness of the nomogram. RESULTS: The AUC of the clinical models was 0.762 in the training cohorts, 0.772 in the internal validation cohort, and 0.758 in the external validation cohort. However, when combined with STMs, the AUC was improved to 0.806, 0.839 and 0.801, respectively. DCA showed that the combined nomogram was of good clinical evaluation value to predict PM in GC. CONCLUSIONS: The present study proposed a clinical nomogram with a combination of clinical risk factors and radiomics features that can potentially be applied in the individualized preoperative prediction of PM in GC patients.


Subject(s)
Peritoneal Neoplasms , Stomach Neoplasms , Humans , Nomograms , Biomarkers, Tumor , Stomach Neoplasms/pathology , Peritoneal Neoplasms/diagnostic imaging , Retrospective Studies
17.
Fish Shellfish Immunol ; 134: 108581, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36754157

ABSTRACT

As the predominant immunoglobulin (Ig) isotype, IgM plays a crucial role in the acquired immunity of vertebrates. There is only one Igµ gene in mammals, except cattle, while the number of Igµ gene varies among teleost fish. In the current study, we found two functional Igµ genes (Igµ1 and Igµ2) and a pseudo Cµ gene (ψIgµ) in large yellow croaker (Larimichthys crocea). Both Igµ1 and Igµ2 genes possessed two transcript variants, which encoded the heavy chains of secreted (sIgM1 and sIgM2) and membrane-bound IgM1 and IgM2 (mIgM1 and mIgM2), respectively. Both the heavy chains of sIgM1 and sIgM2 consisted of a variable Ig domain, four constant Ig domains (CH1, CH2, CH3 and CH4) and a secretory tail, while those of mIgM1 and mIgM2 consisted of a variable Ig domain, three constant Ig domains (CH1, CH2 and CH3), a transmembrane domain and a short cytoplasmic tail. Cysteine residues that are necessary for the formation of intrachain and interchain disulfide bonds and tryptophan residues that are important for the folding of the Ig superfamily domain were well conserved in large yellow croaker IgM1 and IgM2. Interestingly, large yellow croaker IgM2 had an extra cysteine (C94) in the CH1 domain compared with IgM1, which may cause the structural difference between IgM1 and IgM2. A liquid chromatography-tandem mass spectrometry analysis revealed that both IgM1 and IgM2 were present at the protein level in large yellow croaker serum. Both the Igµ1 and Igµ2 genes were mainly expressed in systemic immune tissues, such as head kidney and spleen, but the expression level of Igµ2 was much lower than that of Igµ1. After Pseudomonas plecoglossicida infection, the expression levels of Igµ1 and Igµ2 in both the spleen and head kidney were significantly upregulated, with a higher upregulation of Igµ2 than that of Igµ1. These results suggested that Igµ1 and Igµ2 may play a differential role in the immune response of large yellow croaker against bacterial infection.


Subject(s)
Cattle Diseases , Fish Diseases , Perciformes , Animals , Cattle , Cysteine , Immunoglobulin M/genetics , Fish Proteins/genetics , Phylogeny , Mammals/metabolism
18.
Fish Shellfish Immunol ; 133: 108519, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608811

ABSTRACT

The terminal differentiation of B cells into plasma cells is central to the generation of protective, long-lived humoral immune responses. In mammals, interleukin-2 (IL-2) has been shown to play a role in B cell proliferation and differentiation. However, it remains unclear whether fish IL-2 is involved in B cell proliferation and differentiation. To this end, we investigated the regulatory role of IL-2 in B cell proliferation and differentiation in large yellow croaker (Larimichthys crocea). We found that L. crocea IL-2 (LcIL-2) significantly increased IgM+ B cells proliferation both in vivo and in vitro and facilitated IgM+ B cells differentiation into plasma cells. Furthermore, LcIL-2 increased the production of specific antibodies after immunization with the Vibrio alginolyticus subunit vaccine, recombinant dihydrolipoamide dehydrogenase (rDLD); simultaneous administration of LcIL-2 and rDLD prior to challenge with Vibrio parahaemolyticus or V. alginolyticus significantly increased relative percent survival. Mechanistically, LcIL-2 promoted B cell proliferation and regulated B cell differentiation by triggering the JAK-STAT5 signaling pathway. Collectively, our results demonstrated that LcIL-2 improved B cell proliferation and specific antibody production via the conserved JAK-STAT5 signaling pathway in large yellow croaker, providing valuable insights into the mechanisms underlying the IL-2-mediated regulation of the humoral immune response in fish.


Subject(s)
Fish Proteins , Interleukin-2 , Perciformes , Animals , Fish Diseases , Immunity, Humoral , Immunoglobulin M/metabolism , Interleukin-2/genetics , Mammals/metabolism , Signal Transduction , STAT5 Transcription Factor
19.
Fish Shellfish Immunol ; 142: 109170, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37852511

ABSTRACT

Pseudomonas plecoglossicida infection is a highly contagious epidemic in aquaculture, causing significant mortality among teleost. Our previous research has demonstrated that Lactobacillus plantarum E2 is beneficial for large yellow croaker in resisting infections caused by P. plecoglossicida. However, the relevant mechanisms remain largely unclear. In the present study, we used zebrafish (Danio rerio) to further explore the function of L. plantarum E2 and its mechanisms for resisting P. plecoglossicida infection. E2 supplementation diet significantly improved the growth rates and α-amylase and trypsin activities of the liver in zebrafish. After challenge with P. plecoglossicida strain PQLYC4, the survival rates of zebrafish were improved, and immune-related genes expression (IL-1ß, TNF-α, IL-8, Ig-Z, TLR-22 and IL-12α) were down-regulated. Histological analysis showed that E2 group had a longer intestinal villus and thicker intestinal walls after 30 days of feeding and healthier intestinal structure after challenge with P. plecoglossicida strain PQLYC4. Furthermore, co-incubation of zebrafish embryo fibroblast (ZF-4 cells) with L. plantarum E2 reduced apoptosis of ZF-4 cells after exposed to P. plecoglossicida. Intestinal microbiota analysis showed that E2 strain significantly increased the relative abundance of Lactobacillus and Pseudomonas, and PCoA analysis revealed a noticeable divergence in the intestinal microbial communities after E2 supplement. Together, our results suggested that E2 strain may promote zebrafish survival against P. plecoglossicida infection by regulating the intestinal microbiota and alleviating inflammatory response and apoptosis, thus exhibiting the potential as a probiotic.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus plantarum , Pseudomonas Infections , Animals , Zebrafish , Lactobacillus plantarum/chemistry , Pseudomonas , Inflammation/veterinary , Pseudomonas Infections/prevention & control , Pseudomonas Infections/veterinary , Apoptosis
20.
Fish Shellfish Immunol ; 138: 108834, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37207885

ABSTRACT

The present study was conducted to investigate the effects of dietary Coenzyme Q10 (CoQ10) on the growth performance, body composition, digestive enzyme activity, antioxidant capacity, intestinal histology, immune-antioxidant gene expression and disease resistance of juvenile European eel (Anguilla anguilla). Fish were fed a diet supplemented with CoQ10 at concentrations of 0, 40, 80 and 120 mg/kg for 56 days. The results indicated that dietary CoQ10 supplementation did not significantly affect final body weight (FBW), survival rate (SR), weight gain (WG), feed rate (FR), viscerosomatic index (VSI) or hepatosomatic index (HSI) among all experimental groups. However, the highest FBW, WG and SR were found in the 120 mg/kg CoQ10 group. Dietary 120 mg/kg CoQ10 markedly improved feed efficiency (FE) and the protein efficiency ratio (PER). The crude lipid in the body and triglycerides (TG) and total cholesterol (TC) in serum were obviously lower in the 120 mg/kg CoQ10 group than in the control group. For digestive enzymes, protease activity in the intestine was markedly boosted in the 120 mg/kg CoQ10 group. The serum activities of SOD, CAT and GST in the 120 mg/kg CoQ10 group were significantly higher than those in the control group. Dietary 120 mg/kg CoQ10 efficiently enhanced superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities in the liver, while the malondialdehyde (MDA) content was significantly decreased. No significant histological changes in the liver were identified in any group. Dietary supplementation with 120 mg/kg CoQ10 improved antioxidant capacity and immunity by upregulating the expression of cyp1a, sod, gst, lysC, igma1, igmb1 and irf3 in the liver. Furthermore, the cumulative survival rate of juvenile European eel against challenge with Aeromonas hydrophila was significantly elevated in the 80 and 120 mg/kg CoQ10 supplemented groups. Conclusively, our study suggested that supplementing the diet of juvenile European eel with CoQ10 at a concentration of 120 mg/kg could promote their feed utilization, fat reduction, antioxidant capacity, digestibility, immune-antioxidant gene expression and resistance to Aeromonas hydrophila without negative effects on fish health status.


Subject(s)
Anguilla , Fish Diseases , Animals , Antioxidants/metabolism , Aeromonas hydrophila/physiology , Anguilla/metabolism , Diet/veterinary , Dietary Supplements , Disease Resistance , Superoxide Dismutase , Animal Feed/analysis
SELECTION OF CITATIONS
SEARCH DETAIL