Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 373
Filter
Add more filters

Publication year range
1.
Nucleic Acids Res ; 52(13): 7961-7970, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38860430

ABSTRACT

The abnormal GGGGCC hexanucleotide repeat expansions (HREs) in C9orf72 cause the fatal neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal dementia. The transcribed RNA HREs, short for r(G4C2)n, can form toxic RNA foci which sequestrate RNA binding proteins and impair RNA processing, ultimately leading to neurodegeneration. Here, we determined the crystal structure of r(G4C2)2, which folds into a parallel tetrameric G-quadruplex composed of two four-layer dimeric G-quadruplex via 5'-to-5' stacking in coordination with a K+ ion. Notably, the two C bases locate at 3'- end stack on the outer G-tetrad with the assistance of two additional K+ ions. The high-resolution structure reported here lays a foundation in understanding the mechanism of neurological toxicity of RNA HREs. Furthermore, the atomic details provide a structural basis for the development of potential therapeutic agents against the fatal neurodegenerative diseases ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , DNA Repeat Expansion , Frontotemporal Dementia , G-Quadruplexes , RNA , C9orf72 Protein/genetics , C9orf72 Protein/chemistry , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Humans , RNA/chemistry , RNA/genetics , DNA Repeat Expansion/genetics , Crystallography, X-Ray , Models, Molecular
2.
Proc Natl Acad Sci U S A ; 120(41): e2221653120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37788309

ABSTRACT

Fatty acid oxidation (FAO) fuels many cancers. However, knowledge of pathways that drive FAO in cancer remains unclear. Here, we revealed that valosin-containing protein (VCP) upregulates FAO to promote colorectal cancer growth. Mechanistically, nuclear VCP binds to histone deacetylase 1 (HDAC1) and facilitates its degradation, thus promoting the transcription of FAO genes, including the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). FAO is an alternative fuel for cancer cells in environments exhibiting limited glucose availability. We observed that a VCP inhibitor blocked the upregulation of FAO activity and CPT1A expression triggered by metformin in colorectal cancer (CRC) cells. Combined VCP inhibitor and metformin prove more effective than either agent alone in culture and in vivo. Our study illustrates the molecular mechanism underlying the regulation of FAO by nuclear VCP and demonstrates the potential therapeutic utility of VCP inhibitor and metformin combination treatment for colorectal cancer.


Subject(s)
Colorectal Neoplasms , Metformin , Humans , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Neoplastic Processes , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Fatty Acids/metabolism , Metformin/pharmacology , Carnitine O-Palmitoyltransferase/metabolism , Oxidation-Reduction
3.
Plant J ; 113(1): 127-144, 2023 01.
Article in English | MEDLINE | ID: mdl-36423230

ABSTRACT

DNA acetylation alters the expression of responsive genes during plant development. In grapes (Vitis vinifera), however, little is known about this regulatory mechanism. In the present study, 'Kyoho' grapes treated with trichostatin A (TSA, a deacetylase inhibitor) were used for transcriptome sequencing and quantitative proteomics analysis. We observed that acetylation was associated with anthocyanin accumulation and gene expression. Acetylation positively regulated phenylalanine metabolism and flavonoid biosynthesis pathways. Using omics analysis, we detected an increase in the levels of the AP2/EREBP transcription factor family after TSA treatment, indicating its association with acetylation-deacetylation dynamics in grapes. Furthermore, ethylene response factor 4 (ERF4) physically interacted with VvHDAC19, a histone deacetylase, which synergistically reduced the expression of target genes involved in anthocyanin biosynthesis owing to the binding of VvERF4 to the GCC-box cis-regulatory element in the VvMYB5a promoter. VvHDAC19 and VvERF4 also controlled anthocyanin biosynthesis and accumulation by regulating acetylation levels of histones H3 and H4. Therefore, alterations in histone modification can significantly regulate the expression of genes involved in anthocyanin biosynthesis and affect grape ripening.


Subject(s)
Anthocyanins , Vitis , Anthocyanins/metabolism , Vitis/genetics , Vitis/metabolism , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid , Ethylenes/metabolism , Fruit/genetics , Gene Expression Regulation, Plant
4.
BMC Cancer ; 24(1): 545, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689243

ABSTRACT

PURPOSE: Cancer survivors have a high risk of mortality, and vitamin D (VD) is associated with the risk of mortality. This study is aim to examine the impact of VD on mortality in cancer survivors. METHODS: A prospective study was conducted using data from the National Health and Nutrition Examination Survey. Participants were obtained information on their baseline characteristics, dietary habits, comorbidities, lifestyle, and serum 25-hydroxy VD [25(OH)D] concentrations. The weighted Cox proportional hazard and competing risk regression models were used to estimate the hazard ratio and 95% confidence intervals (HR, 95% CI) of mortality for different serum 25(OH)D concentrations. Restricted cubic spline (RCS) curves were utilized to illustrate the dose-response relationship between serum 25(OH)D concentrations and mortality. RESULTS: The study encompassed 2,495 participants with cancer diagnoses. Multivariate models indicated that, compared to serum 25(OH)D concentrations below 58.5 nmol/L, concentrations exceeding 81.6 nmol/L were associated with reduced HRs for all-cause mortality (HR = 0.70; 95% CI: 0.56-0.87), cardiovascular mortality (HR = 0.53; 95% CI: 0.32-0.86), and cancer-specific mortality (HR = 0.66; 95% CI: 0.45-0.99). RCS curves revealed "L-shaped" associations between serum 25(OH)D concentration and both all-cause and cancer-specific mortality, with threshold effects at 87.9 nmol/L and 84.6 nmol/L, respectively. Conversely, the relationship between serum 25(OH)D concentration and cardiovascular mortality exhibited a more linear pattern, with a threshold at 88.7 nmol/L. Subgroup analyses highlighted a gender-specific interaction that elevated serum 25(OH)D concentrations were significantly more protective against mortality in males than in females, especially regarding cancer-specific mortality (P-interaction = 0.009). CONCLUSION: Elevated serum 25(OH)D concentrations were correlated with decreased risks of all-cause, cardiovascular, and cancer-specific mortality in cancer survivors, with benefit thresholds at 87.9, 88.7, and 84.6 nmol/L, respectively. These findings suggested that cancer survivors might benefit from higher vitamin D recommendations than the general population.


Subject(s)
Cancer Survivors , Neoplasms , Nutrition Surveys , Vitamin D , Vitamin D/analogs & derivatives , Humans , Vitamin D/blood , Male , Female , Middle Aged , Cancer Survivors/statistics & numerical data , United States/epidemiology , Prospective Studies , Neoplasms/mortality , Neoplasms/blood , Aged , Adult , Risk Factors , Proportional Hazards Models , Cardiovascular Diseases/mortality , Cardiovascular Diseases/blood
5.
Virol J ; 21(1): 176, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107796

ABSTRACT

BACKGROUND: Persistent infection with high-risk human papillomavirus (HR-HPV) plays a key role in the onset of cervical cancer. This study was designed to examine the epidemiological trends and genotype distribution of HPV from 2014 to 2023 in the plateau region of Southwest China. METHODS: The findings could offer valuable insights for clinical screening of cervical cancer and the formulation of HPV vaccination policies. This retrospective study analyzed 66,000 women who received HPV-DNA testing at the First People's Hospital of Qujing, Yunnan, China, between 2014 and 2023. The cohort consisted of 33,512 outpatients, 3,816 inpatients, and 28,672 individuals undergoing health examinations. Cervical cells were collected for DNA extraction, and PCR amplification along with Luminex xMAP technology were used to detect 27 HPV genotypes. The data analysis was conducted using GraphPad Prism and IBM SPSS Statistics 27 software. RESULTS: The overall HPV infection rate at the First People's Hospital of Qujing declined from 24.92% in 2014 to 16.29% in 2023, averaging 16.02%. Specific infection rates were 18.50% among outpatients, 12.97% among inpatients, and 13.53% for health examination attendees. The predominant high-risk HPV genotypes identified were HPV52 (2.61%), HPV16 (2.06%), HPV58 (1.81%), HPV53 (1.55%), and HPV39 (1.09%). Meanwhile, the most frequent low-risk HPV genotypes were HPV6 (1.30%), HPV61 (1.21%), and HPV11 (0.85%). In HPV-positive cases, the distribution of single, double, triple, and quadruple or more infections were 79.90%, 15.17%, 3.59%, and 1.33%, respectively. The proportions of pure LR-HPV, pure HR-HPV, and mixed infections were 22.16%, 67.82%, and 10.02%, respectively. Age-specific analysis revealed a bimodal distribution of HPV infection, with the infection rate rapidly decreasing from 44.02% in the ≤ 19 age group to 19.55% in the 20-29 age group and 13.84% in the 30-39 age group, followed by a gradual increase to 14.64% in the 40-49 age group, 16.65% in the 50-59 age group, and 22.98% in the ≥ 60 age group. The coverage rates of the three available vaccines are all below 50%. The results of this study indicated a declining trend in HPV prevalence in the plateau region of Southwest China over the period from 2014 to 2023, especially in the reduction of genotypes targeted by vaccines. CONCLUSION: There were significant variations in the genotypes prevalent among different age groups, years, and patient sources within the same region. The underwhelming vaccination rates emphasize the critical need for developing either a multivalent vaccine or a personalized vaccine that targets the HPV genotypes common in the Chinese population. Furthermore, vaccinating adolescents to curb HPV infection and ensuring regular cervical cancer screenings for postmenopausal women are crucial steps.


Subject(s)
Genotype , Papillomaviridae , Papillomavirus Infections , Humans , Female , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , China/epidemiology , Adult , Prevalence , Middle Aged , Retrospective Studies , Young Adult , Papillomaviridae/genetics , Papillomaviridae/classification , Papillomaviridae/isolation & purification , Adolescent , Aged , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/epidemiology , DNA, Viral/genetics , Cervix Uteri/virology
6.
Cell Biol Toxicol ; 40(1): 38, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789868

ABSTRACT

Ensartinib, an approved ALK inhibitor, is used as a first-line therapy for advanced ALK-positive non-small cell lung cancer in China. However, the hepatotoxicity of ensartinib seriously limits its clinical application and the regulatory mechanism is still elusive. Here, through transcriptome analysis we found that transcriptional activation of TXNIP was the main cause of ensartinib-induced liver dysfunction. A high TXNIP level and abnormal TXNIP translocation severely impaired hepatic function via mitochondrial dysfunction and hepatocyte apoptosis, and TXNIP deficiency attenuated hepatocyte apoptosis under ensartinib treatment. The increase in TXNIP induced by ensartinib is related to AKT inhibition and is mediated by MondoA. Through screening potential TXNIP inhibitors, we found that the natural polyphenolic flavonoid rutin, unlike most reported TXNIP inhibitors can inhibit TXNIP by binding to TXNIP and partially promoting its proteasomal degradation. Further studies showed rutin can attenuate the hepatotoxicity of ensartinib without antagonizing its antitumor effects. Accordingly, we suggest that TXNIP is the key cause of ensartinib-induced hepatotoxicity and rutin is a potential clinically safe and feasible therapeutic strategy for TXNIP intervention.


Subject(s)
Apoptosis , Carrier Proteins , Rutin , Animals , Humans , Male , Mice , Apoptosis/drug effects , Carrier Proteins/metabolism , Carrier Proteins/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Rutin/pharmacology
7.
Int J Colorectal Dis ; 39(1): 110, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009899

ABSTRACT

PURPOSE: Ulcerative colitis (UC) is an inflammatory bowel disease with an unclear etiology that can lead to irreversible changes in distal colonic function in chronic patients. This study investigated anorectal function in recurrent UC patients and identified influencing factors. METHODS: This prospective study enrolled 33 recurrent UC patients and 40 newly diagnosed patients from January 2019 to December 2022. Data collection included clinical records, scores, and anorectal function assessments. Regression analyses were used to identify factors impacting anorectal function. RESULTS: Recurrent UC patients had higher baseline CRP and fecal calprotectin levels, increased anxiety and depression, and more severe fecal incontinence. They also had lower BMIs, serum Hb and albumin (ALB) levels, and Inflammatory Bowel Disease Questionnaire scores than did initial-onset UC patients. Multivariate linear regression analysis revealed that long disease duration (coef. - 0.376, P < 0.001) and high fecal calprotectin level (coef. - 0.656, P < 0.001) independently influenced the initial sensation threshold in recurrent UC patients. Additionally, high fecal calprotectin (coef. - 0.073, P = 0.013) and high Zung Self-Rating Anxiety Scale score (coef. - 0.489, P = 0.001) were identified as two independent determinants of the defecation volume threshold. For the defecation urgency threshold, the independent factors included high disease duration (coef. - 0.358, P = 0.017) and high fecal calprotectin level (coef. - 0.499, P = 0.001). Similarly, the sole independent factor identified for the maximum capacity threshold was high fecal calprotectin (coef. - 0.691, P = 0.001). CONCLUSION: Recurrent UC patients had increased rectal sensitivity and compromised anorectal function, which significantly impacted quality of life. Proactively managing the disease, reducing UC relapses, and addressing anxiety are effective measures for improving anorectal function in these patients.


Subject(s)
Anal Canal , Colitis, Ulcerative , Feces , Leukocyte L1 Antigen Complex , Rectum , Recurrence , Humans , Colitis, Ulcerative/physiopathology , Colitis, Ulcerative/psychology , Male , Female , Adult , Middle Aged , Leukocyte L1 Antigen Complex/analysis , Leukocyte L1 Antigen Complex/metabolism , Feces/chemistry , Anal Canal/physiopathology , Rectum/physiopathology , Defecation/physiology , Prospective Studies , Fecal Incontinence/physiopathology , Fecal Incontinence/etiology , Fecal Incontinence/psychology , Anxiety/physiopathology
8.
Bioorg Chem ; 144: 107113, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232685

ABSTRACT

Liver fibrosis is an abnormal wound-healing response to liver injuries. It can lead to liver cirrhosis, and even liver cancer and liver failure. There is a lack of treatment for liver fibrosis and it is of great importance to develop anti-fibrotic drugs. A pivotal event in the process of developing liver fibrosis is the activation of hepatic stellate cells (HSCs), in which the nuclear receptor Nur77 plays a crucial role. This study aimed to develop novel anti-fibrotic agents with Nur77 as the drug target by modifying the structure of THPN, a Nur77-binding and anti-melanoma compound. Specifically, a series of para-positioned 3,4,5-trisubstituted benzene ring compounds with long-chain backbone were generated and tested for anti-fibrotic activity. Among these compounds, compound A8 was with the most potent and Nur77-dependent inhibitory activity against TGF-ß1-induced activation of HSCs. In a crystal structure analysis, compound A8 bound Nur77 in a peg-in-hole mode as THPN did but adopted a different conformation that could interfere the Nur77 interaction with AKT, which was previous shown to be important for an anti-fibrotic activity. In a cell-based assay, compound A8 indeed impeded the interaction between Nur77 and AKT leading to the stabilization of Nur77 without the activation of AKT. In a mouse model, compound A8 effectively suppressed the activation of AKT signaling pathway and up-regulated the cellular level of Nur77 to attenuate the HSCs activation and ameliorate liver fibrosis with no significant toxic side effects. Collectively, this work demonstrated that Nur77-targeting compound A8 is a promising anti-fibrotic drug candidate.


Subject(s)
Benzene , Proto-Oncogene Proteins c-akt , Mice , Animals , Fibrosis , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism
9.
Acta Pharmacol Sin ; 45(6): 1252-1263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38360931

ABSTRACT

Although ALK tyrosine kinase inhibitors (ALK-TKIs) have shown remarkable benefits in EML4-ALK positive NSCLC patients compared to conventional chemotherapy, the optimal sequence of ALK-TKIs treatment remains unclear due to the emergence of primary and acquired resistance and the lack of potential prognostic biomarkers. In this study, we systematically explored the validity of sequential ALK inhibitors (alectinib, lorlatinib, crizotinib, ceritinib and brigatinib) for a heavy-treated patient with EML4-ALK fusion via developing an in vitro and in vivo drug testing system based on patient-derived models. Based on the patient-derived models and clinical responses of the patient, we found that crizotinib might inhibit proliferation of EML4-ALK positive tumors resistant to alectinib and lorlatinib. In addition, NSCLC patients harboring the G1269A mutation, which was identified in alectinib, lorlatinib and crizotinib-resistant NSCLC, showed responsiveness to brigatinib and ceritinib. Transcriptomic analysis revealed that brigatinib suppressed the activation of multiple inflammatory signaling pathways, potentially contributing to its anti-tumor activity. Moreover, we constructed a prognostic model based on the expression of IL6, CXCL1, and CXCL5, providing novel perspectives for predicting prognosis in EML4-ALK positive NSCLC patients. In summary, our results delineate clinical responses of sequential ALK-TKIs treatments and provide insights into the mechanisms underlying the superior effects of brigatinib in patients harboring ALKG1269A mutation and resistant towards alectinib, lorlatinib and crizotinib. The molecular signatures model based on the combination of IL6, CXCL1 and CXCL5 has the potential to predict prognosis of EML4-ALK positive NSCLC patients.


Subject(s)
Adenocarcinoma of Lung , Antineoplastic Agents , Lung Neoplasms , Oncogene Proteins, Fusion , Organophosphorus Compounds , Protein Kinase Inhibitors , Pyrimidines , Humans , Organophosphorus Compounds/therapeutic use , Organophosphorus Compounds/pharmacology , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Animals , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Prognosis , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Lactams/therapeutic use , Carbazoles/therapeutic use , Carbazoles/pharmacology , Sulfones/therapeutic use , Sulfones/pharmacology , Crizotinib/therapeutic use , Crizotinib/pharmacology , Cell Line, Tumor , Piperidines/therapeutic use , Piperidines/pharmacology , Female , Mice , Inflammation/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Male , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/metabolism , Cell Proliferation/drug effects , Mutation , Aminopyridines/therapeutic use , Aminopyridines/pharmacology
10.
Ecotoxicol Environ Saf ; 273: 116116, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38387140

ABSTRACT

Enniatin B1 (ENN B1) is a mycotoxin that can be found in various foods. However, whether ENN B1 is hazardous to the reproductive system is still elusive. Leydig cells are testosterone-generating cells that reside in the interstitial compartment between seminiferous tubules. Dysfunction of Leydig cells could result in male infertility. This study aimed to examine the toxicological effects of ENN B1 against TM3 Leydig cells. ENN B1 significantly inhibited cell viability in a dose-dependent manner. ENN B1 treatment also decreased the expression of functional genes in Leydig cells. Moreover, ENN B1 induced Leydig cells apoptosis and oxidative stress. Mechanistically, ENN B1 leads to the upregulation of Bax and downregulation of Bcl-2 in Leydig cells. In addition, ENN B1 inhibited the Nrf2/HO-1 pathway, which is critical for the induction of oxidative stress. Additionally, ENN B1 treatment repressed the JAK/STAT3 signaling pathway in Leydig cells. Rescue experiments showed that activation of STAT3 resulted in alleviation of ENN B1-induced damage in Leydig cells. Collectively, our study demonstrated that ENN B1 induced Leydig cell dysfunction via multiple mechanisms.


Subject(s)
Depsipeptides , Leydig Cells , Mycotoxins , Male , Humans , NF-E2-Related Factor 2/genetics , Mycotoxins/pharmacology , Oxidative Stress , Apoptosis , Signal Transduction
11.
Nano Lett ; 23(10): 4201-4208, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37188354

ABSTRACT

Understanding of DNA-mediated charge transport (CT) is significant for exploring circuits at the molecular scale. However, the fabrication of robust DNA wires remains challenging due to the persistence length and natural flexibility of DNA molecules. Moreover, CT regulation in DNA wires often relies on predesigned sequences, which limit their application and scalability. Here, we addressed these issues by preparing self-assembled DNA nanowires with lengths of 30-120 nm using structural DNA nanotechnology. We employed these nanowires to plug individual gold nanoparticles into a circuit and measured the transport current in nanowires with an optical imaging technique. Contrary to the reported cases with shallow or no length dependence, a fair current attenuation was observed with increasing nanowire length, which experimentally confirmed the prediction of the incoherent hopping model. We also reported a mechanism for the reversible CT regulation in DNA nanowires, which involves dynamic transitions in the steric conformation.


Subject(s)
Metal Nanoparticles , Nanowires , Nanowires/chemistry , Gold/chemistry , Nanotechnology/methods , DNA/chemistry
12.
Yi Chuan ; 46(3): 199-208, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38632098

ABSTRACT

Polarity establishment is one of the key factors affecting early embryonic development. Polarity establishment begins with myosin phosphorylation in the 8-cell embryo, and phosphorylation activates actin leading to its initiation of contractility. Subsequently, actin undergoes reorganization to form an apical domain rich in microvilli on the non-contacting surface of each blastomere, and form the actomyosin ring that marks the maturation of the apical domain in conjunction with polar protein complexes and others. From the process of polarity establishment, it can be seen that the formation of the apical domain is influenced by actin-related proteins and polar protein complexes. Some zygote genome activation (ZGA) and lineage-specific genes also regulate polarity establishment. Polarity establishment underlies the first cell lineage differentiation during early embryonic development. It regulates lineage segregation and morphogenesis by affecting asymmetric cell division, asymmetric localization of lineage differentiation factors, and activity of the Hippo signaling pathway. In this review, we systematically summarize the mechanisms of early embryonic polarity establishment and its impact on lineage differentiation in mammals, and discuss the shortcomings of the currently available studies in terms of regulatory mechanisms and species, thereby providing clues and systematic perspectives for elucidating early embryonic polarity establishment.


Subject(s)
Actins , Actomyosin , Animals , Actomyosin/metabolism , Cytokinesis , Cell Differentiation , Cell Lineage , Cell Polarity/physiology , Mammals/metabolism
13.
Zhonghua Nan Ke Xue ; 30(3): 241-248, 2024 Mar.
Article in Zh | MEDLINE | ID: mdl-39177391

ABSTRACT

OBJECTIVE: To explore the potential action mechanism of Huotu Jiji Pellets (HJP) in the treatment of erectile dysfunction (ED) based on network pharmacology and molecular docking. METHODS: We identified the main effective compounds and active molecular targets of HJP from the database of Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Integrative Pharmacology-Based Research Platform of Traditional Chinese Medicine (TCMIP) and the therapeutic target genes of ED from the databases of Genecards. Then we obtained the common targets of HJP and ED using the Venny software, constructed a protein-protein interaction (PPI) network of HJP acting on ED, and screened out the core targets with the Cytoscape software. Lastly we performed GO functional enrichment and KEGG pathway enrichment analyses of the core targets followed by molecular docking of HJP and the core targets using Chem3D and AutoDock Tools and QuickVina-W software. RESULTS: A total of 64 effective compounds, 822 drug-related targets, 1 783 disease-related targets and 320 common targets were obtained in this study. PPI network analysis showed that the core targets of HJP for ED included ESR1, HSP90AA1, SRC, and STAT3. GO functional enrichment analysis indicated the involvement of the core targets in such biological processes as response to xenobiotic stimulus, positive regulation of kinase activity, and positive regulation of MAPK cascade. KEGG pathway enrichment analysis suggested that PI3K-Akt, apoptosis, MAPK, HIF-1, VEGF, autophagy and other signaling pathways may be related to the mechanism of HJP acting on ED. Molecular docking prediction exhibited a good docking activity of the key active molecules of HJP with the core targets. CONCLUSION: This study showed that HJP acted on ED through multi-components, multi-targets and multi-pathways, which has provided some evidence and reference for the clinical treatment and subsequent studies of the disease.


Subject(s)
Drugs, Chinese Herbal , Erectile Dysfunction , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Male , Erectile Dysfunction/drug therapy , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Humans , Signal Transduction
14.
BMC Bioinformatics ; 24(1): 270, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386390

ABSTRACT

PURPOSE: Most Hepatocellular carcinoma (HCC) patients are in advanced or metastatic stage at the time of diagnosis. Prognosis for advanced HCC patients is dismal. This study was based on our previous microarray results, and aimed to explore the promising diagnostic and prognostic markers for advanced HCC by focusing on the important function of KLF2. METHODS: The Cancer Genome Atlas (TCGA), Cancer Genome Consortium database (ICGC), and the Gene Expression Comprehensive Database (GEO) provided the raw data of this study research. The cBioPortal platform, CeDR Atlas platform, and the Human Protein Atlas (HPA) website were applied to analyze the mutational landscape and single-cell sequencing data of KLF2. Basing on the results of single-cell sequencing analyses, we further explored the molecular mechanism of KLF2 regulation in the fibrosis and immune infiltration of HCC. RESULTS: Decreased KLF2 expression was discovered to be mainly regulated by hypermethylation, and indicated a poor prognosis of HCC. Single-cell level expression analyses revealed KLF2 was highly expressed in immune cells and fibroblasts. The function enrichment analysis of KLF2 targets indicated the crucial association between KLF2 and tumor matrix. 33-genes related with cancer associated fibroblasts (CAFs) were collected to identify the significant association of KLF2 with fibrosis. And SPP1 was validated as a promising prognostic and diagnostic marker for advanced HCC patients. CXCR6 CD8+ T cells were noted as a predominant proportion in the immune microenvironment, and T cell receptor CD3D was discovered to be a potential therapeutic biomarker for HCC immunotherapy. CONCLUSION: This study identified that KLF2 is an important factor promoting HCC progression by affecting the fibrosis and immune infiltration, highlighting its great potential as a novel prognostic biomarker for advanced HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , CD8-Positive T-Lymphocytes , Prognosis , Liver Neoplasms/genetics , Fibrosis , Tumor Microenvironment/genetics , Kruppel-Like Transcription Factors/genetics
15.
Cancer Sci ; 114(4): 1378-1395, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36519785

ABSTRACT

The histone methyltransferase enhancer of zeste homolog 2 (EZH2) is overexpressed in a variety of malignancies including prostate cancer (PCa) and may play important roles in tumor progression. Gene copy number gains, enhanced transcription, and a few circRNAs have been reported to upregulate EZH2. It was not known whether EZH2 itself generates circRNAs that promote its own expression. We here report the identification of circEZH2E2/E3 that is derived from exons 2 and 3 of the EZH2 gene and overexpressed in PCa. We show that circEZH2E2/E3 functions as a dual inhibitor for both miR363 and miR708 that target the EZH2 3'UTR and CDS, respectively, resulting in the upregulation of EZH2 expression and hence the downregulation of EZH2-repressed genes (e.g., CDH1 and DAB2IP), and enhancement of PCa cell proliferation, migration, invasion, and xenograft PCa growth. Overexpression of circEZH2E2/E3 is significantly correlated with higher tumor grade, tumor progression, and unfavorable progression-free and disease-specific survival in PCa patients. These findings show a novel autoenhancing EZH2-circEZH2E2/E3 -miR363/miR708-EZH2 regulatory loop, by which circEZH2E2/E3 plays important roles in PCa tumorigenesis and progression by upregulating EZH2, and may have potential diagnostic, prognostic, and therapeutic uses in PCa management.


Subject(s)
MicroRNAs , Prostatic Neoplasms , Male , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , RNA, Circular , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/pathology , Cell Proliferation/genetics , ras GTPase-Activating Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
16.
Prostate ; 83(5): 440-453, 2023 04.
Article in English | MEDLINE | ID: mdl-36541373

ABSTRACT

BACKGROUND: The homeodomain-containing transcription factor NANOG is overexpressed in prostate adenocarcinoma (PCa) and predicts poor prognosis. The SOX family transcription factor SOX9, as well as the transcription co-activator HMGB3 of the HMGB family, are also overexpressed and may play pivotal roles in PCa. However, it is unknown whether SOX9 and HMGB3 interact with each other, or if they regulate NANOG gene transcription. METHODS: We identified potential SOX9 responsive elements in NANOG promoter, and investigated if SOX9 regulated NANOG transcription in co-operation with HMGB3 by experimental analysis of potential SOX9 binding sites in NANOG promoter, reporter gene transcription assays with or without interference or artificial overexpression of SOX9 and/or HMGB3, and protein-binding assays of SOX9-HMGB3 interaction. Clinicopathologic and prognostic significance of SOX9-HMGB3 overexpression in PCa was analyzed. RESULTS: SOX9 activated NANOG gene transcription by preferentially binding to a highly conserved consensus cis-regulatory element (-573 to -568) in NANOG promoter, and promoted the expression of NANOG downstream oncogenic genes. Importantly, HMGB3 functioned as a partner of SOX9 to co-operatively enhance transactivation of NANOG by interacting with SOX9, predominantly via the HMG Box A domain of HMGB3. Overexpression of SOX9 and/or HMGB3 enhanced PCa cell survival and cell migration and were significantly associated with PCa progression. Notably, Cox proportional regression analysis showed that co-overexpression of both SOX9 and HMGB3 was an independent unfavorable prognosticator for both CRPC-free survival (relative risk [RR] = 3.779,95% confidence interval [CI]: 1.159-12.322, p = 0.028) and overall survival (RR = 3.615,95% CI: 1.101-11.876, p = 0.034). CONCLUSIONS: These findings showed a novel SOX9/HMGB3/NANOG regulatory mechanism, deregulation of which played important roles in PCa progression.


Subject(s)
HMGB3 Protein , Nanog Homeobox Protein , Prostatic Neoplasms , SOX9 Transcription Factor , Humans , Male , Gene Expression Regulation , HMGB3 Protein/genetics , HMGB3 Protein/metabolism , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Neoplastic Processes , Prostate/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Transcription Factors/genetics
17.
Anal Chem ; 95(39): 14736-14745, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37737121

ABSTRACT

Easy-to-use, reliable, and real-time methods for detecting heavy metal ion contamination are urgently required, which is a primary concern for water pollution control and human health. However, present methods for this aim are still unable to achieve simultaneous multianalysis for complex real sample detection. Herein, an intellectualized vision-based single-nanoparticle Raman imaging strategy combined with ion-responsive functional nucleic acids (FNAs) was proposed to address these issues. We reported a correspondence between the concentration of the analytes and the density of particles (DOP) of specifically captured nanoparticles to achieve sensitive detection and simultaneous multianalysis of heavy metal ions. The specific detection of Pb2+ (Hg2+) was obtained with a detection linear range from 100 pM to 100 nM (from 500 fM to 100 nM) and limit of detections low to 1 pM (100 fM), with the advantages of good specificity, excellent homogeneity, and reproducibility. Furthermore, the differentiation of different heavy metal ions (Pb2+/Hg2+) was achieved, i.e., the simultaneous multianalysis, based on Raman imaging of the single particle and intelligent machine vision method. Finally, the Raman imaging assay was utilized for real sample analysis, and it provided a powerful and reliable tool for detecting trace Pb2+/Hg2+ in real water samples and facilitated the portable on-site monitoring of heavy metal ions.

18.
Mod Pathol ; 36(11): 100303, 2023 11.
Article in English | MEDLINE | ID: mdl-37580017

ABSTRACT

Fumarate hydratase (FH)-deficient renal cell carcinoma (RCC) is a rare and distinct subtype of renal cancer caused by FH gene mutations. FH negativity and s-2-succinocysteine (2SC) positivity on immunohistochemistry can be used to screen for FH-deficient RCC, but their sensitivity and specificity are not perfect. The expression of AKR1B10, an aldo-keto reductase that catalyzes cofactor-dependent oxidation-reduction reactions, in RCC is unclear. We compared AKR1B10, 2SC, and FH as diagnostic biomarkers for FH-deficient RCC. We included genetically confirmed FH-deficient RCCs (n = 58), genetically confirmed TFE3 translocation RCCs (TFE3-tRCC) (n = 83), clear cell RCCs (n = 188), chromophobe RCCs (n = 128), and papillary RCCs (pRCC) (n = 97). AKR1B10, 2SC, and FH were informative diagnostic markers. AKR1B10 had 100% sensitivity and 91.4% specificity for FH-deficient RCC. The nonspecificity of AKR1B10 was shown in 26.5% of TFE3-tRCCs and 21.6% of pRCCs. 2SC showed 100% sensitivity and 88.9% specificity. However, nonspecificity for 2SC was evident in multiple RCCs, including pRCC, TFE3-tRCC, clear cell RCCs, and chromophobe RCCs. FH was 100% specific but 84.5% sensitive. AKR1B10 served as a highly sensitive and specific diagnostic biomarker. Our findings suggest the value of combining AKR1B10 and 2SC to screen for FH-deficient RCC. AKR1B10+/2SC+/FH- cases can be diagnosed as FH-deficient RCC. Patients with AKR1B10+/2SC+/FH+ are highly suspicious of FH-deficient RCC and should be referred for FH genetic tests.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Kidney Neoplasms/pathology , Transcription Factors , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Aldo-Keto Reductases
19.
J Transl Med ; 21(1): 840, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37993879

ABSTRACT

Fibroblast growth factor receptor 1 (FGFR1) is a core component of the FGFs/FGFR pathway that activates multiple signalling pathways, including ERK1/2, PI3K/AKT, PLCγ, and NF-κB. Aberrant expression of FGFR1 due to gene amplification, chromosome rearrangement, point mutation, and epigenetic deregulations, have been reported in various cancers. FGFR1 overexpression has also been reported in prostate cancer (PCa), but the underlining mechanisms are not clear. Here we report a novel circular RNA, circFGFR1int2, derived from intron 2 of FGFR1 gene, which is overexpressed in PCa and associated with tumor progression. Importantly, we show that circFGFR1int2 facilitates FGFR1 transcription by recruiting transcription activators P65/FUS and by interacting with FGFR1 promoter. Moreover, we show that circFGFR1int2 suppresses post-transcriptional inhibitory effects of miR-4687-5p on FGFR1 mRNA. These mechanisms synergistically promote PCa cell growth, migration, and invasion. Overexpression of circFGFR1int2 is significantly correlated with higher tumor grade, Gleason score, and PSA level, and is a significant unfavorable prognosticator for CRPC-free survival (CFS) (RR = 3.277, 95% confidence interval: 1.192-9.009; P = 0.021). These findings unravelled novel mechanisms controlling FGFR1 gene expression by intronic circRNA and its potential clinicopathological utility as a diagnostic or therapeutic target.


Subject(s)
MicroRNAs , Prostatic Neoplasms , Male , Humans , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , RNA, Circular/genetics , Introns/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/pathology , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
20.
BMC Microbiol ; 23(1): 162, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277707

ABSTRACT

BACKGROUND: Klebsiella pneumoniae is one of the main pathogens of clinical isolation and nosocomial infections, as K. pneumoniae show broad-spectrum resistance to ß-lactam and carbapenem antibiotics. It is emerging clinical need for a safe and effective drug to anti-K. pneumoniae. At present, Achromobacter mainly focused on its degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, assisting insects to decompose, degrade heavy metals and utilize organic matter, but there were few reports on the antibacterial activity of the secondary metabolites of Achromobacter. RESULTS: In this study, a strain WA5-4-31 from the intestinal tract of Periplaneta americana exhibited strong activity against K. Pneumoniae through preliminary screening. The strain was determined to be Achromobacter sp. through the morphological characteristics, genotyping and phylogenetic tree analysis, which is homologous to Achromobacter ruhlandii by 99%, its accession numbe in GenBank at National Center for Biotechnology Information (NCBI) is MN007235, and its deposit number was GDMCC NO.1.2520. Six compounds (Actinomycin D, Actinomycin X2, Collismycin A, Citrinin, Neoechinulin A and Cytochalasin E) were isolated and determined by activity tracking, chemical separation, nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. Among them, Actinomycin D, Actinomycin X2, Collismycin A, Citrinin and Cytochalasin E showed a good effect on anti-K. pneumoniae, with MIC values of 16-64 µg/mL. CONCLUSIONS: The study reported Achromobacter, which was from the intestinal tract of Periplaneta americana with the activity against K. Pneumoniae, can produce antibacterial compounds for the first time. It lays the foundation for development of secondary metabolites of insect intestinal microorganisms.


Subject(s)
Achromobacter , Citrinin , Klebsiella Infections , Periplaneta , Animals , Periplaneta/microbiology , Dactinomycin/pharmacology , Citrinin/pharmacology , Klebsiella pneumoniae/genetics , Phylogeny , Secondary Metabolism , Anti-Bacterial Agents/pharmacology , Intestines , Klebsiella Infections/microbiology , Microbial Sensitivity Tests , beta-Lactamases
SELECTION OF CITATIONS
SEARCH DETAIL