Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 845
Filter
Add more filters

Publication year range
1.
Cell ; 187(17): 4637-4655.e26, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39043180

ABSTRACT

The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1ß was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1ß or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1ß-mediated comorbidities, offering a framework for secondary prevention immunotherapy.


Subject(s)
Brain Injuries , Immunity, Innate , Immunologic Memory , Inflammation , Interleukin-1beta , Mice, Inbred C57BL , Monocytes , Animals , Mice , Interleukin-1beta/metabolism , Brain Injuries/immunology , Humans , Male , Monocytes/metabolism , Monocytes/immunology , Inflammation/immunology , Macrophages/immunology , Macrophages/metabolism , Stroke/complications , Stroke/immunology , Heart Diseases/immunology , Female , Receptors, CCR2/metabolism , Fibrosis , Epigenesis, Genetic , Trained Immunity
2.
Cell ; 179(5): 1129-1143.e23, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730854

ABSTRACT

Energy homeostasis requires precise measurement of the quantity and quality of ingested food. The vagus nerve innervates the gut and can detect diverse interoceptive cues, but the identity of the key sensory neurons and corresponding signals that regulate food intake remains unknown. Here, we use an approach for target-specific, single-cell RNA sequencing to generate a map of the vagal cell types that innervate the gastrointestinal tract. We show that unique molecular markers identify vagal neurons with distinct innervation patterns, sensory endings, and function. Surprisingly, we find that food intake is most sensitive to stimulation of mechanoreceptors in the intestine, whereas nutrient-activated mucosal afferents have no effect. Peripheral manipulations combined with central recordings reveal that intestinal mechanoreceptors, but not other cell types, potently and durably inhibit hunger-promoting AgRP neurons in the hypothalamus. These findings identify a key role for intestinal mechanoreceptors in the regulation of feeding.


Subject(s)
Feeding Behavior/physiology , Genetic Phenomena , Sensory Receptor Cells/physiology , Vagus Nerve/physiology , Agouti-Related Protein/metabolism , Animals , Brain/physiology , Gastrointestinal Tract/innervation , Genetic Markers , Mechanoreceptors/metabolism , Mice , Vagus Nerve/anatomy & histology , Viscera/innervation
3.
Cell ; 160(5): 829-841, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25703096

ABSTRACT

Hunger is controlled by specialized neural circuits that translate homeostatic needs into motivated behaviors. These circuits are under chronic control by circulating signals of nutritional state, but their rapid dynamics on the timescale of behavior remain unknown. Here, we report optical recording of the natural activity of two key cell types that control food intake, AgRP and POMC neurons, in awake behaving mice. We find unexpectedly that the sensory detection of food is sufficient to rapidly reverse the activation state of these neurons induced by energy deficit. This rapid regulation is cell-type specific, modulated by food palatability and nutritional state, and occurs before any food is consumed. These data reveal that AgRP and POMC neurons receive real-time information about the availability of food in the external world, suggesting a primary role for these neurons in controlling appetitive behaviors such as foraging that promote the discovery of food.


Subject(s)
Feeding Behavior , Neural Pathways , Neurons/metabolism , Agouti-Related Protein/metabolism , Animals , Appetitive Behavior , Eating , Hunger , Hypothalamus/metabolism , Mice , Photometry/methods , Pro-Opiomelanocortin/metabolism
4.
Nature ; 585(7823): 63-67, 2020 09.
Article in English | MEDLINE | ID: mdl-32879503

ABSTRACT

Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications1-3. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt4,5 Li3+xV2O5 can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li+ reference electrode. The increased potential compared to graphite6,7 reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li3V2O5 anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li3VO4 and LiV0.5Ti0.5S2)8,9. Further, disordered rock salt Li3V2O5 can perform over 1,000 charge-discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li3V2O5 to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.

5.
Nature ; 568(7750): 98-102, 2019 04.
Article in English | MEDLINE | ID: mdl-30918408

ABSTRACT

Satiation is the process by which eating and drinking reduce appetite. For thirst, oropharyngeal cues have a critical role in driving satiation by reporting to the brain the volume of fluid that has been ingested1-12. By contrast, the mechanisms that relay the osmolarity of ingested fluids remain poorly understood. Here we show that the water and salt content of the gastrointestinal tract are precisely measured and then rapidly communicated to the brain to control drinking behaviour in mice. We demonstrate that this osmosensory signal is necessary and sufficient for satiation during normal drinking, involves the vagus nerve and is transmitted to key forebrain neurons that control thirst and vasopressin secretion. Using microendoscopic imaging, we show that individual neurons compute homeostatic need by integrating this gastrointestinal osmosensory information with oropharyngeal and blood-borne signals. These findings reveal how the fluid homeostasis system monitors the osmolarity of ingested fluids to dynamically control drinking behaviour.


Subject(s)
Brain/physiology , Drinking/physiology , Gastrointestinal Tract/physiology , Neurons/physiology , Satiation/physiology , Thirst/physiology , Animals , Brain/cytology , Female , GABAergic Neurons/metabolism , Gastrointestinal Tract/innervation , Glutamates/metabolism , Male , Mice , Oropharynx/innervation , Oropharynx/physiology , Osmolar Concentration , Prosencephalon/metabolism , Vagus Nerve/physiology , Vasopressins/metabolism
6.
Ann Intern Med ; 177(8): 1039-1047, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38976882

ABSTRACT

BACKGROUND: Methadone maintenance treatment (MMT) is effective for managing opioid use disorder, but adverse effects mean that optimal therapy occurs with the lowest dose that controls opioid craving. OBJECTIVE: To assess the efficacy of acupuncture versus sham acupuncture on methadone dose reduction. DESIGN: Multicenter, 2-group, randomized, sham-controlled trial. (Chinese Clinical Trial Registry: ChiCTR2200058123). SETTING: 6 MMT clinics in China. PARTICIPANTS: Adults aged 65 years or younger with opioid use disorder who attended clinic daily and had been using MMT for at least 6 weeks. INTERVENTION: Acupuncture or sham acupuncture 3 times a week for 8 weeks. MEASUREMENTS: The 2 primary outcomes were the proportion of participants who achieved a reduction in methadone dose of 20% or more compared with baseline and opioid craving, which was measured by the change from baseline on a 100-mm visual analogue scale (VAS). RESULTS: Of 118 eligible participants, 60 were randomly assigned to acupuncture and 58 were randomly assigned to sham acupuncture (2 did not receive acupuncture). At week 8, more patients reduced their methadone dose 20% or more with acupuncture than with sham acupuncture (37 [62%] vs. 16 [29%]; risk difference, 32% [97.5% CI, 13% to 52%]; P < 0.001). In addition, acupuncture was more effective in decreasing opioid craving than sham acupuncture with a mean difference of -11.7 mm VAS (CI, -18.7 to -4.8 mm; P < 0.001). No serious adverse events occurred. There were no notable differences between study groups when participants were asked which type of acupuncture they received. LIMITATION: Fixed acupuncture protocol limited personalization and only 12 weeks of follow-up after stopping acupuncture. CONCLUSION: Eight weeks of acupuncture were superior to sham acupuncture in reducing methadone dose and decreasing opioid craving. PRIMARY FUNDING SOURCE: National Natural Science Foundation of China.


Subject(s)
Acupuncture Therapy , Methadone , Opiate Substitution Treatment , Opioid-Related Disorders , Humans , Methadone/therapeutic use , Male , Acupuncture Therapy/adverse effects , Acupuncture Therapy/methods , Female , Opioid-Related Disorders/therapy , Adult , Middle Aged , Opiate Substitution Treatment/methods , Craving , Treatment Outcome , Analgesics, Opioid/therapeutic use , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/adverse effects
7.
J Am Chem Soc ; 146(27): 18407-18417, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935530

ABSTRACT

High-entropy alloy nanoparticles (HEA-NPs) show exceptional properties and great potential as a new generation of functional materials, yet a universal and facile synthetic strategy in air toward nonoxidized and precisely controlled composition remains a huge challenge. Here we provide a laser scribing method to prepare single-phase solid solution HEA-NPs libraries in air with tunable composition at the atomic level, taking advantage of the laser-induced metastable thermodynamics and substrate-assisted confinement effect. The three-dimensional porous graphene substrate functions as a microreactor during the fast heating/cooling process, which is conductive to the generation of the pure alloy phase by effectively blocking the binding of oxygen and metals, but is also beneficial for realizing accurate composition control via microstructure confinement-endowed favorable vapor pressure. Furthermore, by combining an active learning approach based on an adaptive design strategy, we discover an optimal composition of quinary HEA-NP catalysts with an ultralow overpotential for Li-CO2 batteries. This method provides a simple, fast, and universal in-air route toward the controllable synthesis of HEA-NPs, potentially integrated with machine learning to accelerate the research on HEAs.

8.
Br J Haematol ; 204(5): 1986-1993, 2024 May.
Article in English | MEDLINE | ID: mdl-38438140

ABSTRACT

This study aimed to investigate the association between the steroid use patterns and the risk of AEs in patients with primary immune thrombocytopenia (ITP). A total of 2691 newly diagnosed adults with ITP between 2011 and 2018 were identified from the National Health Insurance Research Database in Taiwan, and the date of first steroid use was defined as the index date. Post-index steroid use was calculated on a 90-day basis as a time-dependent variable and categorized by the average prednisolone-equivalent daily dose (<10 mg vs. ≥10 mg) and intensity (medication possession ratio <80% vs. ≥80%). Patients were followed up for 1 year from the index date for acute AE events, while chronic AEs were assessed until death, or end of 2019. Compared to patients with low-dose+low-intensity steroid use, those with high-dose+high-intensity steroid use were associated with a higher risk of acute AE (adjusted incident rate ratio [aIRR]: 1.57, 95% confidence interval [CI]: 1.38-1.78, p < 0.01) and chronic AE (aIRR: 1.26, 95% CI: 1.08-1.47, p < 0.01). Metabolic/endocrine and ophthalmologic disorders demonstrated the strongest correlation with a high dose and intensity. The joint effect of steroid dose and intensity was observed in patients with ITP, and the findings suggest that steroids should be used carefully.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Humans , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/epidemiology , Female , Male , Middle Aged , Adult , Aged , Taiwan/epidemiology , Longitudinal Studies , Steroids/adverse effects , Steroids/therapeutic use , Steroids/administration & dosage , Databases, Factual , Young Adult , Adolescent
9.
Biochem Biophys Res Commun ; 721: 150106, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38795634

ABSTRACT

3-phosphoinositide-dependent protein kinase 1 (PDK1) exhibits a substantial influence on immune cell development by establishing a vital connection between PI3K and downstream mTOR signaling cascades. However, it remains unclear whether PDK1 signaling affects the homeostasis and functionality of immune cells. To explore the impact of PDK1 on different immune cells within immune organs, transgenic mouse strains with lymphocyte-specific PDK1 knockout (PDK1fl/fl CD2-Cre) were generated. Unlike wild-type (WT) mice, lymphocyte-specific PDK1 knockout (KO) mice exhibited thymic atrophy, elevated percentages of CD8+ T cells and neutrophils, and reduced proportions of γδ T cells, B cells, and NK cells in the spleen. Functional analysis revealed elevated release of IFN-γ and IL-17A by T cells in PDK1 KO mice, contrasting with diminished levels observed in γδ T cells and Treg cells. Furthermore, the activation, cytotoxicity, and migratory potential of γδ T cells in PDK1 KO mice are heightened, indicating a potential association with the regulation of the mTOR signaling pathway. To conclude, the findings of this research demonstrated that specific knockout of PDK1 in lymphocytes hindered T cell development in the thymus and exhibited a substantial influence on immune cell homeostasis in the spleen and lymph nodes.


Subject(s)
Mice, Knockout , Thymus Gland , Animals , Mice , Thymus Gland/immunology , Spleen/immunology , 3-Phosphoinositide-Dependent Protein Kinases/metabolism , 3-Phosphoinositide-Dependent Protein Kinases/genetics , Signal Transduction , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Interleukin-17/metabolism , Interleukin-17/immunology , CD8-Positive T-Lymphocytes/immunology
10.
Small ; 20(24): e2307107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38191832

ABSTRACT

Assembled gold nanoparticle (AuNP) superstructures can generate unique physicochemical characteristics and be used in various applications, thus becoming an attractive research field. Recently, several DNA-assisted gold nanoparticle assembly methods have been rigorously developed that typically require a non-catalytic equimolar molecular assembly to guarantee the designed assembly. Although efficient and accurate, exploring such non-catalytic nanoparticle assemblies in the complex cellular milieu under low trigger concentrations remains challenging. Therefore, developing a catalytic method that facilitates gold nanoparticle assemblies with relatively low DNA trigger concentrations is desirable. In this report, a catalytic method to program gold nanoparticle assemblies by DNAzyme circuits is presented, where only a small number of DNA triggers are able to induce the production of a large number of the desired nanoparticle assemblies. The feasibility of using logic DNAzyme circuits to control catalytic nanoparticle assemblies is experimentally verified. Additionally, catalytic AuNP assembly systems are established with cascading and feedback functions. The work provides an alternative research direction to enrich the tool library of nanoparticle assembly and their application in biosensing and nanomedicine.


Subject(s)
DNA, Catalytic , Gold , Metal Nanoparticles , Gold/chemistry , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Metal Nanoparticles/chemistry , Catalysis
11.
J Autoimmun ; 146: 103221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643728

ABSTRACT

Inflammatory T cells contribute to the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). Analysis of the T-cell transcriptomics data of two independent SLE patient cohorts by three machine learning models revealed the pseudogene UHRF1P as a novel SLE biomarker. The pseudogene-encoded UHRF1P protein was overexpressed in peripheral blood T cells of SLE patients. The UHRF1P protein lacks the amino-terminus of its parental UHRF1 protein, resulting in missing the proteasome-binding ubiquitin-like (Ubl) domain of UHRF1. T-cell-specific UHRF1P transgenic mice manifested the induction of IL-17A and autoimmune inflammation. Mechanistically, UHFR1P prevented UHRF1-induced Lys48-linked ubiquitination and degradation of MAP4K3 (GLK), which is a kinase known to induce IL-17A. Consistently, IL-17A induction and autoimmune phenotypes of UHRF1P transgenic mice were obliterated by MAP4K3 knockout. Collectively, UHRF1P overexpression in T cells inhibits the E3 ligase function of its parental UHRF1 and induces autoimmune diseases.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Interleukin-17 , Lupus Erythematosus, Systemic , Mice, Transgenic , Protein Serine-Threonine Kinases , Ubiquitin-Protein Ligases , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Animals , Interleukin-17/metabolism , Interleukin-17/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Humans , Mice , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Ubiquitination , Mice, Knockout , Disease Models, Animal , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Autoimmunity , Female
12.
Hepatology ; 77(3): 816-833, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35753047

ABSTRACT

BACKGROUND AND AIMS: Chronic liver diseases are associated with the development of liver fibrosis. Without treatment, liver fibrosis commonly leads to cirrhosis and HCC. FGF12 is an intracrine factor belonging to the FGF superfamily, but its role in liver homeostasis is largely unknown. This study aimed to investigate the role of FGF12 in the regulation of liver fibrosis. APPROACH AND RESULTS: FGF12 was up-regulated in bile duct ligation (BDL)-induced and CCL 4 -induced liver fibrosis mouse models. Expression of FGF12 was specifically up-regulated in nonparenchymal liver cells, especially in hepatic macrophages. By constructing myeloid-specific FGF12 knockout mice, we found that deletion of FGF12 in macrophages protected against BDL-induced and CCL 4 -induced liver fibrosis. Further results revealed that FGF12 deletion dramatically decreased the population of lymphocyte antigen 6 complex locus C high macrophages in mouse fibrotic liver tissue and reduced the expression of proinflammatory cytokines and chemokines. Meanwhile, loss-of-function and gain-of-function approaches revealed that FGF12 promoted the proinflammatory activation of macrophages, thus inducing HSC activation mainly through the monocyte chemoattractant protein-1/chemokine (C-C motif) receptor 2 axis. Further experiments indicated that the regulation of macrophage activation by FGF12 was mainly mediated through the Janus kinase-signal transducer of activators of transcription pathway. Finally, the results revealed that FGF12 expression correlates with the severity of fibrosis across the spectrum of fibrogenesis in human liver samples. CONCLUSIONS: FGF12 promotes liver fibrosis progression. Therapeutic approaches to inhibit macrophage FGF12 may be used to combat liver fibrosis in the future.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Humans , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Liver Cirrhosis/pathology , Liver/pathology , Macrophages/metabolism , Mice, Knockout , Mice, Inbred C57BL , Hepatic Stellate Cells/metabolism , Fibroblast Growth Factors/metabolism
13.
Article in English | MEDLINE | ID: mdl-39324556

ABSTRACT

OBJECTIVE: The presence of comorbidities can substantially affect patients' quality of life, but data regarding their impact on idiopathic inflammatory myopathies (IIMs) are limited. METHODS: We examined the prevalence of comorbidities in IIM patients, other autoimmune rheumatic diseases (oAIRDs), and healthy controls (HCs), using data from the self-reported COVAD-2 survey. We defined Basic Multimorbidity (BM) as the presence of ≥ 2 non-rheumatic chronic conditions and Complex Multimorbidity (CM) as the presence of ≥ 3 non-rheumatic chronic conditions affecting ≥3 organ systems. Hierarchical Clustering on Principal Components was performed for grouping. RESULTS: Among the COVAD respondents, 1558 IIMs, 4591 oAIRDs, and 3652 HCs were analysed. IIMs exhibited a high burden of comorbidities (OR: 1.62 vs oAIRDs and 2.95 vs HCs, p< 0.01), BM (OR 1.66 vs oAIRDs and 3.52 vs HCs, p< 0.01), CM (OR: 1.69 vs AIRDs and 6.23 vs HCs, p< 0.01), and mental health disorders (MHDs) (OR 1.33 vs oAIRDs and 2.63 vs HCs, p< 0.01). Among the IIM patients, those with comorbidities or MHDs had lower PROMIS Global Physical (PGP), PROMIS Global Mental (PGM), and PROMIS Physical Function (SF10) scores, and higher fatigue (F4a) scores (all p< 0.001). PGP, PGM, SF10a and F4a were influenced by age, active disease, BM, and MHDs. Four distinct clusters were identified among the IIMs according to comorbidities and PROMIS scores. CONCLUSION: Patients with IIMs have a higher burden of comorbidities that influence physical and mental health, identifiable as clinical clusters for optimized and holistic management approaches.

14.
Phys Rev Lett ; 132(12): 123601, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38579231

ABSTRACT

The precise measurement of the gravity of Earth plays a pivotal role in various fundamental research and application fields. Although a few gravimeters have been reported to achieve this goal, miniaturization of high-precision gravimetry remains a challenge. In this work, we have proposed and demonstrated a miniaturized gravimetry operating at room temperature based on a diamagnetic levitated micro-oscillator with a proof mass of only 215 mg. Compared with the latest reported miniaturized gravimeters based on microelectromechanical systems, the performance of our gravimetry has substantial improvements in that an acceleration sensitivity of 15 µGal/sqrt[Hz] and a drift as low as 61 µGal per day have been reached. Based on this diamagnetic levitation gravimetry, we observed Earth tides, and the correlation coefficient between the experimental data and theoretical data reached 0.97. Some moderate foreseeable improvements can develop this diamagnetic levitation gravimetry into a chip size device, making it suitable for mobile platforms such as drones. Our advancement in gravimetry is expected to facilitate a multitude of applications, including underground density surveying and the forecasting of natural hazards.

15.
J Biomed Sci ; 31(1): 39, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637878

ABSTRACT

BACKGROUND: High levels of neutrophil extracellular trap (NET) formation or NETosis and autoantibodies are related to poor prognosis and disease severity of COVID-19 patients. Human angiotensin-converting enzyme 2 (ACE2) cross-reactive anti-severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain (SARS-CoV-2 RBD) antibodies (CR Abs) have been reported as one of the sources of anti-ACE2 autoantibodies. However, the pathological implications of CR Abs in NET formation remain unknown. METHODS: In this study, we first assessed the presence of CR Abs in the sera of COVID-19 patients with different severity by serological analysis. Sera and purified IgG from CR Abs positive COVID-19 patients as well as a mouse monoclonal Ab (mAb 127) that can recognize both ACE2 and the RBD were tested for their influence on NETosis and the possible mechanisms involved were studied. RESULTS: An association between CR Abs levels and the severity of COVID-19 in 120 patients was found. The CR Abs-positive sera and IgG from severe COVID-19 patients and mAb 127 significantly activated human leukocytes and triggered NETosis, in the presence of RBD. This NETosis, triggered by the coexistence of CR Abs and RBD, activated thrombus-related cells but was abolished when the interaction between CR Abs and ACE2 or Fc receptors was disrupted. We also revealed that CR Abs-induced NETosis was suppressed in the presence of recombinant ACE2 or the Src family kinase inhibitor, dasatinib. Furthermore, we found that COVID-19 vaccination not only reduced COVID-19 severity but also prevented the production of CR Abs after SARS-CoV-2 infection. CONCLUSIONS: Our findings provide possible pathogenic effects of CR Abs in exacerbating COVID-19 by enhancing NETosis, highlighting ACE2 and dasatinib as potential treatments, and supporting the benefit of vaccination in reducing disease severity and CR Abs production in COVID-19 patients.


Subject(s)
COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19 Vaccines , Dasatinib , Immunoglobulin G/metabolism , Autoantibodies/metabolism , Spike Glycoprotein, Coronavirus , Protein Binding
16.
Brain Behav Immun ; 117: 80-99, 2024 03.
Article in English | MEDLINE | ID: mdl-38190982

ABSTRACT

Emerging studies have demonstrated spinal microglia play a critical role in central sensitization and contribute to chronic pain. Although several mediators that contribute to microglia activation have been identified, the mechanism of microglia activation and its functionally diversified mechanisms in pathological pain are still unclear. Here we report that injured sensory neurons-derived Galectin-3 (Gal3) activates and reprograms microglia in the spinal dorsal horn (SDH) and contributes to neuropathic pain. Firstly, Gal3 is predominantly expressed in the isolectin B4 (IB4)-positive non-peptidergic sensory neurons and significantly up-regulated in dorsal root ganglion (DRG) neurons and primary afferent terminals in SDH in the partial sciatic nerve ligation (pSNL)-induced neuropathic pain model. Gal3 knockout (Gal3 KO) mice showed a significant decrease in mechanical allodynia and Gal3 inhibitor TD-139 produced a significant anti-allodynia effect in the pSNL model. Furthermore, pSNL-induced microgliosis was compromised in Gal3 KO mice. Additionally, intrathecal injection of Gal3 produces remarkable mechanical allodynia by direct activation of microglia, which have enhanced inflammatory responses with TNF-α and IL-1ß up-regulation. Thirdly, using single-nuclear RNA sequencing (snRNA-seq), we identified that Gal3 targets microglia and induces reprogramming of microglia, which may contribute to neuropathic pain establishment. Finally, Gal3 enhances excitatory synaptic transmission in excitatory neurons in the SDH via microglia activation. Our findings reveal that injured sensory neurons-derived Gal3 programs microglia in the SDH and contribute to neuropathic pain.


Subject(s)
Galectin 3 , Neuralgia , Animals , Mice , Galectin 3/genetics , Hyperalgesia , Microglia , Sensory Receptor Cells
17.
Cell Commun Signal ; 22(1): 354, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972975

ABSTRACT

BACKGROUND: Hyperactive neutrophil extracellular traps (NETs) formation plays a crucial role in active severe systemic lupus erythematosus (SLE). However, what triggers the imbalance in dysregulated NETs formation in SLE is elusive. Transfer RNA-derived small RNAs (tsRNAs) are novel non-coding RNAs, which participate in various cellular processes. We explore the role of tsRNAs on NETs formation in SLE. METHODS: We analyzed the levels of NETs DNA and platelet-derived extracellular vesicles (pEVs) from 50 SLE patients and 20 healthy control subjects. The effects of pEVs on NETs formation were evaluated by using immunofluorescence assay and myeloperoxidase-DNA PicoGreen assay. The regulatory mechanism of pEVs on NETs formation and inflammatory cytokines production were investigated using an in vitro cell-based assay. RESULTS: Increased circulating NETs DNA and pEVs were shown in SLE patients and were associated with disease activity (P < 0.005). We demonstrated that SLE patient-derived immune complexes (ICs) induced platelet activation, followed by pEVs release. ICs-triggered NETs formation was significantly enhanced in the presence of pEVs through Toll-like receptor (TLR) 8 activation. Increased levels of tRF-His-GTG-1 in pEVs and neutrophils of SLE patients were associated with disease activity. tRF-His-GTG-1 interacted with TLR8 to prime p47phox phosphorylation in neutrophils, resulting in reactive oxygen species production and NETs formation. Additionally, tRF-His-GTG-1 modulated NF-κB and IRF7 activation in neutrophils upon TLR8 engagement, resulting IL-1ß, IL-8, and interferon-α upregulation, respectively. CONCLUSIONS: The level of tRF-His-GTG-1 was positively correlated with NETs formation in SLE patients; tRF-His-GTG-1 inhibitor could efficiently suppress ICs-triggered NETs formation/hyperactivation, which may become a potential therapeutic target.


Neutrophils and platelets are key members in the immunopathogenesis of SLE. EVs play a key role in intercellular communication. Abnormal NETs formation promotes vascular complications and organ damage in SLE patients. tsRNA is a novel regulatory small non-coding RNA and participates in diverse pathological processes. Herein, we showed that SLE patient-derived ICs activates platelets directly, followed by intracellular tRF-His-GTG-1 upregulation, which is loaded into pEVs. The pEV-carried tRF-His-GTG-1 could interact with TLR8 in neutrophils, followed by activation of the downstream signaling pathway, including p47phox-NOX2-ROS, which causes NETs enhancement, while IRF7 promotes the expression of IFN-α. The tRF-His-GTG-1 inhibitor could suppress efficiently SLE ICs-induced NETs formation and pEVs primed NETs enhancement. This study offers new molecular machinery to explain the association between the platelets-derived tsRNAs, pEVs, and hyperactive NETs formation in lupus. tRF-His-GTG-1 may serve as a potential therapeutic target and help to advance our understanding of tsRNAs in SLE pathogenesis.


Subject(s)
Extracellular Traps , Extracellular Vesicles , Interferon-alpha , Lupus Erythematosus, Systemic , Adult , Female , Humans , Male , Middle Aged , Blood Platelets/metabolism , Extracellular Traps/metabolism , Extracellular Vesicles/metabolism , Interferon-alpha/metabolism , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/genetics , Neutrophils/metabolism , Toll-Like Receptor 8/metabolism , Toll-Like Receptor 8/genetics , RNA, Transfer/chemistry , RNA, Transfer/metabolism
18.
Thromb J ; 22(1): 82, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300541

ABSTRACT

OBJECTIVE: To explore the distribution of thrombin-antithrombin complex (TAT), plasmin-α2-antiplasmin inhibitor complex (PIC), thrombomodulin (TM), and tissue plasminogen activator-inhibitor complex (t-PAIC) in healthy older Chinese adults, and establish the reference intervals (RIs). METHODS: The Biotech Shine i2900 chemiluminescence immune assay was used to measure the plasma concentrations of TAT, PIC, TM, and t-PAIC in 1628 adults ≥ 60 years. The RIs were established using the 2.5th and 97.5th percentiles of the distribution. RESULTS: TAT levels were lower in males than females across all ages. Differences between the ages of 60-79 and ≥ 80 in both sex groups were statistically significant, with an upward trend with age. PIC levels showed no difference between the sexes but increased with age in both groups. TM levels did not differ between the sex groups, with slight fluctuation with age. The level in females aged 60-69 was slightly higher than that in the other groups; the difference was statistically significant. T-PAIC levels were not significantly different between the sex groups, with less fluctuation with sex and age. The level in males ≥ 80 years old was slightly lower than that in the other groups; the difference was statistically significant. The RIs for all markers in healthy older Chinese adults were determined and statistically reported by age and sex. For TAT, the RIs for males aged 60-79 and ≥ 80 are 0.51-2.30 ng/mL and 0.88-3.72 ng/mL, respectively, whereas for females aged 60-79 and ≥ 80, the RIs are 0.68-2.82 ng/mL and 1.02-3.67 ng/mL, respectively. For PIC, the RIs for the age groups 60-69, 70-79, and ≥ 80 are 0.10-0.89 µg/mL, 0.12-1.00 µg/mL, and 0.21-1.04 µg/mL, respectively. The RI of TM for females aged 60-69 is 3.32-13.22 TU/mL, whereas it is 2.96-13.26 TU/mL for the other groups. The RI of t-PAIC for males aged ≥ 80 is 1.63-10.68 ng/mL, whereas it is 2.33-11.34 ng/mL for the other groups. CONCLUSIONS: Discrepancies exist in thrombus markers among different sex and age groups. The RIs of TAT, PIC, TM and t-PAIC for healthy older Chinese adults were successfully established.

19.
J Gastroenterol Hepatol ; 39(2): 305-311, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38058101

ABSTRACT

BACKGROUND AND AIM: A large genetic effect of a novel gallstone-associated genetic variant, the hepatocyte nuclear factor 4α (HNF4A) rs1800961 polymorphism, has been identified through recent genome-wide association studies. However, this effect has not been validated in Asian populations. We investigated the association between the rs1800961 variant and gallstones among a Taiwanese population. METHODS: A total of 20 405 participants aged between 30 and 70 years voluntarily enrolled in the Taiwan Biobank. Self-report questionnaires, physical examinations, biochemical tests, and genotyping were used for analysis. The association of the HNF4A rs1800961 variant and other metabolic risks with gallstone disease was analyzed using multiple logistic regression models. RESULTS: The minor T allele of HNF4A rs1800961 was associated with an increased risk of gallstone, and the association remained significant even after adjustment for other risk factors including age, body mass index (BMI), diabetes, hyperlipidemia, hypertension, and cigarette smoking (adjusted odds ratio [OR] = 1.90, 95% confidence interval [CI] = 1.31 to 2.75) in male participants. When further stratified by BMI and age, the lithogenic effect was the most significant in male participants with obesity (adjusted OR = 3.55, 95% CI = 1.92 to 6.56) and who were younger (adjusted OR = 2.45, 95% CI = 1.49 to 4.04). CONCLUSION: The novel gallstone-associated HNF4A rs1800961 variant was associated with the risk of gallstone in the Taiwanese men. Screening for the rs1800961 polymorphism may be particularly useful in assessing the risk of gallstone formation in younger or obese men.


Subject(s)
Gallstones , Humans , Male , Adult , Middle Aged , Aged , Gallstones/etiology , Genome-Wide Association Study , Risk Factors , Obesity/epidemiology , Obesity/genetics , Obesity/complications , Hepatocyte Nuclear Factors/genetics , Hepatocyte Nuclear Factor 4/genetics
20.
Int J Med Sci ; 21(12): 2261-2271, 2024.
Article in English | MEDLINE | ID: mdl-39310265

ABSTRACT

Introduction: Osteoporosis is a prevalent skeletal disorder influenced by age, hormonal changes, medication use, nutrition, and genetics. The relationship between MTHFR and osteoporosis remains unclear, especially in Asians. The aim of our study was to elucidate the impact of MTHFR on osteoporosis and fracture risk. Materials and Methods: Participants were recruited from the Taiwan Precision Medicine Initiative at Taichung Veterans General Hospital. A total of 3,503 subjects with available bone mineral density measurements were selected. Using the Axiom Genome-Wide TWB 2.0 Array, we identified the MTHFR rs1801133 variant. Among these subjects, 1,624 patients carrying the variant were included in the case group, while the remaining 1,879 patients without the variant served as the control group. Results: Overall, individuals carrying the MTHFR rs1801133 variant exhibited a significantly elevated risk of developing osteoporosis. Stratified analysis by different genotypes, the results revealed a statistically significant association between the heterozygous genotype of MTHFR rs1801133 and osteoporosis. However, there was no significant correlation between MTHFR genotypes and fracture risk. Furthermore, subgroup analysis of female patients revealed age, a known risk factor, was associated with both osteoporosis and fractures. Interestingly, the presence of the MTHFR rs1801133 variant did not confer an increased risk of osteoporosis or fractures in females. Conclusion: Our study revealed a notable increase in the prevalence of osteoporosis among individuals carrying the MTHFR rs1801133 variant. Nevertheless, these individuals did not exhibit a heightened risk of major or hip fractures compared to non-carriers. Our findings could be of value in raising awareness of the increased risk of osteoporosis among individuals with this genetic variant.


Subject(s)
Genetic Predisposition to Disease , Methylenetetrahydrofolate Reductase (NADPH2) , Osteoporosis , Polymorphism, Single Nucleotide , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Bone Density/genetics , Case-Control Studies , Fractures, Bone/genetics , Fractures, Bone/epidemiology , Genotype , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Osteoporosis/genetics , Osteoporosis/epidemiology , Osteoporosis/complications , Osteoporotic Fractures/genetics , Osteoporotic Fractures/epidemiology , Risk Factors , Taiwan/epidemiology , East Asian People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL