Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.745
Filter
Add more filters

Publication year range
1.
Cell ; 183(1): 11-13, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33007261

ABSTRACT

Circular RNAs (circRNAs) have emerged as key regulators of a wide variety of biological processes, but the roles of mitochondrial circRNAs are largely unknown. In this issue of Cell, Zhao et al. (2020) reveal that mitochondrial DNA-encoded circRNAs interact with ATP synthase subunit ß (ATP5B) to inhibit the output of mitochondrial reactive oxygen species and the activation of liver fibroblasts, which regulate the pathogenesis of liver disease.


Subject(s)
Non-alcoholic Fatty Liver Disease , RNA, Circular , Fibroblasts/metabolism , Humans , Mitochondria , Non-alcoholic Fatty Liver Disease/metabolism
2.
Nat Rev Mol Cell Biol ; 23(4): 286-301, 2022 04.
Article in English | MEDLINE | ID: mdl-34815573

ABSTRACT

Double-stranded RNA (dsRNA) is associated with most viral infections - it either constitutes the viral genome (in the case of dsRNA viruses) or is generated in host cells during viral replication. Hence, nearly all organisms have the capability of recognizing dsRNA and mounting a response, the primary aim of which is to mitigate the potential infection. In vertebrates, a set of innate immune receptors for dsRNA induce a multitude of cell-intrinsic and cell-extrinsic immune responses upon dsRNA recognition. Notably, recent studies showed that vertebrate cells can accumulate self-derived dsRNAs or dsRNA-like species upon dysregulation of several cellular processes, activating the very same immune pathways as in infected cells. On the one hand, such aberrant immune activation in the absence of infection can lead to pathogenesis of immune disorders, such as Aicardi-Goutières syndrome. On the other hand, the same innate immune reaction can be induced in a controlled setting for a therapeutic benefit, as occurs in immunotherapies. In this Review, we describe mechanisms by which immunostimulatory dsRNAs are generated in mammalian cells, either by viruses or by the host cells, and how cells respond to them, with the focus on recent developments regarding the role of cellular dsRNAs in immune modulation.


Subject(s)
Autoimmune Diseases of the Nervous System , Nervous System Malformations , Virus Diseases , Animals , Immunity, Innate , Mammals , RNA, Double-Stranded , Virus Diseases/genetics , Virus Replication
3.
Cell ; 173(6): 1398-1412.e22, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29731168

ABSTRACT

Noncoding mutations in cancer genomes are frequent but challenging to interpret. PVT1 encodes an oncogenic lncRNA, but recurrent translocations and deletions in human cancers suggest alternative mechanisms. Here, we show that the PVT1 promoter has a tumor-suppressor function that is independent of PVT1 lncRNA. CRISPR interference of PVT1 promoter enhances breast cancer cell competition and growth in vivo. The promoters of the PVT1 and the MYC oncogenes, located 55 kb apart on chromosome 8q24, compete for engagement with four intragenic enhancers in the PVT1 locus, thereby allowing the PVT1 promoter to regulate pause release of MYC transcription. PVT1 undergoes developmentally regulated monoallelic expression, and the PVT1 promoter inhibits MYC expression only from the same chromosome via promoter competition. Cancer genome sequencing identifies recurrent mutations encompassing the human PVT1 promoter, and genome editing verified that PVT1 promoter mutation promotes cancer cell growth. These results highlight regulatory sequences of lncRNA genes as potential disease-associated DNA elements.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Genes, myc , RNA, Long Noncoding/genetics , Animals , Breast Neoplasms/metabolism , CRISPR-Cas Systems , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Chromatin , DNA, Neoplasm/genetics , Enhancer Elements, Genetic , Female , Gene Expression Profiling , Humans , Mice , Mice, Inbred NOD , Mutation , Neoplasm Transplantation , Promoter Regions, Genetic , RNA, Long Noncoding/metabolism , Transcription, Genetic
4.
Nat Immunol ; 18(9): 962-972, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28829444

ABSTRACT

Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression in the immune system. Studies have shown that lncRNAs are expressed in a highly lineage-specific manner and control the differentiation and function of innate and adaptive cell types. In this Review, we focus on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins. In addition, we address new areas of lncRNA biology, such as the functions of enhancer RNAs, circular RNAs and chemical modifications to RNA in cellular processes. We emphasize critical gaps in knowledge and future prospects for the roles of lncRNAs in the immune system and autoimmune disease.


Subject(s)
Adaptive Immunity/genetics , Gene Expression Regulation , Immunity, Innate/genetics , Lymphopoiesis/genetics , Myelopoiesis/genetics , RNA, Long Noncoding/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Differentiation , Cell Lineage , Chromatin/metabolism , DNA/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , RNA/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
5.
Nature ; 606(7914): 585-593, 2022 06.
Article in English | MEDLINE | ID: mdl-35483404

ABSTRACT

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA and a sustained interferon (IFN) response, all of which are recapitulated and required for pathology in the SARS-CoV-2-infected MISTRG6-hACE2 humanized mouse model of COVID-19, which has a human immune system1-20. Blocking either viral replication with remdesivir21-23 or the downstream IFN-stimulated cascade with anti-IFNAR2 antibodies in vivo in the chronic stages of disease attenuates the overactive immune inflammatory response, especially inflammatory macrophages. Here we show that SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release interleukin 1 (IL-1) and IL-18, and undergo pyroptosis, thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and the accompanying inflammatory response are necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Notably, this blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 through the production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.


Subject(s)
COVID-19 , Inflammasomes , Macrophages , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , Humans , Inflammasomes/metabolism , Interleukin-1 , Interleukin-18 , Lung/pathology , Lung/virology , Macrophages/metabolism , Macrophages/pathology , Macrophages/virology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/metabolism , Pneumonia/virology , Pyroptosis , Receptors, IgG , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
6.
Nature ; 594(7861): 33-36, 2021 06.
Article in English | MEDLINE | ID: mdl-34002091

ABSTRACT

The extension of the cosmic-ray spectrum beyond 1 petaelectronvolt (PeV; 1015 electronvolts) indicates the existence of the so-called PeVatrons-cosmic-ray factories that accelerate particles to PeV energies. We need to locate and identify such objects to find the origin of Galactic cosmic rays1. The principal signature of both electron and proton PeVatrons is ultrahigh-energy (exceeding 100 TeV) γ radiation. Evidence of the presence of a proton PeVatron has been found in the Galactic Centre, according to the detection of a hard-spectrum radiation extending to 0.04 PeV (ref. 2). Although γ-rays with energies slightly higher than 0.1 PeV have been reported from a few objects in the Galactic plane3-6, unbiased identification and in-depth exploration of PeVatrons requires detection of γ-rays with energies well above 0.1 PeV. Here we report the detection of more than 530 photons at energies above 100 teraelectronvolts and up to 1.4 PeV from 12 ultrahigh-energy γ-ray sources with a statistical significance greater than seven standard deviations. Despite having several potential counterparts in their proximity, including pulsar wind nebulae, supernova remnants and star-forming regions, the PeVatrons responsible for the ultrahigh-energy γ-rays have not yet been firmly localized and identified (except for the Crab Nebula), leaving open the origin of these extreme accelerators.

7.
Mol Cell ; 76(1): 96-109.e9, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31474572

ABSTRACT

Circular RNAs (circRNAs) are prevalent in eukaryotic cells and viral genomes. Mammalian cells possess innate immunity to detect foreign circRNAs, but the molecular basis of self versus foreign identity in circRNA immunity is unknown. Here, we show that N6-methyladenosine (m6A) RNA modification on human circRNAs inhibits innate immunity. Foreign circRNAs are potent adjuvants to induce antigen-specific T cell activation, antibody production, and anti-tumor immunity in vivo, and m6A modification abrogates immune gene activation and adjuvant activity. m6A reader YTHDF2 sequesters m6A-circRNA and is essential for suppression of innate immunity. Unmodified circRNA, but not m6A-modified circRNA, directly activates RNA pattern recognition receptor RIG-I in the presence of lysine-63-linked polyubiquitin chain to cause filamentation of the adaptor protein MAVS and activation of the downstream transcription factor IRF3. CircRNA immunity has considerable parallel to prokaryotic DNA restriction modification system that transforms nucleic acid chemical modification into organismal innate immunity.


Subject(s)
Adenosine/analogs & derivatives , Immunity, Innate , Melanoma, Experimental/therapy , RNA, Circular/immunology , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/metabolism , Adenosine/administration & dosage , Adenosine/immunology , Adenosine/metabolism , Adjuvants, Immunologic/administration & dosage , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , DEAD Box Protein 58/immunology , DEAD Box Protein 58/metabolism , Female , HEK293 Cells , HeLa Cells , Humans , Immunization , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Interferons/immunology , Interferons/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Polyubiquitin/immunology , Polyubiquitin/metabolism , Protein Multimerization , RNA, Circular/administration & dosage , RNA, Circular/metabolism , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , Receptors, Immunologic , Ubiquitination
8.
RNA ; 30(6): 728-738, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38485192

ABSTRACT

Transcriptomics analyses play pivotal roles in understanding the complex regulatory networks that govern cellular processes. The abundance of rRNAs, which account for 80%-90% of total RNA in eukaryotes, limits the detection and investigation of other transcripts. While mRNAs and long noncoding RNAs have poly(A) tails that are often used for positive selection, investigations of poly(A)- RNAs, such as circular RNAs, histone mRNAs, and small RNAs, typically require the removal of the abundant rRNAs for enrichment. Current approaches to deplete rRNAs for downstream molecular biology investigations are hampered by restrictive RNA input masses and high costs. To address these challenges, we developed rRNA Removal by RNaseH (rRRR), a method to efficiently deplete rRNAs from a wide range of human, mouse, and rat RNA inputs and of varying qualities at a cost 10- to 20-fold cheaper than other approaches. We used probe-based hybridization and enzymatic digestion to selectively target and remove rRNA molecules while preserving the integrity of non-rRNA transcripts. Comparison of rRRR to two commercially available approaches showed similar rRNA depletion efficiencies and comparable off-target effects. Our developed method provides researchers with a valuable tool for investigating gene expression and regulatory mechanisms across a wide range of biological systems at an affordable price that increases the accessibility for researchers to enter the field, ultimately advancing our understanding of cellular processes.


Subject(s)
RNA, Ribosomal , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Animals , Humans , Mice , Rats , Ribonuclease H/metabolism , Ribonuclease H/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Immunity ; 47(6): 1021-1023, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29262346

ABSTRACT

Mechanisms of viral infection are active areas of investigation. In a recent issue of Science, Wang et al. (2017) reveal an additional function of a host-encoded long non-coding RNA (lncRNA) in regulating viral expression by binding a host metabolic enzyme to enhance its catalytic activity.


Subject(s)
Antiviral Agents , MicroRNAs , RNA, Long Noncoding , Interferons , Virus Replication
10.
Mol Cell ; 67(2): 228-238.e5, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28625551

ABSTRACT

Circular RNAs (circRNAs) are single-stranded RNAs that are joined head to tail with largely unknown functions. Here we show that transfection of purified in vitro generated circRNA into mammalian cells led to potent induction of innate immunity genes and confers protection against viral infection. The nucleic acid sensor RIG-I is necessary to sense foreign circRNA, and RIG-I and foreign circRNA co-aggregate in cytoplasmic foci. CircRNA activation of innate immunity is independent of a 5' triphosphate, double-stranded RNA structure, or the primary sequence of the foreign circRNA. Instead, self-nonself discrimination depends on the intron that programs the circRNA. Use of a human intron to express a foreign circRNA sequence abrogates immune activation, and mature human circRNA is associated with diverse RNA binding proteins reflecting its endogenous splicing and biogenesis. These results reveal innate immune sensing of circRNA and highlight introns-the predominant output of mammalian transcription-as arbiters of self-nonself identity.


Subject(s)
Encephalitis Virus, Venezuelan Equine/immunology , Encephalomyelitis, Venezuelan Equine/prevention & control , Immune Tolerance , Immunity, Innate , Introns , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/immunology , RNA/genetics , RNA/immunology , Animals , Base Sequence , DEAD Box Protein 58/genetics , DEAD Box Protein 58/immunology , DEAD Box Protein 58/metabolism , Encephalitis Virus, Venezuelan Equine/genetics , Encephalitis Virus, Venezuelan Equine/metabolism , Encephalomyelitis, Venezuelan Equine/genetics , Encephalomyelitis, Venezuelan Equine/immunology , Encephalomyelitis, Venezuelan Equine/metabolism , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions , Humans , Immune Tolerance/genetics , Immunity, Innate/genetics , Mice , Nucleic Acid Conformation , Protein Binding , RAW 264.7 Cells , RNA/biosynthesis , RNA/chemistry , RNA, Circular , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Immunologic , Spliceosomes/immunology , Spliceosomes/metabolism , Transfection
11.
Trends Biochem Sci ; 45(12): 1022-1034, 2020 12.
Article in English | MEDLINE | ID: mdl-32900574

ABSTRACT

Circular RNAs (circRNAs) are a diverse class of RNAs with varying sizes, cellular abundance, and biological functions. Investigations from the past decade have revealed that circRNAs are ubiquitously found in eukaryotes and have defined the different biological roles of circRNAs to illuminate this previously unrecognized class of molecules. In the context of the immune system, immune responses and immune-related diseases alter circRNA expression. More recently, several oncogenic double-stranded DNA viruses have been found to encode circRNAs. In this review, we summarize the current understanding of circRNAs and their emerging functions in immune regulation and autoimmune disorders, and discuss the identification and potential roles of viral circRNAs during infections. Finally, we present promising areas for future investigations in the nascent field of circRNAs.


Subject(s)
RNA, Circular , RNA, Viral , Virus Diseases , Humans , Immunity/genetics , RNA, Circular/immunology , RNA, Viral/genetics , RNA, Viral/immunology , Virus Diseases/genetics
12.
J Biol Chem ; 299(8): 105050, 2023 08.
Article in English | MEDLINE | ID: mdl-37451479

ABSTRACT

Cytochrome P450 CYP102A1 is a prototypic biocatalyst that has great potential in chemical synthesis, drug discovery, and biotechnology. CYP102A1 variants engineered by directed evolution and/or rational design are capable of catalyzing the oxidation of a wide range of organic compounds. However, it is difficult to foresee the outcome of engineering CYP102A1 for a compound of interest. Here, we introduce UniDesign as a computational framework for enzyme design and engineering. We tested UniDesign by redesigning CYP102A1 for stereoselective metabolism of omeprazole (OMP), a proton pump inhibitor, starting from an active but nonstereoselective triple mutant (TM: A82F/F87V/L188Q). To shift stereoselectivity toward (R)-OMP, we computationally scanned three active site positions (75, 264, and 328) for mutations that would stabilize the binding of the transition state of (R)-OMP while destabilizing that of (S)-OMP and picked three variants, namely UD1 (TM/L75I), UD2 (TM/A264G), and UD3 (TM/A328V), for experimentation, based on computed energy scores and models. UD1, UD2, and UD3 exhibit high turnover rates of 55 ± 4.7, 84 ± 4.8, and 79 ± 5.7 min-1, respectively, for (R)-OMP hydroxylation, whereas the corresponding rates for (S)-OMP are only 2.2 ± 0.19, 6.0 ± 0.68, and 14 ± 2.8 min-1, yielding an enantiomeric excess value of 92, 87, and 70%, respectively. These results suggest the critical roles of L75I, A264G, and A328V in steering OMP in the optimal orientation for stereoselective oxidation and demonstrate the utility of UniDesign for engineering CYP102A1 to produce drug metabolites of interest. The results are discussed in the context of protein structures.


Subject(s)
Bacterial Proteins , Cytochrome P-450 Enzyme System , NADPH-Ferrihemoprotein Reductase , Omeprazole , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , NADPH-Ferrihemoprotein Reductase/chemistry , Omeprazole/metabolism , Oxidation-Reduction , Protein Engineering
13.
Cancer ; 130(2): 232-243, 2024 01.
Article in English | MEDLINE | ID: mdl-37776537

ABSTRACT

BACKGROUND: Resistance to BRAF and MEK inhibitors in BRAF V600-mutant melanoma is common. Multiple resistance mechanisms involve heat-shock protein 90 (HSP90) clients, and a phase 1 study of vemurafenib with the HSP90 inhibitor XL888 in patients with advanced melanoma showed activity equivalent to that of BRAF and MEK inhibitors. METHODS: Vemurafenib (960 mg orally twice daily) and cobimetinib (60 mg orally once daily for 21 of 28 days) with escalating dose cohorts of XL888 (30, 45, 60, or 90 mg orally twice weekly) was investigated in a phase 1 trial of advanced melanoma, with a modified Ji dose-escalation design. RESULTS: Twenty-five patients were enrolled. After two dose-limiting toxicities (DLTs) (rash and acute kidney injury) in the first cohort, lower doses of vemurafenib (720 mg) and cobimetinib (40 mg) were investigated with the same XL888 doses. Three DLTs (rash) were observed in 12 patients in the XL888 60-mg cohort, and this was determined as the maximum tolerated dose. Objective responses were observed in 19 patients (76%), and the median progression-free survival was 7.6 months, with a 5-year progression-free survival rate of 20%. The median overall survival was 41.7 months, with a 5-year overall survival rate of 37%. Single-cell RNA sequencing was performed on baseline and on-treatment biopsies; treatment was associated with increased immune cell influx (CD4-positive and CD8-positive T cells) and decreased melanoma cells. CONCLUSIONS: Combined vemurafenib and cobimetinib plus XL888 had significant toxicity, requiring frequent dose reductions, which may have contributed to the relatively low progression-free survival despite a high tumor response rate. Given overlapping toxicities, caution must be used when combining HSP90 inhibitors with BRAF and MEK inhibitors.


Subject(s)
Exanthema , Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Vemurafenib , Proto-Oncogene Proteins B-raf , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Protein Kinase Inhibitors/adverse effects , Exanthema/chemically induced , Exanthema/drug therapy , Heat-Shock Proteins/genetics , Heat-Shock Proteins/therapeutic use , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/pathology
14.
Am J Hum Genet ; 108(9): 1578-1589, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34265237

ABSTRACT

Thoracic aortic aneurysm (TAA) is characterized by dilation of the aortic root or ascending/descending aorta. TAA is a heritable disease that can be potentially life threatening. While 10%-20% of TAA cases are caused by rare, pathogenic variants in single genes, the origin of the majority of TAA cases remains unknown. A previous study implicated common variants in FBN1 with TAA disease risk. Here, we report a genome-wide scan of 1,351 TAA-affected individuals and 18,295 control individuals from the Cardiovascular Health Improvement Project and Michigan Genomics Initiative at the University of Michigan. We identified a genome-wide significant association with TAA for variants within the third intron of TCF7L2 following replication with meta-analysis of four additional independent cohorts. Common variants in this locus are the strongest known genetic risk factor for type 2 diabetes. Although evidence indicates the presence of different causal variants for TAA and type 2 diabetes at this locus, we observed an opposite direction of effect. The genetic association for TAA colocalizes with an aortic eQTL of TCF7L2, suggesting a functional relationship. These analyses predict an association of higher expression of TCF7L2 with TAA disease risk. In vitro, we show that upregulation of TCF7L2 is associated with BCL2 repression promoting vascular smooth muscle cell apoptosis, a key driver of TAA disease.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Diabetes Mellitus, Type 2/genetics , Endothelial Cells/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Quantitative Trait Loci , Transcription Factor 7-Like 2 Protein/genetics , Aorta/metabolism , Aorta/pathology , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/pathology , Case-Control Studies , Caspase 3/genetics , Caspase 3/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Endothelial Cells/pathology , Gene Expression Regulation , Genome, Human , Genome-Wide Association Study , Humans , Introns , Michigan , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mutation , Proto-Oncogene Proteins c-bcl-2/metabolism , Transcription Factor 7-Like 2 Protein/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
15.
Phys Rev Lett ; 132(15): 151903, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682963

ABSTRACT

We perform a study of the χ_{c1}(3872) line shape using the data samples of e^{+}e^{-}→γχ_{c1}(3872), χ_{c1}(3872)→D^{0}D[over ¯]^{0}π^{0}, and π^{+}π^{-}J/ψ collected with the BESIII detector. The effects of the coupled channels and the off-shell D^{*0} are included in the parametrization of the line shape. The line shape mass parameter is obtained to be M_{X}=(3871.63±0.13_{-0.05}^{+0.06}) MeV. Two poles are found on the first and second Riemann sheets corresponding to the D^{*0}D[over ¯]^{0} branch cut. The pole location on the first sheet is much closer to the D^{*0}D[over ¯]^{0} threshold than the other, and is determined to be 7.04±0.15_{-0.08}^{+0.07} MeV above the D^{0}D[over ¯]^{0}π^{0} threshold with an imaginary part -0.19±0.08_{-0.19}^{+0.14} MeV.

16.
Phys Rev Lett ; 132(15): 151901, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682972

ABSTRACT

Using a sample of (10087±44)×10^{6} J/ψ events, which is about 45 times larger than that was previously analyzed, a further investigation on the J/ψ→γ3(π^{+}π^{-}) decay is performed. A significant distortion at 1.84 GeV/c^{2} in the line shape of the 3(π^{+}π^{-}) invariant mass spectrum is observed for the first time, which could be resolved by two overlapping resonant structures, X(1840) and X(1880). The new state X(1880) is observed with a statistical significance larger than 10σ. The mass and width of X(1880) are determined to be 1882.1±1.7±0.7 MeV/c^{2} and 30.7±5.5±2.4 MeV, respectively, which indicates the existence of a pp[over ¯] bound state.

17.
Phys Rev Lett ; 132(18): 181901, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759175

ABSTRACT

Based on (10087±44)×10^{6} J/ψ events collected with the BESIII detector, a partial wave analysis of the decay J/ψ→γK_{S}^{0}K_{S}^{0}η^{'} is performed. The mass and width of the X(2370) are measured to be 2395±11(stat)_{-94}^{+26}(syst) MeV/c^{2} and 188_{-17}^{+18}(stat)_{-33}^{+124}(syst) MeV, respectively. The corresponding product branching fraction is B[J/ψ→γX(2370)]×B[X(2370)→f_{0}(980)η^{'}]×B[f_{0}(980)→K_{S}^{0}K_{S}^{0}]=(1.31±0.22(stat)_{-0.84}^{+2.85}(syst))×10^{-5}. The statistical significance of the X(2370) is greater than 11.7σ and the spin parity is determined to be 0^{-+} for the first time. The measured mass and spin parity of the X(2370) are consistent with the predictions of the lightest pseudoscalar glueball.

18.
Phys Rev Lett ; 132(16): 161901, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701481

ABSTRACT

We present measurements of the Born cross sections for the processes e^{+}e^{-}→ωχ_{c1} and ωχ_{c2} at center-of-mass energies sqrt[s] from 4.308 to 4.951 GeV. The measurements are performed with data samples corresponding to an integrated luminosity of 11.0 fb^{-1} collected with the BESIII detector operating at the Beijing Electron Positron Collider storage ring. Assuming the e^{+}e^{-}→ωχ_{c2} signals come from a single resonance, the mass and width are determined to be M=(4413.6±9.0±0.8) MeV/c^{2} and Γ=(110.5±15.0±2.9) MeV, respectively, which is consistent with the parameters of the well-established resonance ψ(4415). In addition, we also use one single resonance to describe the e^{+}e^{-}→ωχ_{c1} line shape and determine the mass and width to be M=(4544.2±18.7±1.7) MeV/c^{2} and Γ=(116.1±33.5±1.7) MeV, respectively. The structure of this line shape, observed for the first time, requires further understanding.

19.
Phys Rev Lett ; 132(3): 031801, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38307076

ABSTRACT

Based on 4.4 fb^{-1} of e^{+}e^{-} annihilation data collected at the center-of-mass energies between 4.60 and 4.70 GeV with the BESIII detector at the BEPCII collider, the pure W-boson-exchange decay Λ_{c}^{+}→Ξ^{0}K^{+} is studied with a full angular analysis. The corresponding decay asymmetry is measured for the first time to be α_{Ξ^{0}K^{+}}=0.01±0.16(stat)±0.03(syst). This result reflects the noninterference effect between the S- and P-wave amplitudes. The phase shift between S- and P-wave amplitudes has two solutions, which are δ_{p}-δ_{s}=-1.55±0.25(stat)±0.05(syst) rad or 1.59±0.25(stat)±0.05(syst) rad.

20.
Phys Rev Lett ; 132(14): 141901, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38640399

ABSTRACT

Using e^{+}e^{-} collision data corresponding to an integrated luminosity of 7.33 fb^{-1} recorded by the BESIII detector at center-of-mass energies between 4.128 and 4.226 GeV, we present an analysis of the decay D_{s}^{+}→π^{+}π^{-}e^{+}ν_{e}, where the D_{s}^{+} is produced via the process e^{+}e^{-}→D_{s}^{*±}D_{s}^{∓}. We observe the f_{0}(980) in the π^{+}π^{-} system and the branching fraction of the decay D_{s}^{+}→f_{0}(980)e^{+}ν_{e} with f_{0}(980)→π^{+}π^{-} measured to be (1.72±0.13_{stat}±0.10_{syst})×10^{-3}, where the uncertainties are statistical and systematic, respectively. The dynamics of the D_{s}^{+}→f_{0}(980)e^{+}ν_{e} decay are studied with the simple pole parametrization of the hadronic form factor and the Flatté formula describing the f_{0}(980) in the differential decay rate, and the product of the form factor f_{+}^{f_{0}}(0) and the c→s Cabibbo-Kobayashi-Maskawa matrix element |V_{cs}| is determined for the first time to be f_{+}^{f_{0}}(0)|V_{cs}|=0.504±0.017_{stat}±0.035_{syst}. Furthermore, the decay D_{s}^{+}→f_{0}(500)e^{+}ν_{e} is searched for the first time but no signal is found. The upper limit on the branching fraction of D_{s}^{+}→f_{0}(500)e^{+}ν_{e}, f_{0}(500)→π^{+}π^{-} decay is set to be 3.3×10^{-4} at 90% confidence level.

SELECTION OF CITATIONS
SEARCH DETAIL