Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Environ Sci Technol ; 58(24): 10675-10684, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38843196

ABSTRACT

Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO42-). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO42- at pH values below the acid dissociation constant (pKa) of SO42- and bisulfate (HSO4-). The nucleophilicity of HSO4- is 100× lower than SO42-, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42-/HSO4- equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.


Subject(s)
Aerosols , Epoxy Compounds/chemistry , Hydrogen-Ion Concentration , Acid-Base Equilibrium
2.
J Nanobiotechnology ; 22(1): 336, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38880905

ABSTRACT

Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen transport due to their similar oxygen-carrying capacities. However, applications of HBOCs are hindered by vasoactivity, oxidative toxicity, and a relatively short circulatory half-life. With advancements in nanotechnology, Hb encapsulation, absorption, bioconjugation, entrapment, and attachment to nanomaterials have been used to prepare nanomaterial-related HBOCs to address these challenges and pend their application in several biomedical and therapeutic contexts. This review focuses on the progress of this class of nanomaterial-related HBOCs in the fields of hemorrhagic shock, ischemic stroke, cancer, and wound healing, and speculates on future research directions. The advancements in nanomaterial-related HBOCs are expected to lead significant breakthroughs in blood substitutes, enabling their widespread use in the treatment of clinical diseases.


Subject(s)
Blood Substitutes , Hemoglobins , Liposomes , Nanostructures , Oxygen , Humans , Hemoglobins/chemistry , Hemoglobins/metabolism , Blood Substitutes/chemistry , Oxygen/chemistry , Animals , Nanostructures/chemistry , Liposomes/chemistry , Nanocapsules/chemistry , Wound Healing/drug effects , Neoplasms/drug therapy , Shock, Hemorrhagic/drug therapy
3.
Asia Pac J Clin Nutr ; 33(3): 319-347, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38965721

ABSTRACT

BACKGROUND AND OBJECTIVES: This study aimed to find the optimal intervention available to both control blood glucose and improve physical function in the geriatric population with T2DM. METHODS AND STUDY DESIGN: A systemic review and network meta-analysis (NMA) was conducted to assess and rank the comparative efficacy of different interventions on glycosylated hemoglobin A1c (HbAc1), fasting blood glucose (FBG), muscle mass, grip strength, gait speed, lower body muscle strength, and dynamic balance. A total of eight databases were searched for eligible randomized controlled trials (RCTs) that the elderly aged more than 60 years or with mean age ≥ 55 years, the minimal duration of the RCT intervention was 6 weeks, and those lacking data about glycemic level and at least one indicator of physical performance were excluded. The Cochrane risk of bias tool was used to assess the bias of each study included. Bayesian NMA was performed as the main results, the Bayesian meta regression and the frequentist NMA as sensitivity analysis. RESULTS: Of the 2266 literature retrieved, 27 RCTs with a total of 2289 older adults were included. Health management provided by health workers exerts beneficial effects that is superior to other interventions at achieving glycemic control, but less marked improvement in physical performance. Exercise combined with cognitive training showed more pronounced improvement in muscle strength, gait speed, and dynamic balance, but ranked behind in decreasing the HbAc1 and FBG. CONCLUSIONS: Personalized health management combined with physical and cognitive training might be the optimal intervention to both accomplish glycemic control and improvement of physical performance. Further RCTs are needed to validate and assess the confidence of our results from this NMA.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Physical Functional Performance , Humans , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/blood , Aged , Network Meta-Analysis , Glycated Hemoglobin/analysis , Muscle Strength/physiology , Glycemic Control/methods , Randomized Controlled Trials as Topic , Exercise/physiology
4.
Opt Express ; 31(17): 28161-28173, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710877

ABSTRACT

We propose a three-wavelength elliptically polarized light photoelasticity method for high efficiency and low-cost stress measurement. By illuminating the sample with two different forms of elliptically polarized light for each wavelength sources, twelve images are acquired. From these images, phase delay and the principal internal stress difference are precisely computed using developed algorithms. Our proposed method based on an LCD panel has the unrivalled advantage that elliptically polarized light can be automatically adjusted, which reduces the mechanical rotation of the system, in contrast to the traditional six-step phase-shifting photoelasticity method, which requires manual rotation for circularly polarized light. In addition, the system has the potential to theoretically expand the area of illumination infinitely, thereby expanding the measurement area. The viability of the suggested methods is confirmed with numerical simulation and stress measurement.

5.
Chem Res Toxicol ; 36(11): 1814-1825, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37906555

ABSTRACT

Hydroxyl radical (·OH)-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon in the atmosphere, is responsible for substantial amounts of secondary organic aerosol (SOA) within ambient fine particles. Fine particulate 2-methyltetrol sulfate diastereoisomers (2-MTSs) are abundant SOA products formed via acid-catalyzed multiphase chemistry of isoprene-derived epoxydiols with inorganic sulfate aerosols under low-nitric oxide conditions. We recently demonstrated that heterogeneous ·OH oxidation of particulate 2-MTSs leads to the particle-phase formation of multifunctional organosulfates (OSs). However, it remains uncertain if atmospheric chemical aging of particulate 2-MTSs induces toxic effects within human lung cells. We show that inhibitory concentration-50 (IC50) values decreased from exposure to fine particulate 2-MTSs that were heterogeneously aged for 0 to 22 days by ·OH, indicating increased particulate toxicity in BEAS-2B lung cells. Lung cells further exhibited concentration-dependent modulation of oxidative stress- and inflammatory-related gene expression. Principal component analysis was carried out on the chemical mixtures and revealed positive correlations between exposure to aged multifunctional OSs and altered expression of targeted genes. Exposure to particulate 2-MTSs alone was associated with an altered expression of antireactive oxygen species (ROS)-related genes (NQO-1, SOD-2, and CAT) indicative of a response to ROS in the cells. Increased aging of particulate 2-MTSs by ·OH exposure was associated with an increased expression of glutathione pathway-related genes (GCLM and GCLC) and an anti-inflammatory gene (IL-10).


Subject(s)
Butadienes , Oxidative Stress , Humans , Aged , Reactive Oxygen Species , Oxidation-Reduction , Butadienes/toxicity
6.
Inflamm Res ; 72(6): 1161-1173, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37188940

ABSTRACT

OBJECTIVE AND DESIGN: Postoperative cognitive dysfunction (POCD) is a common complication following surgery among elderly patients. Emerging evidence demonstrates that neuroinflammation plays a pivotal role in the pathogenesis of POCD. This study tested the hypothesis that fluoxetine can protect against POCD by suppressing hippocampal neuroinflammation through attenuating TLR4/MyD88/NF-κB signaling pathway activation. SUBJECTS: Aged C57BL/6 J male mice (18 months old) were studied. TREATMENT: Aged mice were intraperitoneally injected with fluoxetine (10 mg/kg) or saline for seven days before splenectomy. In addition, aged mice received an intracerebroventricular injection of a TLR4 agonist or saline seven days before splenectomy in the rescue experiment. METHODS: On postoperative days 1, 3, and 7, we assessed hippocampus-dependent memory, microglial activation status, proinflammatory cytokine levels, protein levels related to the TLR4/MyD88/NF-κB signaling pathway, and hippocampal neural apoptosis in our aged mouse model. RESULTS: Splenectomy induced a decline in spatial cognition, paralleled by parameters indicating exacerbation of hippocampal neuroinflammation. Fluoxetine pretreatment partially restored the deteriorated cognitive function, downregulated proinflammatory cytokine levels, restrained microglial activation, alleviated neural apoptosis, and suppressed the increase in TLR4, MyD88, and p-NF-κB p65 in microglia. Intracerebroventricular injection of LPS (1 µg, 0.5 µg/µL) before surgery weakened the effect of fluoxetine. CONCLUSION: Fluoxetine pretreatment suppressed hippocampal neuroinflammation and mitigated POCD by inhibiting microglial TLR4/MyD88/NF-κB pathway activation in aged mice.


Subject(s)
NF-kappa B , Postoperative Cognitive Complications , Mice , Male , Animals , NF-kappa B/metabolism , Postoperative Cognitive Complications/metabolism , Myeloid Differentiation Factor 88/metabolism , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Fluoxetine/metabolism , Toll-Like Receptor 4/metabolism , Neuroinflammatory Diseases , Mice, Inbred C57BL , Signal Transduction , Cytokines/metabolism , Microglia/metabolism
7.
Environ Sci Technol ; 57(38): 14182-14193, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37708377

ABSTRACT

Recent studies have shown that instantaneous gas-particle equilibrium partitioning assumptions fail to predict SOA formation, even at high relative humidity (∼85%), and photochemical aging seems to be one driving factor. In this study, we probe the minimum aging time scale required to observe nonequilibrium partitioning of semivolatile organic compounds (SVOCs) between the gas and aerosol phase at ∼50% RH. Seed isoprene SOA is generated by photo-oxidation in the presence of effloresced ammonium sulfate seeds at <1 ppbv NOx, aged photochemically or in the dark for 0.3-6 h, and subsequently exposed to fresh isoprene SVOCs. Our results show that the equilibrium partitioning assumption is accurate for fresh isoprene SOA but breaks down after isoprene SOA has been aged for as short as 20 min even in the dark. Modeling results show that a semisolid SOA phase state is necessary to reproduce the observed particle size distribution evolution. The observed nonequilibrium partitioning behavior and inferred semisolid phase state are corroborated by offline mass spectrometric analysis on the bulk aerosol particles showing the formation of organosulfates and oligomers. The unexpected short time scale for the phase transition within isoprene SOA has important implications for the growth of atmospheric ultrafine particles to climate-relevant sizes.


Subject(s)
Air Pollutants , Hemiterpenes , Particulate Matter , Butadienes , Organic Chemicals , Aerosols
8.
J Phys Chem A ; 127(18): 4125-4136, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37129903

ABSTRACT

The phase states and glass transition temperatures (Tg) of secondary organic aerosol (SOA) particles are important to resolve for understanding the formation, growth, and fate of SOA as well as their cloud formation properties. Currently, there is a limited understanding of how Tg changes with the composition of organic and inorganic components of atmospheric aerosol. Using broadband dielectric spectroscopy, we measured the Tg of organic mixtures containing isoprene epoxydiol (IEPOX)-derived SOA components, including 2-methyltetrols (2-MT), 2-methyltetrol-sulfate (2-MTS), and 3-methyltetrol-sulfate (3-MTS). The results demonstrate that the Tg of mixtures depends on their composition. The Kwei equation, a modified Gordon-Taylor equation with an added quadratic term and a fitting parameter representing strong intermolecular interactions, provides a good fit for the Tg-composition relationship of complex mixtures. By combining Raman spectroscopy with geometry optimization simulations obtained using density functional theory, we demonstrate that the non-linear deviation of Tg as a function of composition may be caused by changes in the extent of hydrogen bonding in the mixture.

9.
Molecules ; 28(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36903296

ABSTRACT

Acute altitude hypoxia represents the cause of multiple adverse consequences. Current treatments are limited by side effects. Recent studies have shown the protective effects of resveratrol (RSV), but the mechanism remains unknown. To address this, the effects of RSV on the structure and function of hemoglobin of adult (HbA) were preliminarily analyzed using surface plasmon resonance (SPR) and oxygen dissociation assays (ODA). Molecular docking was conducted to specifically analyze the binding regions between RSV and HbA. The thermal stability was characterized to further validate the authenticity and effect of binding. Changes in the oxygen supply efficiency of HbA and rat RBCs incubated with RSV were detected ex vivo. The effect of RSV on the anti-hypoxic capacity under acute hypoxic conditions in vivo was evaluated. We found that RSV binds to the heme region of HbA following a concentration gradient and affects the structural stability and rate of oxygen release of HbA. RSV enhances the oxygen supply efficiency of HbA and rat RBCs ex vivo. RSV prolongs the tolerance times of mice suffering from acute asphyxia. By enhancing the oxygen supply efficiency, it alleviates the detrimental effects of acute severe hypoxia. In conclusion, RSV binds to HbA and regulates its conformation, which enhances oxygen supply efficiency and improves adaption to acute severe hypoxia.


Subject(s)
Hemoglobins , Hypoxia , Animals , Mice , Rats , Resveratrol , Molecular Docking Simulation , Hemoglobins/chemistry , Oxygen/chemistry
10.
Anal Chem ; 94(3): 1813-1822, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35001627

ABSTRACT

Schizophrenia is a common type of serious mental illness with an unclear etiology. Recently, the excessive production of hydrogen sulfide in the brain has been considered to be one of the pathophysiological bases of schizophrenia. However, due to the existence of the blood-brain barrier (BBB), almost no fluorescent probe has been successfully used for the sensing and detection of H2S in the brain. Herein, we designed and synthesized a series of near-infrared fluorescent probes SiR-Bs based on a hemicyanine and Si-rhodamine structure. Among them, Mindo-SiR presented a good penetration ability of the BBB, a high brain uptake (transport: 4.95% ID/g at 5 min), and good response to H2S in vitro and in vivo. For the first time, a fluorescent probe was used to image the changes of H2S in the brains of schizophrenic (SZ) mouse models, and it was successfully proven that there was an abnormally high level of H2S in the brains of SZ mice. Moreover, the therapeutic effect of risperidone for the treatment of SZ could be evaluated by the changes of SiR-Bs' fluorescence imaging.


Subject(s)
Hydrogen Sulfide , Optical Imaging , Animals , Brain/diagnostic imaging , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Mice , Rhodamines
11.
Opt Lett ; 47(1): 138-141, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34951901

ABSTRACT

A Ti3CN MXene enabled ultra-sensitive optical fiber sensor is proposed, and a salinity measurement is conducted to evaluate its sensing performance in a low-concentration target molecule detection environment. Owing to the abundance of hydrophilic functional groups (-O, -F, and -OH), large specific surface, and broad-spectrum absorption characteristics of the MXene layers, the sensing performance of the MXene-incorporated sensor is greatly improved and an ultra-high salinity sensitivity of -5.34 nm/‰ is achieved (equivalent to a refractive index sensitivity of -33429 nm/RIU). Such an excellent sensing performance is 137.33% higher than that of the bare fiber sensor and is significantly enhanced over previously reported fiber sensors. Furthermore, the sensing performance of the sensor is improved without damaging the fiber structure, which is a huge advantage when compared with the traditional fiber post-processing techniques. Finally, because the refractive index is commonly used to characterize the detection ability of biosensors, our contribution suggests the integration of MXene as a potential approach to develop high-performance optical fiber biosensors.


Subject(s)
Biosensing Techniques , Optical Fibers , Refractometry , Salinity , Titanium
12.
Langmuir ; 38(35): 10791-10798, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36017796

ABSTRACT

There is an urgent demand to develop high-performance flexible batteries for a wide range of contemporary emerging fields, including flexible electronics, wearable sensors, and implantable medical devices. However, the inherent safety and stability issues of traditional organic liquid-based electrolytes make their application in flexible batteries unsatisfactory. Therefore, exploring gel electrolytes with superior ionic conductivity and safety is considered to be the key to the development of flexible batteries. In this paper, two types of high-quality ionic liquid-based gel polymer electrolyte membranes (PVDF-ILs) are created by a conventional solution-casting method, which are further integrated into flexible aluminum-air batteries to guide the interface and process research, and the related discharge properties of two ionic liquid-based electrolyte membrane (PVDF-[C4mpyr]Cl, PVDF-[BMIM]Cl) in different bending states are discussed. The results show that PVDF-ILs have a rich pore structure and interwoven skeleton network, leading to relatively high ionic conductivity (2.97 × 10-3 S cm-1). Moreover, two types of batteries can meet the needs of flexibility, although there is a slight loss of power density under various bending conditions. In general, a PVDF-[C4mpyr]Cl-based flexible aluminum-air battery is suitable for the working conditions of high power and low bending angle, while the PVDF-[BMIM]Cl-based flexible aluminum-air battery is favored for microwatt low-power devices with high flexibility requirements.

13.
Environ Sci Technol ; 56(23): 16611-16620, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36378716

ABSTRACT

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX) with inorganic sulfate aerosols contributes substantially to secondary organic aerosol (SOA) formation, which constitutes a large mass fraction of atmospheric fine particulate matter (PM2.5). However, the atmospheric chemical sinks of freshly generated IEPOX-SOA particles remain unclear. We examined the role of heterogeneous oxidation of freshly generated IEPOX-SOA particles by gas-phase hydroxyl radical (•OH) under dark conditions as one potential atmospheric sink. After 4 h of gas-phase •OH exposure (∼3 × 108 molecules cm-3), chemical changes in smog chamber-generated IEPOX-SOA particles were assessed by hydrophilic interaction liquid chromatography coupled with electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). A comparison of the molecular-level compositional changes in IEPOX-SOA particles during aging with or without •OH revealed that decomposition of oligomers by heterogeneous •OH oxidation acts as a sink for •OH and maintains a reservoir of low-volatility compounds, including monomeric sulfate esters and oligomer fragments. We propose tentative structures and formation mechanisms for previously uncharacterized SOA constituents in PM2.5. Our results suggest that this •OH-driven renewal of low-volatility products may extend the atmospheric lifetimes of particle-phase IEPOX-SOA by slowing the production of low-molecular weight, high-volatility organic fragments and likely contributes to the large quantities of 2-methyltetrols and methyltetrol sulfates reported in PM2.5.


Subject(s)
Air Pollutants , Sulfates , Sulfates/chemistry , Atmosphere/chemistry , Hemiterpenes , Butadienes , Aerosols/chemistry , Particulate Matter/analysis , Dust/analysis , Oxidation-Reduction , Oxidative Stress , Air Pollutants/analysis
14.
Environ Sci Technol ; 56(15): 10596-10607, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35834796

ABSTRACT

Aerosol acidity increases secondary organic aerosol (SOA) formed from the reactive uptake of isoprene-derived epoxydiols (IEPOX) by enhancing condensed-phase reactions within sulfate-containing submicron particles, leading to low-volatility organic products. However, the link between the initial aerosol acidity and the resulting physicochemical properties of IEPOX-derived SOA remains uncertain. Herein, we show distinct differences in the morphology, phase state, and chemical composition of individual organic-inorganic mixed particles after IEPOX uptake to ammonium sulfate particles with different initial atmospherically relevant acidities (pH = 1, 3, and 5). Physicochemical properties were characterized via atomic force microscopy coupled with photothermal infrared spectroscopy (AFM-PTIR) and Raman microspectroscopy. Compared to less acidic particles (pH 3 and 5), reactive uptake of IEPOX to the most acidic particles (pH 1) resulted in 50% more organosulfate formation, clearer phase separation (core-shell), and more irregularly shaped morphologies, suggesting that the organic phase transitioned to semisolid or solid. This study highlights that initial aerosol acidity may govern the subsequent aerosol physicochemical properties, such as viscosity and morphology, following the multiphase chemical reactions of IEPOX. These results can be used in future studies to improve model parameterizations of SOA formation from IEPOX and its properties, toward the goal of bridging predictions and atmospheric observations.


Subject(s)
Atmosphere , Hemiterpenes , Acids/chemistry , Aerosols/chemistry , Atmosphere/chemistry , Butadienes , Hydrogen-Ion Concentration
15.
J Asthma ; 59(10): 1952-1960, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34559035

ABSTRACT

ObjectiveAsthmatic children presenting with chest tightness as the only symptom have not been widely recognized. This study attempted to find risk factors, summarize clinical features and offer some suggestions for the diagnosis of this atypical asthma.Methods: We studied 94 children, aged 6 to 14 years, who complained only of chest tightness. Data from clinical manifestations and laboratory tests were analyzed. The atypical asthma group (n = 58) showed positive bronchial challenge tests, and symptoms either improved or resolved in response to the bronchodilator. The control group (n = 36) had negative results on the bronchial challenge, diurnal PEF, and BDR tests, and no response to asthma treatment with bronchodilator.Results: Pollution, weather, recent house renovation, and air-conditioning use may be risk factors for children with atypical asthma. These children had more accompanying symptoms of rhinitis and rhinitis family history (P < 0.05), and a higher positive detection rate of inhaled allergens and multiple sensitizations. Parameters of the pulmonary function test were lower in the atypical asthma group than in the control group, and they also had higher FeNO values. If a cutoff value of improvement in FEV1 of BDR were set at 8.9%, sensitivity would be 48.2%, which is higher than a 12% cutoff.Conclusions: Environmental factors appeared to cause development of the isolated chest tightness symptom. Clinical history and laboratory tests could provide partial values for this diagnosis. In the absence of a bronchial challenge test, a margin of improvement in FEV1 of BDR set at 8.9% may be helpful.


Subject(s)
Asthma , Rhinitis , Asthma/diagnosis , Asthma/drug therapy , Asthma/epidemiology , Bronchial Provocation Tests , Bronchodilator Agents/therapeutic use , Child , Humans , Rhinitis/drug therapy , Risk Factors
16.
Int J Environ Health Res ; : 1-9, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36473101

ABSTRACT

A case-control study was conducted to examine the association of particulate matter exposure during the pre-natal (the first, second, and third trimesters. and the whole pregnancy) and post-natal periods (the first year after birth) with childhood asthma in Beijing, China. Multivariable logistic regressions showed that childhood asthma was significantly associated with exposures to PM2.5 and PM10 during the entire pregnancy, with ORs of 1.28(95%CI:1.06-1.56) and 1.21(95%CI:1.02-1.42), respectively. The highest association with a 10 µg/m3 increase in PM2.5 and PM10 were both seen for the second trimester, with ORs of 1.17(95% CI: 1.05-1.30) and 1.14(95% CI: 1.04-1.24). Subgroup analyses suggested that significant and positive effects were subject to be observed in children with a family history of atopy. This study added evidence that exposures to PM2.5 and PM10 during pregnancy might increase the risk of childhood asthma in seriously polluted area, highlighting stronger associations in the second trimester.

17.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1064-L1073, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33825493

ABSTRACT

In the United States, millions of adults use electronic cigarettes (e-cigs), and a majority of these users are former or current cigarette smokers. It is unclear, whether prior smoking status affects biological responses induced by e-cigs. In this study, differentiated human nasal epithelial cells (hNECs) from nonsmokers and smokers at air-liquid interface were acutely exposed to the e-cig generated aerosols of humectants, propylene glycol (PG), and glycerol (GLY). Mucin levels were examined in the apical washes, and cytokine levels were assessed in the basolateral supernatants 24 h postexposure. The aerosol from the GLY exposure increased mucin 5, subtype AC (MUC5AC) levels in the apical wash of hNECs from nonsmokers, but not smokers. However, the aerosol from GLY induced pro-inflammatory responses in hNECs from smokers. We also exposed hNECs from nonsmokers and smokers to e-cig generated aerosol from PG:GLY with freebase nicotine or nicotine salt. The PG:GLY with freebase nicotine exposure increased MUC5AC and mucin 5, subtype B (MUC5B) levels in hNECs from nonsmokers, but the nicotine salt exposure did not. The PG:GLY with nicotine salt exposure increased pro-inflammatory cytokines in hNECs from smokers, which was not seen with the freebase nicotine exposure. Taken together, these data indicate that the e-cig generated aerosols from the humectants, mostly GLY, and the type of nicotine used cause differential effects in airway epithelial cells from nonsmokers and smokers. As e-cig use is increasing, it is important to understand that the biological effects of e-cig use are likely dependent on prior cigarette smoke exposure.


Subject(s)
Epithelial Cells/drug effects , Nicotine/pharmacology , Non-Smokers , Smokers , Vaping/adverse effects , Electronic Nicotine Delivery Systems , Glycerol/pharmacology , Humans , Hygroscopic Agents/pharmacology , Lung/drug effects , Propylene Glycol/pharmacology
18.
J Neurophysiol ; 125(6): 2125-2134, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33909494

ABSTRACT

Visual systems evolve to process the stimuli that arise in the organism's natural environment, and hence, to fully understand the neural computations in the visual system, it is important to measure behavioral and neural responses to natural visual stimuli. Here, we measured psychometric and neurometric functions in the macaque monkey for detection of a windowed sine-wave target in uniform backgrounds and in natural backgrounds of various contrasts. The neurometric functions were obtained by near-optimal decoding of voltage-sensitive-dye-imaging (VSDI) responses at the retinotopic scale in primary visual cortex (V1). The results were compared with previous human psychophysical measurements made under the same conditions. We found that human and macaque behavioral thresholds followed the generalized Weber's law as function of contrast, and that both the slopes and the intercepts of the threshold as a function of background contrast match each other up to a single scale factor. We also found that the neurometric thresholds followed the generalized Weber's law with slopes and intercepts matching the behavioral slopes and intercepts up to a single scale factor. We conclude that human and macaque ability to detect targets in natural backgrounds are affected in the same way by background contrast, that these effects are consistent with population decoding at the retinotopic scale by down-stream circuits, and that the macaque monkey is an appropriate animal model for gaining an understanding of the neural mechanisms in humans for detecting targets in natural backgrounds. Finally, we discuss limitations of the current study and potential next steps.NEW & NOTEWORTHY We measured macaque detection performance in natural images and compared their performance to the detection sensitivity of neurophysiological responses recorded in the primary visual cortex (V1), and to the performance of human subjects. We found that 1) human and macaque behavioral performances are in quantitative agreement and 2) are consistent with near-optimal decoding of V1 population responses.


Subject(s)
Contrast Sensitivity/physiology , Depth Perception/physiology , Discrimination, Psychological/physiology , Pattern Recognition, Visual/physiology , Perceptual Masking/physiology , Primary Visual Cortex/physiology , Sensory Thresholds/physiology , Animals , Behavior, Animal/physiology , Differential Threshold , Humans , Macaca , Species Specificity , Task Performance and Analysis , Voltage-Sensitive Dye Imaging
19.
Anal Chem ; 93(37): 12617-12627, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34494815

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease, and ß-amyloid (Aß) is believed to be a causative factor in AD pathology. The abnormal deposition of Aß is believed to be responsible for progression of AD. In order to facilitate the imaging of Aß in vivo, suitable probe molecules with a near-infrared emission wavelength that can penetrate the blood-brain barrier (BBB) were utilized. The commercial fluorescent probe thioflavin-T (ThT) is used to image Aß; however, because of its short emission wavelength and poor BBB penetration, ThT can only be used in vitro. With this research, based on ThT, we design three fluorescent probes (SZIs) having a longer emission wavelength in order to image Aß aggregates. SZIs with different numbers of double bonds respond to Aß aggregates. The SZIs have a structure similar to ThT, and as such, the SZIs are also unable to penetrate the BBB. To deal with the problem, we develop nanocomposites (MSN-Lf@SZIs) to deliver SZIs into the brain of AD mouse and image Aß successfully. These new nanocomposites are able to deliver the dyes into the brain and facilitate Aß imaging in vivo.


Subject(s)
Nanocomposites , Neurodegenerative Diseases , Amyloid beta-Peptides , Animals , Mice , Optical Imaging , Silicon Dioxide
20.
Bioconjug Chem ; 32(11): 2269-2289, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34669378

ABSTRACT

Reactive oxygen species (ROS) are essential for normal physiological processes and play important roles in signal transduction, immunity, and tissue homeostasis. However, excess ROS may have a negative effect on the normal cells leading to various diseases. Nanomaterials are an attractive therapeutic alternative of antioxidants and possess an intrinsic ability to scavenge ROS. Surface modification for nanomaterials is a critical strategy to improve their comprehensive performances. Herein, we review the different surface modified strategies for nanomaterials to scavenge ROS and their inherent antioxidant capability, mechanisms of action, and biological applications. At last, the primary challenges and future perspectives in this emerging research frontier have also been highlighted. It is believed that this review paper will offer a top understanding and guidance on engineering future high-performance surface modified ROS scavenging nanomaterials for wide biomedical applications.


Subject(s)
Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL