Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 443
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Carcinog ; 63(6): 1064-1078, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38411272

ABSTRACT

Hepatocellular carcinoma (HCC) is characterized by aberrant alternative splicing (AS), which plays an important part in the pathological process of this disease. However, available reports about genes and mechanisms involved in AS process are limited. Our previous research has identified ANRIL as a long noncoding RNA related to the AS process of HCC. Here, we investigated the exact effect and the mechanism of ANRIL on HCC progress. The ANRIL expression profile was validated using the real-time quantitative polymerase chain reaction assay. The western blot analysis and IHC assay were conducted on candidate targets, including SRSF1 and Anillin. The clinicopathological features of 97 patients were collected and analyzed. Loss-of and gain-of-function experiments were conducted. The dual-luciferase reporter assay was applied to verify the interaction between ANRIL, miR-199a-5p, and SRSF1. Anomalous upregulation of ANRIL in HCC was observed, correlating with worse clinicopathological features of HCC. HCC cell proliferation, mobility, tumorigenesis, and metastasis were impaired by depleting ANRIL. We found that ANRIL acts as a sponger of miRNA-199a-5p, resulting in an elevated level of its target protein SRSF1. The phenotypes induced by ANRIL/miR-199a-5p/SRSF1 alteration are associated with Anillin, a validated HCC promoter. ANRIL is an AS-related lncRNA promoting HCC progress by modulating the miR-199a-5p/SRSF1 axis. The downstream effector of this axis in the development of HCC is Anillin.


Subject(s)
Alternative Splicing , Carcinoma, Hepatocellular , Cell Proliferation , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Serine-Arginine Splicing Factors , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , RNA, Long Noncoding/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , MicroRNAs/genetics , Male , Female , Cell Proliferation/genetics , Cell Line, Tumor , Middle Aged , Animals , Mice , Cell Movement/genetics , Mice, Nude
2.
Clin Genet ; 105(4): 397-405, 2024 04.
Article in English | MEDLINE | ID: mdl-38173219

ABSTRACT

CCDC88C gene, which encodes coiled-coil domain containing 88C, is essential for cell communication during neural development. Variants in the CCDC88C caused congenital hydrocephalus, some accompanied by seizures. In patients with epilepsy without acquired etiologies, we performed whole-exome sequencing (trio-based). Two de novo and two biallelic CCDC88C variants were identified in four cases with focal (partial) epilepsy. These variants did not present or had low frequencies in the gnomAD populations and were predicted to be damaging by multiple computational algorithms. Patients with de novo variants presented with adult-onset epilepsy, whereas patients with biallelic variants displayed infant-onset epilepsy. They all responded well to anti-seizure medications and were seizure-free. Further analysis showed that de novo variants were located at crucial domains, whereas one paired biallelic variants were located outside the crucial domains, and the other paired variant had a non-classical splicing and a variant located at crucial domain, suggesting a sub-molecular effect. CCDC88C variants associated with congenital hydrocephalus were all truncated, whereas epilepsy-associated variants were mainly missense, the proportion of which was significantly higher than that of congenital hydrocephalus-associated variants. CCDC88C is potentially associated with focal epilepsy with favorable outcome. The underlying mechanisms of phenotypic variation may correlation between genotype and phenotype.


Subject(s)
Epilepsies, Partial , Epilepsy , Hydrocephalus , Infant , Adult , Humans , Epilepsies, Partial/genetics , Epilepsy/genetics , Hydrocephalus/genetics , Genotype , Genetic Association Studies , Microfilament Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics
3.
BMC Cancer ; 24(1): 418, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580939

ABSTRACT

BACKGROUND: This study aimed to develop and validate a machine learning (ML)-based fusion model to preoperatively predict Ki-67 expression levels in patients with head and neck squamous cell carcinoma (HNSCC) using multiparametric magnetic resonance imaging (MRI). METHODS: A total of 351 patients with pathologically proven HNSCC from two medical centers were retrospectively enrolled in the study and divided into training (n = 196), internal validation (n = 84), and external validation (n = 71) cohorts. Radiomics features were extracted from T2-weighted images and contrast-enhanced T1-weighted images and screened. Seven ML classifiers, including k-nearest neighbors (KNN), support vector machine (SVM), logistic regression (LR), random forest (RF), linear discriminant analysis (LDA), naive Bayes (NB), and eXtreme Gradient Boosting (XGBoost) were trained. The best classifier was used to calculate radiomics (Rad)-scores and combine clinical factors to construct a fusion model. Performance was evaluated based on calibration, discrimination, reclassification, and clinical utility. RESULTS: Thirteen features combining multiparametric MRI were finally selected. The SVM classifier showed the best performance, with the highest average area under the curve (AUC) of 0.851 in the validation cohorts. The fusion model incorporating SVM-based Rad-scores with clinical T stage and MR-reported lymph node status achieved encouraging predictive performance in the training (AUC = 0.916), internal validation (AUC = 0.903), and external validation (AUC = 0.885) cohorts. Furthermore, the fusion model showed better clinical benefit and higher classification accuracy than the clinical model. CONCLUSIONS: The ML-based fusion model based on multiparametric MRI exhibited promise for predicting Ki-67 expression levels in HNSCC patients, which might be helpful for prognosis evaluation and clinical decision-making.


Subject(s)
Head and Neck Neoplasms , Multiparametric Magnetic Resonance Imaging , Humans , Bayes Theorem , Ki-67 Antigen/genetics , Radiomics , Retrospective Studies , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Machine Learning , Head and Neck Neoplasms/diagnostic imaging
4.
J Magn Reson Imaging ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38344910

ABSTRACT

BACKGROUND: Pretreatment identification of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is important when selecting treatment strategies. PURPOSE: To improve models for predicting MVI and recurrence-free survival (RFS) by developing nomograms containing three-dimensional (3D) MR elastography (MRE). STUDY TYPE: Prospective. POPULATION: 188 patients with HCC, divided into a training cohort (n = 150) and a validation cohort (n = 38). In the training cohort, 106/150 patients completed a 2-year follow-up. FIELD STRENGTH/SEQUENCE: 1.5T 3D multifrequency MRE with a single-shot spin-echo echo planar imaging sequence, and 3.0T multiparametric MRI (mp-MRI), consisting of diffusion-weighted echo planar imaging, T2-weighted fast spin echo, in-phase out-of-phase T1-weighted fast spoiled gradient-recalled dual-echo and dynamic contrast-enhanced gradient echo sequences. ASSESSMENT: Multivariable analysis was used to identify the independent predictors for MVI and RFS. Nomograms were constructed for visualization. Models for predicting MVI and RFS were built using mp-MRI parameters and a combination of mp-MRI and 3D MRE predictors. STATISTICAL TESTS: Student's t-test, Mann-Whitney U test, chi-squared or Fisher's exact tests, multivariable analysis, area under the receiver operating characteristic curve (AUC), DeLong test, Kaplan-Meier analysis and log rank tests. P < 0.05 was considered significant. RESULTS: Tumor c and liver c were independent predictors of MVI and RFS, respectively. Adding tumor c significantly improved the diagnostic performance of mp-MRI (AUC increased from 0.70 to 0.87) for MVI detection. Of the 106 patients in the training cohort who completed the 2-year follow up, 34 experienced recurrence. RFS was shorter for patients with MVI-positive histology than MVI-negative histology (27.1 months vs. >40 months). The MVI predicted by the 3D MRE model yielded similar results (26.9 months vs. >40 months). The MVI and RFS nomograms of the histologic-MVI and model-predicted MVI-positive showed good predictive performance. DATA CONCLUSION: Biomechanical properties of 3D MRE were biomarkers for MVI and RFS. MVI and RFS nomograms were established. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

5.
FASEB J ; 37(11): e23271, 2023 11.
Article in English | MEDLINE | ID: mdl-37882195

ABSTRACT

Short-term recurrence of hepatocellular carcinoma (HCC) after radical resection leads to dismal outcomes. To screen high-recurrence risk patients to provide adjuvant treatment is necessary. Herein, based on our previous research, we further focused on the changes in the abundance of binuclear hepatocytes (ABH) in the paracancerous liver tissue to discuss the relationship between the attenuation of binuclear hepatocytes and postoperative short-term recurrence, by combining with the assessment of the value of a reported independent early recurrence risk factor in HCC, protein induced by vitamin K absence or antagonist-II (PIVKA-II). A cohort of 142 paracancerous liver tissues from HCC patients who received radical resection was collected. Binuclear hepatocytes were reduced in the paracancerous liver tissues, compared with the liver tissues from normal donors. ABH was negatively correlated with clinical features such as tumor size, TNM stages, tumor microsatellite formation, venous invasion, and Alpha-fetoprotein (AFP) level, as well as the expression of E2F7 and Anillin, which are two critical regulators concerning the hepatocyte polyploidization. According to the short-term recurrence information, ABH value was laminated, and univariate and multivariate logistic regression was performed to analyze the relationship between paracancerous ABH and short-term tumor relapse. Simultaneously, the predictive effectiveness of the ABH value was compared with the preoperative PIVKA-II value. As observed, the paracancerous ABH value below 1.5% was found to be an independent risk factor for recurrence. In conclusion, the paracancerous ABH is a credible indicator of short-term recurrence of HCC patients after radical resection, and regular assessment of ABH might help to prevent short-term HCC recurrence.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Biomarkers , Hepatocytes/metabolism , Prothrombin , Biomarkers, Tumor/metabolism
6.
Vox Sang ; 119(2): 144-154, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38152043

ABSTRACT

BACKGROUND AND OBJECTIVES: The present study aims to evaluate the iron stores in plasmapheresis donors and develop and validate an iron deficiency (ID) risk prediction model for plasmapheresis donors with potential or existing ID. MATERIALS AND METHODS: We assessed plasmapheresis donors' serum ferritin (SF) and haemoglobin (Hb) levels. The candidate factors showing significant differences in the multivariate logistic regression analysis were used to establish a risk prediction scoring system. The participants were divided into a training cohort and an internal validation cohort in a 7:3 ratio. Additional plasmapheresis donors from a different station were recruited for external validation. RESULTS: The SF levels in both male and female donors in the high-frequency group were significantly lower than those of new donors (male: p < 0.001; female: p = 0.008). The prevalence of ID in female regular donors with a high frequency was significantly higher than that in new donors (33.1% vs. 24.6%; odds ratio = 1.209 [95% CI: 1.035-1.412]). Donation frequency, age, Hb, body mass index and being pre-menopausal were identified as independent risk factors for ID (p < 0.05). The developed model exhibited good discrimination ability (area under the receiver operating characteristic curve >0.7) and calibration (p > 0.05) in development, internal validation cohorts and external validation cohorts. CONCLUSION: A higher donation frequency has been associated with reduced SF levels and an increased risk of ID in women. The developed ID risk prediction model demonstrates moderate discriminative power and good model fitting, suggesting its potential clinical utility.


Subject(s)
Anemia, Iron-Deficiency , Iron Deficiencies , Humans , Male , Female , Ferritins , Blood Donors , Plasmapheresis/adverse effects , China/epidemiology , Hemoglobins/analysis , Anemia, Iron-Deficiency/epidemiology
7.
Mol Cell ; 64(1): 105-119, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27666593

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is an essential DNA virus sensor that triggers type I interferon (IFN) signaling by producing cGAMP to initiate antiviral immunity. However, post-translational regulation of cGAS remains largely unknown. We report that K48-linked ubiquitination of cGAS is a recognition signal for p62-depdendent selective autophagic degradation. The induction of TRIM14 by type I IFN accelerates cGAS stabilization by recruiting USP14 to cleave the ubiquitin chains of cGAS at lysine (K) 414. Knockout of TRIM14 impairs herpes simplex virus type 1 (HSV-1)-triggered antiviral responses in a cGAS-dependent manner. Due to impaired type I IFN production, Trim14-/- mice are highly susceptible to lethal HSV-1 infection. Taken together, our findings reveal a positive feedback loop of cGAS signaling generated by TRIM14-USP14 and provide insights into the crosstalk between autophagy and type I IFN signaling in innate immunity.


Subject(s)
Herpes Simplex/genetics , Immunity, Innate , Nucleotidyltransferases/genetics , Protein Processing, Post-Translational , Sequestosome-1 Protein/genetics , Trans-Activators/genetics , Ubiquitin Thiolesterase/genetics , Animals , Autophagy/drug effects , Feedback, Physiological , HEK293 Cells , Herpes Simplex/immunology , Herpes Simplex/mortality , Herpes Simplex/virology , Herpesvirus 1, Human/growth & development , Herpesvirus 1, Human/immunology , Host-Pathogen Interactions , Humans , Interferon Type I/pharmacology , Intracellular Signaling Peptides and Proteins , Lung/drug effects , Lung/immunology , Lung/virology , Mice , Mice, Knockout , Nucleotidyltransferases/immunology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sequestosome-1 Protein/immunology , Signal Transduction , Survival Analysis , Trans-Activators/immunology , Tripartite Motif Proteins , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/deficiency
8.
Neurol Sci ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880853

ABSTRACT

BACKGROUND: KCNQ is a voltage-gated K + channel that controls neuronal excitability and is mutated in epilepsy and autism spectrum disorder (ASD). We focus on the KV7.2 voltage-gated potassium channel gene (KCNQ2), which is known for its association with developmental delay and various seizures (including self-limited benign familial neonatal epilepsy and epileptic encephalopathy). But the pathogenicity of many variants remains unproven, potentially leading to misinterpretation of their functional consequences. METHODS: In this study, we studied a patient who visited Nanhua Hospital. Targeted next-generation sequencing and Sanger sequencing were used to identify the pathogenic variants. Meanwhile, computational models, including hydrogen bonding and docking analyses, suggest that variants cause functional impairment. In addition, functional validation was performed in the drosophila to further evaluate the missense variant in the KCNQ2 gene as the cause of this patient. RESULTS: A new missense variant in the KCNQ2 gene was identified: NM_172107.4:c.1007C > A(p.ALa336Glu), which resulted in the change from alanine to glutamate at amino acid position 336 in the KCNQ2 gene. After computational modeling, including hydrogen bond analysis and docking analysis, it is indicated that the variants cause functional impairment. Furthermore, RNAi-mediated KCNQ knockout in flies led to the onset of epileptic behavior, lifespan and climbing capacity were affected, expression of the normal human KCNQ2 rescues the in flies RNAi-mediated KCNQ knockout behavioral abnormalities. CONCLUSION: Our findings expands the genetic profile of KCNQ2 and enhances the genotype - phenotype link.

9.
J Integr Neurosci ; 23(2): 26, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38419440

ABSTRACT

BACKGROUND: Microglia-mediated neuroinflammation is a hallmark of neurodegeneration. Metabotropic glutamate receptor 8 (GRM8) has been reported to promote neuronal survival in neurodegenerative diseases, yet the effect of GRM8 on neuroinflammation is still unclear. Calcium overload-induced endoplasmic reticulum (ER)-mitochondrial miscommunication has been reported to trigger neuroinflammation in the brain. The aim of this study was to investigate putative anti-inflammatory effects of GRM8 in microglia, specifically focusing on its role in calcium overload-induced ER stress and mitochondrial dysfunction. METHODS: BV2 microglial cells were pretreated with GRM8 agonist prior to lipopolysaccharide administration. Pro-inflammatory cytokine levels and the microglial polarization state in BV2 cells were then quantified. Cellular apoptosis and the viability of neuron-like PC12 cells co-cultured with BV2 cells were examined using flow cytometry and a Cell Counting Kit-8, respectively. The concentration of cAMP, inositol-1,4,5-triphosphate receptor (IP3R)-dependent calcium release, ER Ca2+ concentration, mitochondrial function as reflected by reactive oxygen species levels, ATP production, mitochondrial membrane potential, expression of ER stress-sensing protein, and phosphorylation of the nuclear factor kappa B (NF-κB) p65 subunit were also quantified in BV2 cells. RESULTS: GRM8 activation inhibited pro-inflammatory cytokine release and shifted microglia polarization towards an anti-inflammatory-like phenotype in BV2 cells, as well as promoting neuron-like PC12 cell survival when co-cultured with BV2 cells. Mechanistically, microglial GRM8 activation significantly inhibited cAMP production, thereby desensitizing the IP3R located within the ER. This process markedly limited IP3R-dependent calcium release, thus restoring mitochondrial function while inhibiting ER stress and subsequently deactivating NF-κB signaling. CONCLUSIONS: Our results indicate that GRM8 activation can protect against microglia-mediated neuroinflammation by attenuating ER stress and mitochondrial dysfunction, and that IP3R-mediated calcium signaling may play a vital role in this process. GRM8 may thus be a potential target for limiting neuroinflammation.


Subject(s)
Microglia , Mitochondrial Diseases , Receptors, Metabotropic Glutamate , Rats , Animals , NF-kappa B/metabolism , Neuroinflammatory Diseases , Calcium/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Endoplasmic Reticulum Stress , Mitochondrial Diseases/metabolism
10.
Nano Lett ; 23(8): 3614-3622, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37017682

ABSTRACT

Surface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In this work, a "filter amplifier" strategy is proposed for the first time to reverse the intrinsic redox nature of materials. This is demonstrated by coating a COF-316 layer with controlled thickness on TiO2 to form core-sheath nanowire arrays. This unique structure forms a Z-scheme heterojunction to function as "a filter amplifier" which can conceal the intrinsic oxidative sites and increase the extrinsic reductive sites. Consequently, the selective response of TiO2 is dramatically reversed from reductive ethanol and methanol to oxidative NO2. Moreover, TiO2@COF-316 provides remarkably improved sensitivity, response, and recovery speed, as well as unusual anti-humidity properties as compared with TiO2. This work not only provides a new strategy to rationally modulate the surface chemistry properties of nanomaterials but also opens an avenue to design high-performance electronic devices with a Z-scheme heterojunction.

11.
J Neurosci ; 42(15): 3066-3079, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35197319

ABSTRACT

The NMDA subtype glutamate receptors (NMDARs) play important roles in both physiological and pathologic processes in the brain. Compared with their critical roles in synaptic modifications and excitotoxicity in excitatory neurons, much less is understood about the functional contributions of NMDARs to the inhibitory GABAergic neurons. By using selective NMDAR inhibitors and potentiators, we here show that NMDARs bidirectionally modulate the intrinsic excitability (defined as spontaneous/evoked spiking activity and EPSP-spike coupling) in inhibitory GABAergic neurons in adult male and female mice. This modulation depends on GluN2C/2D- but not GluN2A/2B-containing NMDARs. We further show that NMDAR modulator EU1794-4 mostly enhances extrasynaptic NMDAR activity, and by using it we demonstrate a significant contribution of extrasynaptic NMDARs to the modulation of intrinsic excitability in inhibitory neurons. Together, this bidirectional modulation of intrinsic excitability reveals a previously less appreciated importance of NMDARs in the second-to-second functioning of inhibitory GABAergic neurons.SIGNIFICANCE STATEMENT NMDA subtype of glutamate receptors (NMDARs) have important roles in brain functions, including both physiological and pathologic ones. The role of NMDARs in inhibitory neurons has been less elucidated compared with that in excitatory neurons. Our results demonstrate the importance of GluN2C/GluN2D-containing but not GluN2A/GluN2B-containing extrasynaptic NMDARs in modulating the intrinsic excitability of inhibitory neurons. These results further suggest distinct contributions of subsynaptic locations and subunit compositions of NMDARs to their functions in excitatory and inhibitory neurons. The above findings have implications for better understanding of brain diseases, such as schizophrenia.


Subject(s)
N-Methylaspartate , Receptors, N-Methyl-D-Aspartate , Animals , Female , GABAergic Neurons , Glutamic Acid , Male , Mice , Synapses/physiology
12.
BMC Cancer ; 23(1): 456, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202725

ABSTRACT

OBJECTIVE: To evaluate the feasibility and quality of biliary-enteric reconstruction (BER) in laparoscopic radical resection of hilar cholangiocarcinoma (LsRRH) versus open surgery and propose technical recommendations. METHODS: Data of 38 LsRRH and 54 radical laparotomy resections of hilar cholangiocarcinoma (LtRRH) cases were collected from our institution. BER was evaluated via biliary residuals numbers, number of anastomoses, anastomosis manner, suture method, time consumption, and postoperative complication. RESULTS: In the LsRRH group, patients were relatively younger; Bismuth type I had a higher proportion while type IIIa and IV were less and required no revascularization. In LsRRH and LtRRH groups, respectively, the biliary residuals number was 2.54 ± 1.62 and 2.47 ± 1.46 (p > 0.05); the number of anastomoses was 2.04 ± 1.27 and 2.57 ± 1.33 (p > 0.05); the time of BER was 65.67 ± 21.53 and 42.5 ± 19.77 min (p < 0.05), 15.08 ± 3.64% and 11.76 ± 2.54% of the total operation time (p < 0.05); postoperative bile leakage incidence was 15.79% and 16.67% (p > 0.05); 14 ± 10.28 and 17 ± 9.73 days for healing (p < 0.05); anastomosis stenosis rate was 2.63% and 1.85% (p > 0.05). Neither group had a biliary hemorrhage or bile leakage-related death. CONCLUSION: The selection bias in LsRRH mainly affects tumor resection than BER. Our cohort study indicates that BER in LsRRH is technically feasible and equals anastomotic quality to open surgery. However, its longer and a more significant proportion of total operation time represent that BER has higher technical requirements and is one of the critical rate-limiting steps affecting the minimal invasiveness of LsRRH.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Klatskin Tumor , Laparoscopy , Humans , Klatskin Tumor/surgery , Klatskin Tumor/pathology , Cohort Studies , Retrospective Studies , Bile Duct Neoplasms/surgery , Bile Duct Neoplasms/pathology , Hepatectomy/methods , Laparoscopy/adverse effects , Laparoscopy/methods , Cholangiocarcinoma/pathology , Treatment Outcome
13.
BMC Cancer ; 23(1): 416, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37158833

ABSTRACT

BACKGROUND: Pathologic complete response (pCR) following preoperative systemic therapy is associated with improved outcomes after subsequent liver transplant/resection in hepatocellular carcinoma (HCC). However, the relationship between radiographic and histopathological response remains unclear. METHODS: We retrospectively examined patients with initially unresectable HCC who received tyrosine kinase inhibitor (TKI) plus anti-programmed death 1 (PD-1) therapy before undergoing liver resection between March 2019 and September 2021 across 7 hospitals in China. Radiographic response was evaluated using mRECIST. A pCR was defined as no viable tumor cells in resected samples. RESULTS: We included 35 eligible patients, of whom 15 (42.9%) achieved pCR after systemic therapy. After a median follow-up of 13.2 months, tumors recurred in 8 non-pCR and 1 pCR patient. Before resection, there were 6 complete responses, 24 partial responses, 4 stable disease cases, and 1 progressive disease case, per mRECIST. Predicting pCR by radiographic response yielded an area under the receiver operating characteristic curve (AUC) of 0.727 (95% CI: 0.558-0.902), with an optimal cutoff value of 80% reduction in the enhanced area in MRI (called major radiographic response), which had a 66.7% sensitivity, 85.0% specificity, and a 77.1% diagnostic accuracy. When radiographic response was combined with α-fetoprotein response, the AUC was 0.926 (95% CI: 0.785-0.999); the optimal cutoff value was 0.446, which had a 91.7% sensitivity, 84.6%, specificity, and an 88.0% diagnostic accuracy. CONCLUSIONS: In patients with unresectable HCC receiving combined TKI/anti-PD 1 therapy, major radiographic response alone or combined with α-fetoprotein response may predict pCR.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , alpha-Fetoproteins , Retrospective Studies , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Neoplasm Recurrence, Local/diagnostic imaging , Immunotherapy , Protein Kinase Inhibitors/therapeutic use
14.
J Nucl Cardiol ; 30(1): 214-226, 2023 02.
Article in English | MEDLINE | ID: mdl-35915328

ABSTRACT

BACKGROUND: This study aimed to determine the clinical value of rest 18F-FDG imaging in Chinese patients with non-acute chest pain, normal ECG, negative troponin, and suspected UA. METHODS: 136 patients were prospectively included and underwent rest 18F-FDG PET imaging and coronary arteriography within 1 week. RESULTS: Obstructive CAD was diagnosed in 71 patients, and stenosis ≥ 70% was confirmed in 130 vascular territories. At patients and vascular level, rest 18F-FDG imaging showed sensitivity of 62.0%, 47.7%, specificity of 92.3%, 94.2%, accuracy of 76.5%, 79.4%, PPV of 89.8% and 79.5%, and NPV of 69.0% and 79.4%. The AUCs were 0.771 and 0.710. Of 71 patients with obstructive CAD, rest 18F-FDG imaging showed sensitivity of 47.7% and 58.8%, specificity of 91.6% and 91.2%, accuracy of 64.8% and 80.4%, PPV of 89.9% and 76.9% and NPV of 52.8% and 81.6% in all vascular level and single-vessel disease. In patients with two- or three-vessel disease, rest 18F-FDG imaging had a diagnostic sensitivity, specificity, accuracy, PPV, and NPV of 43.8%, 93.3%, 50.5%, 97.7%, and 20.6%. The AUCs were 0.696, 0.750, and 0.685. CONCLUSION: Rest 18F-FDG imaging performed certain overall diagnostic efficiency for obstructive CAD in Chinese patients with suspected UA, especially the excellent high PPV in identifying culprit ischemic territory in patients with multivessel disease.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/diagnosis , Fluorodeoxyglucose F18 , Prospective Studies , East Asian People , Sensitivity and Specificity , Angina, Unstable
15.
J Nucl Cardiol ; 30(6): 2593-2606, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37434084

ABSTRACT

We sought to establish an explainable machine learning (ML) model to screen for hemodynamically significant coronary artery disease (CAD) based on traditional risk factors, coronary artery calcium (CAC) and epicardial fat volume (EFV) measured from non-contrast CT scans. 184 symptomatic inpatients who underwent Single Photon Emission Computed Tomography/Myocardial Perfusion Imaging (SPECT/MPI) and Invasive Coronary Angiography (ICA) were enrolled. Clinical and imaging features (CAC and EFV) were collected. Hemodynamically significant CAD was defined when coronary stenosis severity ≥ 50% with a matched reversible perfusion defect in SPECT/MPI. Data was randomly split into a training cohort (70%) on which five-fold cross-validation was done and a test cohort (30%). The normalized training phase was preceded by the selection of features using recursive feature elimination (RFE). Three ML classifiers (LR, SVM, and XGBoost) were used to construct and choose the best predictive model for hemodynamically significant CAD. An explainable approach based on ML and the SHapley Additive exPlanations (SHAP) method was deployed to generate individual explanation of the model's decision. In the training cohort, hemodynamically significant CAD patients had significantly higher age, BMI and EFV, higher proportions of hypertension and CAC comparing with controls (P all < .05). In the test cohorts, hemodynamically significant CAD had significantly higher EFV and higher proportion of CAC. EFV, CAC, diabetes mellitus (DM), hypertension, and hyperlipidemia were the highest ranking features by RFE. XGBoost produced better performance (AUC of 0.88) compared with traditional LR model (AUC of 0.82) and SVM (AUC of 0.82) in the training cohort. Decision Curve Analysis (DCA) demonstrated that XGBoost model had the highest Net Benefit index. Validation of the model also yielded a favorable discriminatory ability with the AUC, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of 0.89, 68.0%, 96.8%, 94.4%, 79.0% and 83.9% in the XGBoost model. A XGBoost model based on EFV, CAC, hypertension, DM and hyperlipidemia to assess hemodynamically significant CAD was constructed and validated, which showed favorable predictive value. ML combined with SHAP can offer a transparent explanation of personalized risk prediction, enabling physicians to gain an intuitive understanding of the impact of key features in the model.


Subject(s)
Coronary Artery Disease , Hyperlipidemias , Hypertension , Myocardial Perfusion Imaging , Humans , Coronary Artery Disease/diagnostic imaging , Calcium , Coronary Angiography/methods , Predictive Value of Tests , Myocardial Perfusion Imaging/methods , Risk Factors , Hypertension/complications , Hypertension/diagnostic imaging
16.
Bioorg Chem ; 133: 106405, 2023 04.
Article in English | MEDLINE | ID: mdl-36753966

ABSTRACT

Previously we discovered a novel natural scaffold compound, isobavachin (4', 7-dihydroxy-8-prenylflavanone), as a potent URAT1 inhibitor by shape and structure based on a virtue screening approach. In this study, further urate-lowering mechanism, pharmacokinetics and toxicities of isobavachin were conducted. Isobavachin inhibited URAT1 with an IC50 value of 0.24 ± 0.06 µM, and residues S35, F365, I481 and R477 of URAT1 contributed to high affinity for isobavachin. Isobavachin also inhibited glucose transporter 9 (GLUT9), another pivotal urate reabsorption transporter, with an IC50 value of 1.12 ± 0.26 µM. Molecular docking and MMGBSA results indicated that isobavachin might compete residues R171, L75 and N333 with uric acid, which leads to inhibition of uric acid transport of GLUT9. Isobavachin weakly inhibited urate secretion transporters OAT1 with an IC50 value of 4.38 ± 1.27 µM, OAT3 with an IC50 of 3.64 ± 0.62 µM, and ABCG2 with an IC50 of 10.45 ± 2.17 µM. Isobavachin also inhibited xanthine oxidase (XOD) activity in vitro with an IC50 value of 14.43 ± 3.56 µM, and inhibited the hepatic XOD activities at 5-20 mg/kg in vivo. Docking and MMGBSA analysis indicated that isobavachin might bind to the Mo-Pt catalyze center of XOD, which leads to inhibition of uric acid production. In vivo, isobavachin exhibited powerful urate-lowering and uricosuric effects at 5-20 mg/kg compared with the positive drugs morin (20 mg/kg) and RDEA3170 (10 mg/kg). Safety assessments revealed that isobavachin was safe and had no obvious toxicities. Isobavachin has little cell toxicity in HK2 cells as indicated by the MTT assay. In vivo, after treatment with 50 mg/kg isobavachin for 14 days, isobavachin had little renal toxicity, as revealed by serum CR/BUN levels, and no hepatotoxicity as revealed by ALT/AST levels. Further HE examination also suggests that isobavachin has no obvious kidney/liver damage. A pharmacokinetic study in SD rats indicated isobavachin had lower bioavailability (12.84 ± 5.13 %) but long half-time (7.04 ± 2.68 h) to maintain a continuous plasma concentration. Collectively, these results indicate that isobavachin deserves further investigation as a candidate anti-hyperuricemic drug with a novel mechanism of action: selective urate reabsorption inhibitor (URAT1/GLUT9) with a moderate inhibitory effect on XOD.


Subject(s)
Flavones , Uric Acid , Xanthine Oxidase , Animals , Rats , Kidney/drug effects , Kidney/metabolism , Molecular Docking Simulation , Rats, Sprague-Dawley , Uric Acid/metabolism , Xanthine Oxidase/antagonists & inhibitors , Flavones/chemistry , Flavones/pharmacology
17.
Biochem Genet ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752292

ABSTRACT

Keloids are fibroproliferative skin disorders caused by the improper healing of wounded skin. A growing body of evidence suggests the involvement of N6-Methyladenosine (m6A) modification in various bioprocesses; however, its role in keloid formation has not yet been investigated. The aim of this study was to determine the effect of the m6A regulator zinc finger CCCH domain containing protein 13 (ZC3H13) on the pathogenesis of keloid formation. ZC3H13 and homeodomain-interacting protein kinase 2 (HIPK2) expression was evaluated in healthy skin and keloid tissues, as well as in human dermal fibroblasts and human keloid fibroblasts (HKF), using qRT-PCR and western blotting. The effects of ZC3H13 overexpression and knockdown on the cell function of HKFs were assessed using CCK8, transwell, and flow cytometry. Furthermore, the influence of ZC3H13 on HIPK2 m6A modification was assessed using MeRIP-qPCR and mRNA stability assays. Both ZC3H13 expression and m6A RNA methylation were upregulated in keloid tissues and HKFs. Silencing of ZC3H13 inhibited proliferation and migration, while enhancing apoptosis in HKFs, whereas overexpression had the opposite effect. Furthermore, HIPK2 levels were high in keloid tissues and HKFs, and a positive correlation was observed between ZC3H13 and HIPK2. In HKFs, ZC3H13 overexpression elevated the m6A levels of HIPK2 mRNA and reduced the rate of HIPK2 mRNA degradation. Mechanically, ZC3H13-induced m6A modifications significantly improved HIPK2 mRNA stability. Collectively, ZC3H13 accelerated keloid formation by mediating the m6A modification of HIPK2 mRNA and maintaining its stability.

18.
Biochem Genet ; 61(6): 2363-2381, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37041365

ABSTRACT

Little progress has been made in the treatment and prognosis of osteosarcoma in the past 40 years. Tumor microenvironment (TME) plays a critical role in the progression of osteosarcoma. This study aims to determine immune-associated prognostic biomarkers for osteosarcoma patients. With the help of analytical tools including ESTIMATE, differential gene expression, LASSO, and univariate cox and multivariate cox regression analysis, osteosarcoma gene expression data from Gene Expression Omnibus (GEO) databases were investigated. Following the establishment of a prognostic risk score model, internal and external validations using the GEO and TARGET databases were carried out. A total of 44 and 55 samples respectively in the GSE21257 and the TARGET databases were included. Our analysis found 93 differentially expressed genes (DEGs) between the high and low-ImmuneScore groups. Through univariate cox and LASSO analysis, ALOX5AP was identified as an indicator of TME in osteosarcomas. ALOX5AP was then used to construct a prognostic risk model. Internal and external verification revealed that higher expression of ALOX5AP was correlated with lower risk. Through the CIBERSORT algorithm, the level of CD8 T cells was found to negatively correlate with the risk score. This study revealed that ALOX5AP is an indicator for predicting high CD8 lymphocyte infiltration and "hot" tumor microenvironment in osteosarcomas. Thus, ALOX5AP has the potential to act as a biomarker for effective immunotherapies in osteosarcoma patients.


Subject(s)
5-Lipoxygenase-Activating Proteins , CD8-Positive T-Lymphocytes , Osteosarcoma , Tumor Microenvironment , 5-Lipoxygenase-Activating Proteins/genetics , Humans , CD8-Positive T-Lymphocytes/immunology , Osteosarcoma/genetics , Osteosarcoma/immunology , Computational Biology , Risk Factors , Biomarkers, Tumor/genetics , Lymphocytes, Tumor-Infiltrating
19.
Drug Chem Toxicol ; 46(3): 413-422, 2023 May.
Article in English | MEDLINE | ID: mdl-35266429

ABSTRACT

Emamectin benzoate (EMB) is an avermectin insecticide that is extensively used for pest control, but there are few reports concerning its cytotoxic effects on human lymphocytes. In the current study, the hematotoxicity of EMB was evaluated in Molt-4 T-cells, a human T-lymphoblastic cell line with high motility, and the role of vitamin E (VitE) and dithiothreitol (DTT) in attenuating EMB cytotoxicity was characterized. Exposure of Molt-4 cells to EMB decreased cell viability and proliferation, induced a loss of cell clusters, and significantly increased membrane collapse and chromatin condensation. Moreover, EMB significantly increased cell death and suppressed transglutaminase activity. EMB treatment modulated the NF-κB signaling pathway, decreased the expression of p105, p50, and p65/RelA in cytosolic and nuclear fractions, and increased nuclear IκBα expression. EMB increased oxidative stress, as demonstrated by a significant increase in the levels of reactive oxygen species (ROS). Treatment with non-cytotoxic concentrations of VitE or DTT ameliorated the hematotoxicity induced by pretreatment with EMB, increased Molt-4 cell viability, raised the IC50 values of EMB, limited intracellular ROS generation, and mitigated EMB-mediated effects on NF-κB signaling. The results indicate the potential cytotoxicity of EMB on human lymphocytes, and demonstrate that VitE and DTT treatment can reduce the cytotoxic effects of EMB.


Subject(s)
Dithiothreitol , Ivermectin , NF-kappa B , T-Lymphocytes , Vitamin E , Humans , Dithiothreitol/pharmacology , Ivermectin/analogs & derivatives , Ivermectin/toxicity , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Vitamin E/pharmacology
20.
Molecules ; 28(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37687027

ABSTRACT

The reutilization non-metallic components from a waste-printed circuit board (WPCB) has become one of the most significant bottlenecks in the comprehensive reuse of electronic wastes due to its low value and complex compositions, and it has received great attention from scientific and industrial researchers. To effectively address the environmental pollution caused by inappropriate recycling methods, such as incineration and landfill, extensive efforts have been dedicated to achieving the high value-added reutilization of WPCB non-metals in sustainable polymer composites. In this review, recent progress in developing sustainable polymer composites based on WPCB non-metallic components was systematically summarized. It has been demonstrated that the WPCB non-metals can serve as a promising reinforcing and functional fillers to significantly ameliorate some of the physical and chemical properties of polymer composites, such as excellent mechanical properties, enhanced thermal stability, and flame retardancy. The recovery strategies and composition of WPCB non-metals were also briefly discussed. Finally, the future potentials and remaining challenges regarding the reutilization of WPCB non-metallic components are outlined. This work provides readers with a comprehensive understanding of the preparation, structure, and properties of the polymer composites based on WPCB non-metals, providing significant insights regarding the high value-added reutilization of WPCB non-metals of electronic wastes.

SELECTION OF CITATIONS
SEARCH DETAIL