Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Phys Chem Chem Phys ; 26(9): 7335-7342, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38363115

ABSTRACT

Carbon allotropes are widely used as anode materials in Li batteries, with graphite being commercially successful. However, the limited capacity and cycling stability of graphite impede further advancement and hinder the development of electric vehicles. Herein, through density functional theory (DFT) computations and ab initio molecular dynamics (AIMD) simulations, we proposed holey penta-hexagonal graphene (HPhG) as a potential anode material, achieved through active site designing. Due to the internal electron accumulation from the π-bond, HPhG follows a single-layer adsorption mechanism on each side of the nanosheet, enabling a high theoretical capacity of 1094 mA h g-1 without the risk of vertical dendrite growth. HPhG also exhibits a low open circuit voltage of 0.29 V and a low ion migration barrier of 0.32 eV. Notably, during the charge/discharge process, the lattice only expands slightly by 1.1%, indicating excellent structural stability. This work provides valuable insights into anode material design and presents HPhG as a promising two-dimensional material for energy storage applications.

2.
Phys Chem Chem Phys ; 25(5): 3695-3701, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36651804

ABSTRACT

The effects of halogen (F, Cl, Br, I, and At) doping in the direct-band-gap ß-Fe2O3 semiconductor on its band structures and electron-hole recombination have been investigated by density functional theory. Doping Br, I, and At in ß-Fe2O3 leads to transformation from a direct-band-gap semiconductor to an indirect-band-gap semiconductor because their atomic radii are too large; however, F- and Cl-doped ß-Fe2O3 remain as direct-band-gap semiconductors. Due to the deep impurity states of the F dopant, this study focuses on the effects of the Cl dopant on the band structures of ß-Fe2O3. Two impurity levels are introduced when Cl is doped into ß-Fe2O3, which narrows the band gap by approximately 0.3 eV. After doping Cl, the light-absorption edge of ß-Fe2O3 redshifts from 650 to 776 nm, indicating that its theoretical solar to hydrogen efficiency for solar water splitting increases from 20.6% to 31.4%. In addition, the effective mass of the holes in halogen-doped ß-Fe2O3 becomes significantly larger than that in undoped ß-Fe2O3, which may suppress electron-hole recombination.

3.
Nano Lett ; 22(11): 4475-4481, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35604434

ABSTRACT

The low NH3 yield rate is a grand challenge for electrocatalytic N2 reduction to NH3. Herein, we report the first uranium single-atom catalyst (SAC) capable of catalyzing the electrochemical N2 reduction reaction (NRR). The uranium SAC features a low limiting potential (<0.5 V) and near-zero free energy changes for N2 adsorption and NH3 desorption. The integration of these merits enables the uranium SAC to afford an unprecedentedly high NH3 yield rate, 3-4 orders of magnitude higher than that of the Ru(0001) surface, which is widely recognized as an excellent NRR electrocatalyst. Further theoretical analysis reveals that the N2 reduction catalyzed by the uranium SAC is synergistically regulated by the d and f electrons of atomic uranium. This work proposes a promising solution (that is, atomically dispersed uranium) to the daunting challenge associated with the low NH3 yield rate, thus enabling the scalable production of NH3 via electrochemical N2 reduction.

4.
J Am Chem Soc ; 144(25): 11120-11128, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35709383

ABSTRACT

Materials containing planar hypercoordinate motifs greatly enriched the fundamental understanding of chemical bonding. Herein, by means of first-principles calculations combined with global minimum search, we discovered the two-dimensional (2D) SrB8 monolayer, which has the highest planar coordination number (12) reported so far in extended periodic materials. In the SrB8 monolayer, bridged B8 units are forming the boron monolayer consisting of B12 rings, and the Sr atoms are embedded at the center of these B12 rings, leading to the Sr@B12 motifs. The SrB8 monolayer has good thermodynamic, kinetic, and thermal stabilities, which is attributed to the geometry fit between the size of the Sr atom and cavity of the B12 rings, as well as the electron transfer from Sr atoms to electron-deficient boron network. Placing the SrB8 monolayer on the Ag(001) surface shows good commensurability of the lattices and small vertical structure undulations, suggesting the feasibility of its experimental realization by epitaxial growth. Potential applications of the SrB8 monolayer on metal ions storage (for Li, Na, and K) are explored.

5.
Acc Chem Res ; 53(4): 887-895, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32223212

ABSTRACT

ConspectusAs one of the most important and versatile elements, carbon renders itself as one of the most fundamental and cutting-edge topics in chemistry, physics, and materials science. Many carbon-based chemical rules were established accordingly. While the tetrahedral predilection of tetracoordinate carbon has been a cornerstone of organic chemistry since 1874, almost a century later tetracoordinate carbon was found to be able to adopt planar structures known as planar tetracoordinate carbon (ptC), which are stabilized electronically by good π-acceptor (delocalization of a lone electron pair of ptC) or σ-donor (promoting electron transfer to electron-deficient bonding) substituents or mechanically by appropriate steric enforcement. The experimental and theoretical achievements for the rule-breaking ptC species totally refreshed our understanding of chemical bonding and triggered exploration of peculiar molecules featuring planar pentacoordinate carbon (ppC) and planar hexacoordinate carbon (phC) as well as other outlandish species such as planar hypercoordinate silicon.While the planar hypercoordinate carbon chemistry has been gradually established for molecules in the past five decades, there is growing interest in pursuing their extension systems, especially in two-dimensional (2D) space as a result of the recent extensive studies of graphene and its analogues. Though the natural 2D layered crystals do not contain any planar hypercoordinate carbon or silicon, several 2D nanosheets featuring planar or quasi-planar hypercoordinate ones have been theoretically suggested. Encouragingly, these unique planar configurations possess decent stabilities, and some of them are even the global minimum structure, exhibiting great potential for experimental realization. As the nature of a material is mainly determined by its structural characteristics (e.g., dimensionality, crystallography, and bonding), the combination of planar hypercoordinate chemistry and 2D nanoscience not only endows these rule-breaking systems with the merits of 2D materials but also may offer various promising properties and applications. For example, an unusual negative Poisson's ratio can be found in ppC-containing Be5C2 and planar pentacoordinate silicon (ppSi)-containing CaSi monolayers, of which the former has an anisotropic Dirac cone and the latter is a semiconductor with a desirable band gap for the semiconductor industry. Specially, shortly after the theoretical prediction, a planar hexacoordinate silicon (phSi)-containing Cu2Si monolayer was experimentally synthesized and characterized with the 2D Dirac nodal line fermion, which offers a platform to achieve high-speed, low-dissipation nanodevices.In this Account, we review the recent progress, mostly by density functional theory (DFT) computations, in designing 2D materials with planar hypercoordinate motifs. We describe the key achievements in this field, paying special attention to the "bottom-up" and "isoelectronic substitution" design strategies. In addition, the fundamental stabilization mechanisms of planar hypercoordinate motifs in an infinite layer are discussed. We hope that this Account will inspire more experimental and theoretical efforts to explore nanomaterials with such unconventional chemical bonding.

6.
Nanotechnology ; 32(48)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34348248

ABSTRACT

Recently, as a new representative of Heisenberg's two-dimensional (2D) ferromagnetic materials, 2D Cr2Ge2Te6(CGT), has attracted much attention due to its intrinsic ferromagnetism. Unfortunately, the Curie temperature (TC) of CGT monolayer is only 22 K, which greatly hampers the development of the applications based on the CGT materials. Herein, by means of density functional theory computations, we explored the electronic and magnetic properties of CGT monolayer under the applied strain. It is demonstrated that the band gap of CGT monolayer can be remarkably modulated by applying the tensile strain, which first increases and then decreases with the increase of tensile strain. In addition, the strain can increase the Curie temperature and magnetic moment, and thus largely enhance the ferromagnetism of CGT monolayer. Notably, the obvious enhancement ofTCby 191% can be achieved at 10% strain. These results demonstrate that strain engineering can not only tune the electronic properties, but also provide a promising avenue to improve the ferromagnetism of CGT monolayer. The remarkable electronic and magnetic response to biaxial strain can also facilitate the development of CGT-based spin devices.

7.
Phys Chem Chem Phys ; 23(38): 22078-22085, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34570850

ABSTRACT

The discovery of ferromagnetism in monolayer transition metal halides exemplified by CrI3 has opened a new avenue in the field of two-dimensional (2D) magnetic materials, and more such 2D materials are waiting to be explored. Herein, using an unbiased structure search combined with first-principles calculations, we have identified a novel CuCl2 monolayer, which exhibits not only intrinsic ferromagnetism but also auxetic mechanical properties originating from the interplay of lattice and Cu-Cl tetrahedron symmetries. The predicted Curie temperature of CuCl2 reaches ∼47 K, and its ferromagnetism is associated with the strong hybridization between the Cu 3d and Cl 3p states in the configuration. Moreover, upon biaxial tensile strain or carrier doping, the CuCl2 monolayer can be converted from ferromagnetic to non-magnetic and from half-metal to metal. These properties endow this CuCl2 monolayer with great potential for applications in auxetic/spintronic nanodevices.

8.
Phys Chem Chem Phys ; 23(23): 12958-12967, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34037024

ABSTRACT

The notorious polysulfide shuttle effect is a crucial factor responsible for the degradation of Li-S batteries. A good way to suppress the shuttle effect is to effectively anchor dissoluble lithium polysulfides (LPSs, Li2Sn) on appropriate substrates. Previous studies have revealed that Li of Li2Sn is prone to interact with the N of N-containing materials to form Li-N bonds. In this work, by means of density functional theory (DFT) computations, we explored the possibility to form Li bonds on ten different N-containing monolayers, including BN, C2N, C2N6S3, C9N4, a covalent triazine framework (CTF), g-C3N4, p-C3N4, C3N5, S-N2S, and T-N2S, by examining the adsorption behavior of Li2Sn (n = 1, 2, 3, 4, 6, 8) on these two-dimensional (2D) anchoring materials (AMs), and investigated the performance of the formed Li bonds (if any) in inhibiting the shuttle effect. By comparing and analyzing the nitrogen content, the N-containing pore size, charge transfer, and Li bonds, we found that the N content and N-containing pore size correlate with the number of Li bonds, and the formed Li-N bonds between LPSs and AMs correspond well with the adsorption energies of the LPSs. The C9N4 and C2N6S3 monolayers were identified as promising AMs in Li-S batteries. From the view of Li bonds, this work provides guidelines for designing 2D N-containing materials as anchoring materials to reduce the shuttle effect in Li-S batteries, and thus improving the performance of Li-S batteries.

9.
Phys Chem Chem Phys ; 23(6): 4030-4038, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33554982

ABSTRACT

By means of density functional theory (DFT) computations, we explored the potential of carbon- and nitrogen-doped Mo2P (CMP and NMP) layered materials as the representative of transition metal phosphides (TMPs) for the development of lithium-ion battery (LIB) anode materials, paying special attention to the synergistic effects of the dopants. Both CMP and NMP have exceptional stabilities and excellent electronic conductivity, and a high theoretical maximum storage capacity of ∼ 486 mA h g-1. Li-ion diffusion barriers on the two-dimensional (2D) CMP and NMP surfaces are extremely low (∼0.036 eV), and it is expected that on these 2D layers Li can diffuse 104 times faster than that on MoS2 and graphene at room temperature, and both monolayers have relatively low average open-circuit voltage (0.38 and 0.4 eV). All these exceptional properties make CMP and NMP monolayers as promising candidates for high-performance LIB anode materials, which also demonstrates that simple doping is an effective strategy to enhance the performance of anode materials in rechargeable batteries.

10.
Angew Chem Int Ed Engl ; 60(9): 4581-4587, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33274570

ABSTRACT

Carbonium ions are an important class of reaction intermediates, but their dynamic evolution is difficult to be monitored by in situ techniques under experimental conditions because of their extremely short lifetime. Probably the most famous case is 2-norbornyl cation (2NB+ ): its existing form (classical or non-classical) had been debated for decades, until the concrete proof of non-classical geometry was achieved by X-ray crystallographic characterization at ultra-low temperature (40 K) and super acidic environment. However, we lack the understanding about 2NB+ at ambient conditions. Herein, by taking advantage of the confinement effect and delocalized acidic environment of zeolites, we successfully stabilized 2NB+ and unequivocally confirmed its "non-classical" structure inside the ZSM-5 zeolite by ab initio molecular dynamics simulations and 13 C solid-state nuclear magnetic resonance experiments. It is the first time to in situ observe the non-classical 2NB+ without the super acidic environment at ambient temperature, which provides a new strategy to expand the carbocation chemistry.

11.
J Am Chem Soc ; 142(12): 5709-5721, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32068399

ABSTRACT

Developing efficient catalysts for nitrogen fixation is becoming increasingly important but is still challenging due to the lack of robust design criteria for tackling the activity and selectivity problems, especially for electrochemical nitrogen reduction reaction (NRR). Herein, by means of large-scale density functional theory (DFT) computations, we reported a descriptor-based design principle to explore the large composition space of two-dimensional (2D) biatom catalysts (BACs), namely, metal dimers supported on 2D expanded phthalocyanine (M2-Pc or MM'-Pc), toward the NRR at the acid conditions. We sampled both homonuclear (M2-Pc) and heteronuclear (MM'-Pc) BACs and constructed the activity map of BACs by using N2H* adsorption energy as the activity descriptor, which reduces the number of promising catalyst candidates from over 900 to less than 100. This strategy allowed us to readily identify 3 homonuclear and 28 heteronuclear BACs, which could break the metal-based activity benchmark toward the efficient NRR. Particularly, using the free energy difference of H* and N2H* as a selectivity descriptor, we screened out five systems, including Ti2-Pc, V2-Pc, TiV-Pc, VCr-Pc, and VTa-Pc, which exhibit a strong capability of suppressing the competitive hydrogen evolution reaction (HER) with favorable limiting potential of -0.75, -0.39, -0.74, -0.85, and -0.47 V, respectively. This work not only broadens the possibility of discovering more efficient BACs toward N2 fixation but also provides a feasible strategy for rational design of NRR electrocatalysts and helps pave the way to fast screening and design of efficient BACs for the NRR and other electrochemical reactions.


Subject(s)
Indoles/chemistry , Metals/chemistry , Nitrogen/chemistry , Catalysis , Density Functional Theory , Electrochemical Techniques , Isoindoles , Models, Chemical , Oxidation-Reduction
12.
Phys Chem Chem Phys ; 22(16): 8902-8912, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32289818

ABSTRACT

By means of density functional theory computations, we explored the electrochemical performance of an FeSe monolayer as an anode material for lithium and non-lithium ion batteries (LIBs and NLIBs). The electronic structure, adsorption, diffusion, and storage behavior of different metal atoms (M) in FeSe were systematically investigated. Our computations revealed that M adsorbed FeSe (M = Li, Na and K) systems show metallic characteristics that give rise to good electrical conductivity and mobility with low activation energies for diffusion (0.16, 0.13 and 0.11 eV for Li, Na, and K, respectively) of electrons and metal atoms in the materials, indicative of a fast charge/discharge rate. In addition, the theoretical capacities of the FeSe monolayer for Li, Na and K can reach up to 658, 473, and 315 mA h g-1, respectively, higher than that of commercial graphite (372 mA h g-1 for Li, 284 mA h g-1 for Na, and 273 mA h g-1 for K), and the average open-circuit voltage is moderate (0.38-0.88 V for Li, Na and K). All these characteristics suggest that the FeSe monolayer is a potential anode material for alkali-metal rechargeable batteries.

13.
Chem Soc Rev ; 47(3): 982-1021, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29210397

ABSTRACT

Phosphorene, an emerging two-dimensional material, has received considerable attention due to its layer-controlled direct bandgap, high carrier mobility, negative Poisson's ratio and unique in-plane anisotropy. As cousins of phosphorene, 2D group-VA arsenene, antimonene and bismuthene have also garnered tremendous interest due to their intriguing structures and fascinating electronic properties. 2D group-VA family members are opening up brand-new opportunities for their multifunctional applications encompassing electronics, optoelectronics, topological spintronics, thermoelectrics, sensors, Li- or Na-batteries. In this review, we extensively explore the latest theoretical and experimental progress made in the fundamental properties, fabrications and applications of 2D group-VA materials, and offer perspectives and challenges for the future of this emerging field.

14.
J Am Chem Soc ; 140(38): 12256-12262, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30169028

ABSTRACT

Direct production of H2 from photocatalytic water splitting is a potential solution to environmental pollution and energy crisis, and tremendous efforts have been made to seek efficient photocatalysts that can split pure water (pH = 7) under visible light irradiation. Herein, by means of systematic density functional theory (DFT) computations, we demonstrated that the two-dimensional (2D) PdSeO3 monolayer is a promising candidate. The mechanical exfoliation of PdSeO3 monolayer from its bulk phase is experimentally feasible due to the rather small cleavage energy of ∼0.42 J/m2. Remarkably, PdSeO3 monolayer is semiconducting with a moderate indirect band gap of 2.84 eV, and its valence and conduction bands perfectly engulf the redox potentials of water. In particular, water oxidation and hydrogen reduction half reactions can both occur readily on the different active sites of PdSeO3 monolayer under the potentials solely provided by photogenerated electrons and holes. As PdSeO3 monolayer also has rather pronounced optical absorption in the visible and ultraviolet regions of the solar spectrum, it could be utilized as a highly efficient photocatalyst for splitting pure water into H2 and O2 in a stoichiometric amount of 2:1 without using sacrificial reagents or cocatalysts.

15.
Chemistry ; 24(55): 14583-14597, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29774973

ABSTRACT

Originally, the concepts of aromaticity and antiaromaticity were introduced to explain the stability and reactivity of unsaturated organic compounds. Since then, they have been extended to other species with delocalized electrons including various saturated systems, organometallic compounds, and even inorganic clusters and molecules. In this Minireview, we focus on the most recent progress of using these concepts to guide experimental synthesis and rationalize geometrical and electronic structures of a particular family of polyanions composed of Group 14 and 15 elements, namely Zintl clusters.

16.
Chemistry ; 24(63): 16804-16813, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30133022

ABSTRACT

A copper(I) 3,5-diphenyltriazolate metal-organic framework (CuTz-1) was synthesized and extensively characterized by using a multi-technique approach. The combined results provided solid evidence that CuTz-1 features an unprecedented Cu5 tz6 cluster as the secondary building unit (SBU) with channels approximately 8.3 Šin diameter. This metal-organic framework (MOF) material, which is both thermally and chemically (basic and acidic) stable, exhibited semiconductivity and high photocatalytic activity towards the degradation of dyes in the presence of H2 O2 . Its catalytic performance was superior to that of reported MOFs and comparable to some composites, which has been attributed to its high efficiency in generating . OH, the most active species for the degradation of dyes. It is suggested that the photogenerated holes are trapped by CuI , which yields CuII , the latter of which behaves as a catalyst for a Fenton-like reaction to produce an excess amount of . OH in addition to that formed through the scavenging of photogenerated electrons by H2 O2 . Furthermore, it was shown that a dye mixture (methyl orange, methyl blue, methylene blue, and rhodamine B) could be totally decolorized by using CuTz-1 as a photocatalyst in the presence of H2 O2 under the irradiation of a Xe lamp or natural sunlight.

17.
Phys Chem Chem Phys ; 20(37): 24453-24464, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30221293

ABSTRACT

We performed a comprehensive first-principles study on the structural and electronic properties of ZnSe two-dimensional (2D) nanosheets and their derived one-dimensional (1D) nanoribbons (NRs) and nanotubes (NTs). Both hexagonal and tetragonal phases of ZnSe (h-ZnSe and t-ZnSe) were considered. The tetragonal phase is thermodynamically more favorable for 2D monolayers and 1D pristine ribbons, in contrast, the hexagonal phase is preferred for the edge-hydrogenated 1D NRs and NTs. The 2D h-ZnSe monolayer is a direct-bandgap semiconductor. Both the pristine zigzag nanoribbons (z-hNRs) and the corresponding edge-hydrogenated NRs gradually convert from the direct-bandgap semiconducting phase into a metallic phase as the ribbon width increases; the pristine armchair nanoribbons (a-hNRs) remain as semiconductors with indirect bandgaps with increasing ribbon width, and edge hydrogenating switches the indirect-bandgap feature to the direct-bandgap character or the metallic character with different edge passivation styles. The 1D h-ZnSe single-walled nanotubes in both armchair and zigzag forms keep the direct-bandgap semiconducting property of the 2D counterpart but with smaller band gaps. For the thermodynamically more favorable t-ZnSe monolayer, the intrinsic direct-bandgap semiconducting character is rather robust: the derived 1D nanoribbons with edges unsaturated or hydrogenated fully, and 1D single-walled nanotubes all preserve the direct-bandgap semiconducting feature. Our systemic study provides deep insights into the electronic properties of ZnSe-based nanomaterials and is helpful for experimentalists to design and fabricate ZnSe-based nanoelectronics.

18.
Phys Chem Chem Phys ; 20(36): 23500-23506, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30183022

ABSTRACT

Topological metals/semimetals (TMs) have emerged as a new frontier in the field of quantum materials. A few two-dimensional (2D) boron sheets have been suggested as Dirac materials, however, to date TMs made of three-dimensional (3D) boron structures have not been found. Herein, by means of systematic first principles computations, we discovered that a rather stable 3D boron allotrope, namely 3D-α' boron, is a nodal-chain semimetal. In momentum space, six nodal lines and rings contact each other and form a novel spindle nodal chain. This 3D-α' boron can be formed by stacking 2D wiggle α' boron sheets, which are also nodal-ring semimetals. In addition, our chemical bond analysis revealed that the topological properties of the 3D and 2D boron structures are related to the π bonds between boron atoms, however, the bonding characteristics are different from those in the 2D and 3D carbon structures.

19.
Nano Lett ; 17(6): 3434-3440, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28460176

ABSTRACT

Highly stable antimonene, as the cousin of phosphorene from group-VA, has opened up exciting realms in the two-dimensional (2D) materials family. However, pristine antimonene is an indirect band gap semiconductor, which greatly restricts its applications for optoelectronics devices. Identifying suitable materials, both responsive to incident photons and efficient for carrier transfer, is urgently needed for ultrathin devices. Herein, by means of first-principles computations we found that it is rather feasible to realize a new class of 2D materials with a direct bandgap and high carrier mobility, namely antimonene oxides with different content of oxygen. Moreover, these tunable direct bandgaps cover a wide range from 0 to 2.28 eV, which are crucial for solar cell and photodetector applications. Especially, the antimonene oxide (18Sb-18O) is a 2D topological insulator with a sizable global bandgap of 177 meV, which has a nontrivial Z2 topological invariant in the bulk and the topological states on the edge. Our findings not only introduce new vitality into 2D group-VA materials family and enrich available candidate materials in this field but also highlight the potential of these 2D semiconductors as appealing ultrathin materials for future flexible electronics and optoelectronics devices.

20.
J Am Chem Soc ; 139(36): 12480-12487, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28800702

ABSTRACT

The production of ammonia (NH3) from molecular dinitrogen (N2) under mild conditions is one of the most attractive and challenging processes in chemistry. Here by means of density functional theory (DFT) computations, we systematically investigated the potential of single transition metal atoms (Sc to Zn, Mo, Ru, Rh, Pd, and Ag) supported on the experimentally available defective boron nitride (TM-BN) monolayer with a boron monovacancy as a N2 fixation electrocatalyst. Our computations revealed that the single Mo atom supported by a defective BN nanosheet exhibits the highest catalytic activity for N2 fixation at room temperature through an enzymatic mechanism with a quite low overpotential of 0.19 V. The high spin-polarization, selective stabilization of N2H* species, or destabilizing NH2* species are responsible for the high activity of the Mo-embedded BN nanosheet for N2 fixation. This finding opens a new avenue of NH3 production by single-atom electrocatalysts under ambient conditions.

SELECTION OF CITATIONS
SEARCH DETAIL