Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Folia Biol (Praha) ; 70(1): 53-61, 2024.
Article in English | MEDLINE | ID: mdl-38830123

ABSTRACT

Psoriasis is a chronic non-contagious autoimmune disease. Gallic acid is a natural compound with potential health benefits, including antioxidant, anticancer, antiviral and antibacterial properties. Nevertheless, the influence of gallic acid on psoriasis has not been fully determined. This investigation aimed to discover the effect of gallic acid on psoriasis. Thirty-one pairs of psoriatic skin tissues and healthy adult human skin tissues were collected. Human keratinocytes (HaCaT cells) were transfected with interleukin 17A (IL-17A) to create the psoriatic keratinocyte model. The content of bromodomain-containing protein 4 (BRD4) microRNA was assessed using qRT-PCR testing. The content of BRD4 was detected by Western blotting. Cell migration was evaluated by conducting a wound healing assay. Cell proliferation was determined using an EdU assay. Apoptosis was detected by the TUNEL assay. The contents of interferon gamma (IFN-γ), IL-6, IL-8 and IL-17 were detected by ELISA. BRD4 was up-regulated in psoriatic skin tissues and in the IL-17A group compared to the healthy adult human skin tissues and the control group. Silencing BRD4 inhibited cell migration, proliferation and inflammatory response but induced apoptosis in IL-17A-treated HaCaT cells. Conversely, BRD4 over-expression promoted cell migration, proliferation and inflammatory response but suppressed apoptosis in IL-17A-treated HaCaT cells. Gallic acid repressed cell migration, proliferation and inflammatory response but indu-ced apoptosis in HaCaT cells transfected with IL-17A by down-regulating BRD4. Gallic acid represses cell migration, proliferation and inflammatory response but induces apoptosis in IL-17A-transfected HaCaT cells by down-regulating BRD4.


Subject(s)
Apoptosis , Cell Cycle Proteins , Cell Movement , Cell Proliferation , Gallic Acid , Inflammation , Keratinocytes , Psoriasis , Transcription Factors , Humans , Psoriasis/metabolism , Psoriasis/pathology , Psoriasis/drug therapy , Transcription Factors/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Gallic Acid/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Apoptosis/drug effects , Inflammation/pathology , Cell Proliferation/drug effects , Cell Movement/drug effects , Interleukin-17/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Adult , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Male , HaCaT Cells , Female , Gene Expression Regulation/drug effects , Cell Line , Bromodomain Containing Proteins
2.
Mol Pharm ; 20(11): 5579-5592, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37844208

ABSTRACT

Hypoxic tumor cell-derived exosomes play a key role in the occurrence, development, and metastasis of tumors. However, the mechanism of hypoxia-mediated metastasis remains unclear. In this study, hypoxic hepatocellular carcinoma cell (HCC-LM3)-derived exosomes (H-LM3-exos) were used to induce hepatocytes (HL-7702) over a long term (40 passages in 120 days). A nude mouse experiment further verified the effect of H-LM3-exos on tumor growth and metastasis. The process of cancer development in hepatocytes induced by H-LM3-exos was analyzed using both biological and physical techniques, and the results showed that the proliferation and soft agar growth abilities of the transformed cells were enhanced. The concentration of tumor markers secreted by transformed cells was increased, the cytoskeleton was disordered, and the migration ability was enhanced and was accompanied by epithelial-mesenchymal transition (EMT). Transcriptome results showed that differentially expressed genes between transformed cells and hepatocytes were enriched in cancer-related signaling pathways. The degree of cancer development in transformed cells was enhanced by an increase in H-LM3-exos-induced passages. Nude mice treated with different concentrations of H-LM3-exos showed different degrees of tumor growth and liver lesions. The physical properties of the cells were characterized by atomic force microscopy. Compared with the hepatocytes, the height and roughness of the transformed cells were increased, while the adhesion and elastic modulus were decreased. The changes in physical properties of primary tumor cells and hepatocytes in nude mice were consistent with this trend. Our study linking omics with the physical properties of cells provides a new direction for studying the mechanisms of cancer development and metastasis.


Subject(s)
Carcinoma, Hepatocellular , Exosomes , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Mice, Nude , Exosomes/metabolism , Cell Line, Tumor , Hepatocytes/metabolism , Hypoxia/metabolism
3.
Nanotechnology ; 34(24)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36805943

ABSTRACT

A cardiomyocyte is the basic structural and functional unit of the heart, which is the actual executor of the systolic function. The study of the contraction and relaxation characteristics of cardiomyocyte is of great significance to the physiological behavior and pathology of the heart. How to dynamically express its contraction and relaxation behaviors in 3D has become a challenging issue. Although the video analysis method under the optical microscope can observe the changes in the horizontal direction, it is difficult to describe the changes in the vertical direction. The atomic force microscope (AFM) can accurately express the mechanical and morphological characteristics of the changes in the vertical direction, but it cannot be fully expressed in real time because it is acquired by scanning with a single probe. In order to express the contraction and relaxation characteristics of cardiomyocyte accurately and three dimensionally, a dynamic imaging method in this study is proposed using the periodicity of AFM acquisition and the periodicity of cardiomyocyte contraction. Compared with the optical experiment, it is proven that this method can dynamically represent the contraction and relaxation processes of cardiomyocyte and solve the problem of how to express it in 3D. It brings a new way for the study of physiological characteristics of cardiomyocytes and dynamic imaging by AFM.


Subject(s)
Myocytes, Cardiac , Microscopy, Atomic Force/methods
4.
Int J Mol Sci ; 24(12)2023 Jun 18.
Article in English | MEDLINE | ID: mdl-37373450

ABSTRACT

Spikelet number per panicle (SNP) is one of the most important yield components in rice. Rice ENHANCING BIOMASS AND SPIKELET NUMBER (OsEBS), a gene involved in improved SNP and yield, has been cloned from an accession of Dongxiang wild rice. However, the mechanism of OsEBS increasing rice SNP is poorly understood. In this study, the RNA-Seq technology was used to analyze the transcriptome of wildtype Guichao 2 and OsEBS over-expression line B102 at the heading stage, and analysis of the evolution of OsEBS was also conducted. A total of 5369 differentially expressed genes (DEGs) were identified between Guichao2 and B102, most of which were down-regulated in B102. Analysis of the expression of endogenous hormone-related genes revealed that 63 auxin-related genes were significantly down-regulated in B102. Gene Ontogeny (GO) enrichment analysis showed that the 63 DEGs were mainly enriched in eight GO terms, including auxin-activated signaling pathway, auxin polar transport, auxin transport, basipetal auxin transport, and amino acid transmembrane transport, most of which were directly or indirectly related to polar auxin transport. Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis further verified that the down-regulated genes related to polar auxin transport had important effects on increased SNP. Analysis of the evolution of OsEBS found that OsEBS was involved in the differentiation of indica and japonica, and the differentiation of OsEBS supported the multi-origin model of rice domestication. Indica (XI) subspecies harbored higher nucleotide diversity than japonica (GJ) subspecies in the OsEBS region, and XI experienced strong balancing selection during evolution, while selection in GJ was neutral. The degree of genetic differentiation between GJ and Bas subspecies was the smallest, while it was the highest between GJ and Aus. Phylogenetic analysis of the Hsp70 family in O. sativa, Brachypodium distachyon, and Arabidopsis thaliana indicated that changes in the sequences of OsEBS were accelerated during evolution. Accelerated evolution and domain loss in OsEBS resulted in neofunctionalization. The results obtained from this study provide an important theoretical basis for high-yield rice breeding.


Subject(s)
Oryza , RNA-Seq , Oryza/genetics , Phylogeny , Plant Breeding , Gene Expression Profiling , Transcriptome
5.
Plant Cell Environ ; 45(2): 542-555, 2022 02.
Article in English | MEDLINE | ID: mdl-34866195

ABSTRACT

Clathrin-mediated vesicle trafficking (CMVT) is a fundamental process in all eukaryotic species, and indispensable to organism's growth and development. Recently, it has been suggested that CMVT also plays important roles in the regulation of plant immunity. However, the molecular link between CMVT and plant immunity is largely unknown. SCY1-LIKE2 (SCYL2) is evolutionally conserved among the eukaryote species. Loss-of-function of SCYL2 in Arabidopsis led to severe growth defects. Here, we show that mutation of OsSCYL2 in rice gave rise to a novel phenotype-hypersensitive response-like (HR) cell death in a light-dependent manner. Although mutants of OsSCYL2 showed additional defects in the photosynthetic system, they exhibited enhanced resistance to bacterial pathogens. Subcellular localisation showed that OsSCYL2 localized at Golgi, trans-Golgi network and prevacuolar compartment. OsSCYL2 interacted with OsSPL28, subunit of a clathrin-associated adaptor protein that is known to regulate HR-like cell death in rice. We further showed that OsSCYL2-OsSPL28 interaction is mediated by OsCHC1. Collectively, we characterized a novel component of the CMVT pathway in the regulation of plant immunity. Our work also revealed unidentified new functions of the very conserved SCYL2. It thus may provide new breeding targets to achieve both high yield and enhanced resistance in crops.


Subject(s)
Clathrin-Coated Vesicles/metabolism , Oryza/immunology , Plant Immunity/genetics , Plant Proteins/genetics , Oryza/genetics , Plant Proteins/metabolism
6.
Langmuir ; 38(39): 11994-12004, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36137186

ABSTRACT

For a long time, the potential application of gel-based ionic devices was limited by the problem of liquid leakage or evaporation. Here, we utilized amorphous, irreversible and reversible cross-linked polyTA (PTA) as a matrix and lithium bis(trifluoromethane sulfonamide) (LiTFSI) as an electrolyte to prepare a stretchable (495%) and self-healing (94%) solvent-free elastomeric ionic conductor. The liquid-free ionic elastomer can be used as a stable strain sensor to monitor human activities sensitively under extreme temperatures. Moreover, the prepared elastic conductor (TEOA0.10-PTA@LiTFSI) was also considered an electrode to assemble with self-designed repairable dielectric organosilicon layers (RD-PDMS) to develop a sustainable triboelectric nanogenerator (SU-TENG) with outstanding performance. SU-TENG maintained good working ability under extreme conditions (-20 °C, 60 °C, and 200% strain). This work provided a low-cost and simple idea for the development of reliable iontronic equipment for human-computer interaction, motion sensing, and sustainable energy.


Subject(s)
Elastomers , Lithium , Elasticity , Electrolytes , Humans , Ions , Sulfonamides
7.
Int J Mol Sci ; 21(4)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32070060

ABSTRACT

The acetohydroxyacid synthase (AHAS) is an essential enzyme involved in branched amino acids. Several herbicides wither weeds via inhibiting AHAS activity, and the AHAS mutants show tolerance to these herbicides. However, most AHAS mutations are residue substitutions but not residue deletion. Here, residue deletion was used to engineering the AHAS gene and herbicide-tolerant rice. Molecular docking analysis predicted that the W548 of the AHAS was a residue deletion to generate herbicide tolerance. The AHAS-ΔW548 protein was generated in vitro to remove the W548 residue. Interestingly, the deletion led to the tetramer dissociation of the AHAS, while this dissociation did not reduce the activity of the AHAS. Moreover, the W548 deletion contributed to multi-family herbicides tolerance. Specially, it conferred more tolerance to sulfometuron-methyl and bispyribac-sodium than the W548L substitution. Further analysis revealed that AHAS-ΔW548 had the best performance on the sulfometuron-methyl tolerance compared to the wild-type control. Over-expression of the AHAS-ΔW548 gene into rice led to the tolerance of multiple herbicides in the transgenic line. The T-DNA insertion and the herbicide treatment did not affect the agronomic traits and yields, while more branched-chain amino acids were detected in transgenic rice seeds. Residue deletion of W548 in the AHAS could be a useful strategy for engineering herbicide tolerant rice. The increase of branched-chain amino acids might improve the umami tastes of the rice.


Subject(s)
Acetolactate Synthase/genetics , Herbicide Resistance/genetics , Oryza/genetics , Plants, Genetically Modified/genetics , Gene Deletion , Gene Expression Regulation, Plant , Herbicides/adverse effects , Mutation/genetics , Oryza/drug effects , Plants, Genetically Modified/growth & development
8.
Can J Infect Dis Med Microbiol ; 2020: 1391698, 2020.
Article in English | MEDLINE | ID: mdl-32714477

ABSTRACT

BACKGROUND: Culture is still the gold standard for the detection of genital mycoplasma which could cause urogenital infections in humans. Mycoplasma IST2 is a commercial kit widely used for the detection of M. hominis and Ureaplasma species. Its accuracy was partially impaired because clinical specimens are usually mixed with purulent or transparent mucus. We aimed to solve this problem through sample homogenization by N-acetylcysteine (NAC) treatment. METHODS: Twenty-two endocervical swab samples were collected from 22 female patients with suspected mycoplasma infection, while 11 of these specimens were with purulent or transparent mucus. Mycoplasma IST2 testing kit was used for mycoplasma culture and AST for the control group and NAC-treated group. RESULTS: Genital mycoplasma was detected in 15 of 22 samples for both groups. The colony number in 6 out of 11 purulent specimens (54.5%) was more than 104 CFU/ml of genital mycoplasma for the NAC-treated group, while only one of 11 (9.1%) for the control group. For the nonpurulent specimens, no significant difference had been found in colony counting of genital mycoplasma between the control group and NAC-treated group (P > 0.05). The results of antimicrobial susceptibility testing for the NAC-treated group were highly similar to those for the control group. CONCLUSIONS: Our results demonstrate that NAC is helpful in sample homogenization and NAC treatment can improve the detection efficiency of mycoplasma with Mycoplasma IST2 testing.

9.
Int J Cancer ; 145(6): 1475-1483, 2019 09 15.
Article in English | MEDLINE | ID: mdl-30848477

ABSTRACT

Deregulation of cellular metabolism is well established in cancer. The mitochondria are dynamic organelles and act as the center stage for energy metabolism. Central to mitochondrial regulatory network is peroxisome proliferator-activated receptor γ coactivator 1a (PGC-1α), which serves as a master regulator of mitochondrial proliferation and metabolism. The activity and stability of PGC-1α are subject to dynamic and versatile posttranslational modifications including phosphorylation, ubiquitination, methylation and acetylation in response to metabolic stress and other environmental signals. In this review, we describe the structure of PGC-1α. Then, we discuss recent advances in the posttranslational regulatory machinery of PGC-1α, which affects its transcriptional activity, stability and organelle localization. Furthermore, we address the important roles of PGC-1α in tumorigenesis and malignancy. Finally, we also mention the clinical therapeutic potentials of PGC-1α modulators. A better understanding of the elegant function of PGC-1α in cancer progression could provide novel insights into therapeutic interventions through the targeting of PGC-1α signaling.


Subject(s)
Neoplasms/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Protein Processing, Post-Translational , Autophagy , Humans , Methylation , Mitochondria/metabolism , Mitophagy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/chemistry , Phosphorylation , Protein Conformation , Signal Transduction
10.
Mol Cancer ; 16(1): 76, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28399876

ABSTRACT

Cancer cells frequently display fundamentally altered cellular metabolism, which provides the biochemical foundation and directly contributes to tumorigenicity and malignancy. Rewiring of metabolic programmes, such as aerobic glycolysis and increased glutamine metabolism, are crucial for cancer cells to shed from a primary tumor, overcome the nutrient and energy deficit, and eventually survive and form metastases. However, the role of lipid metabolism that confers the aggressive properties of malignant cancers remains obscure. The present review is focused on key enzymes in lipid metabolism associated with metastatic disease pathogenesis. We also address the function of an important membrane structure-lipid raft in mediating tumor aggressive progression. We enumerate and integrate these recent findings into our current understanding of lipid metabolic reprogramming in cancer metastasis accompanied by new and exciting therapeutic implications.


Subject(s)
Lipid Metabolism , Neoplasms/metabolism , Neoplasms/pathology , Animals , Disease Progression , Humans , Hypoxia/metabolism , Membrane Microdomains/metabolism , Neoplasm Metastasis
11.
Zhongguo Zhong Yao Za Zhi ; 41(11): 2131-2136, 2016 Jun.
Article in Zh | MEDLINE | ID: mdl-28901112

ABSTRACT

To establish a method for the simultaneous determination of phloridzin, 3-hydroxy phloridzin and quercitrin in leaves of Malus halliana by ultrasonic-assisted ionic liquid coupled with RP-HPLC. An Agilent TC-C18 (4.6 mm×250 mm, 5 µm) column was used, with the mobile phase of acetonitrile and 1% phosphoric acid-water (20∶80) by gradient elution at the detection wavelength of 270 nm. The flow rate was 0.8 mL•min⁻¹, and chromatographic column temperature was controlled at the room temperature. Under the optimized conditions, the linear ranges for phloridzin, 3-hydroxy phloridzin and quercitrin were 0.9-112.5 µg (r = 0.999 6), 0.093 2-11.65 µg (r = 0.999 1) and 0.097 2-12.15 µg (r = 0.999 8), respectively. The average recoveries of the three constituents were 99.35%, 98.80% and 98.19%, respectively. The method was environmental friendly, rapid, accurate and highly reproducible, and so suitable for the quantitative analysis of phloridzin, 3-hydroxy phloridzin and quercitrin in leaves of M. halliana.


Subject(s)
Malus/chemistry , Phlorhizin/analysis , Quercetin/analogs & derivatives , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Ionic Liquids , Phytochemicals/analysis , Plant Leaves/chemistry , Quercetin/analysis
12.
Zhongguo Zhong Yao Za Zhi ; 41(10): 1773-1786, 2016 May.
Article in Zh | MEDLINE | ID: mdl-28895320

ABSTRACT

Consult literature, the chemical composition of the type of system Caesalpinia plants were summarized and discussed in detail its pharmacological effects. The genus contains major chemical components of high isoflavones, chalcones and diterpenoids, pharmacological effects inhibit melanin production, anti-inflammatory, antioxidant, antibacterial, immune regulation, and further research in this genus offer reference.


Subject(s)
Caesalpinia/chemistry , Chalcones/pharmacology , Diterpenes/pharmacology , Isoflavones/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry
13.
Zhongguo Zhong Yao Za Zhi ; 41(5): 845-849, 2016 Mar.
Article in Zh | MEDLINE | ID: mdl-28875637

ABSTRACT

To study the heating treatment of Angelica dahurica under different temperature and time conditions on the stability of coumarins and tyrosinase activity. HPLC method was used to determine the contents of imperatorin and isoimperatorin, and tyrosinase activity was assayed by measuring the oxidation rate of L-DOPA in vitro. After heated, the contents of imperatorin increased. Expect for being heated at 90 ℃ for 2 h, the content of isoimperatorin was higher than crude one. Before and after being heated, A. dahurica showed an activating effect on tyrosinase. In the same temperature and time conditions, the activation rate increased with the rise of concentration of tyrosinase extracts. Heating process for A. dahurica could change the contents of imperatorin and isoimperatorin, mainly increasing their concentrations.


Subject(s)
Angelica/chemistry , Coumarins/chemistry , Drugs, Chinese Herbal/chemistry , Monophenol Monooxygenase/chemistry , Plant Proteins/chemistry , Angelica/enzymology , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Coumarins/isolation & purification , Drug Stability , Drugs, Chinese Herbal/isolation & purification , Furocoumarins/chemistry , Hot Temperature
14.
Beijing Da Xue Xue Bao Yi Xue Ban ; 47(6): 990-3, 2015 Dec 18.
Article in Zh | MEDLINE | ID: mdl-26679663

ABSTRACT

OBJECTIVE: To find absorbable adhesives with suitable bonding properties for the absorbable polylactic acid root canal post. To test and compare the bond strengths of absorbable polylactic acid root canal post with three different adhesives. METHODS: The absorbable polylactic acid root canal posts were used to restore the extracted teeth, using 3 different adhesives: cyanoacrylates, fibrin sealant and glass ionomer cement. The teeth were prepared into slices for micro-push-out test. The bond strength was statistically analyzed using ANOVA. The specimens were examined using microscope and the failure mode was divided into four categories: cohesive failure between absorbable polylactic acid root canal posts and adhesives, cohesive failure between dentin and adhesives, failure within the adhesives and failure within the absorbable polylactic acid root canal posts. RESULTS: The bond strength of cyanoacrylates [(16.83 ± 6.97) MPa] and glass ionomer cement [(12.10 ± 5.09) MPa] were significantly higher than fibrin sealant [(1.17 ± 0.50) MPa], P<0.001. There was no significant difference between cyanoacrylates and glass ionomer cement (P=0.156). In the group of cyanoacrylates, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 25.0%, the cohesive failure between the dentin and the adhesives was 16.7%, the failure within the adhesives was 33.3%, and the failure within the absorbable polylactic acid root canal posts was 25.0%. In the group of fibrin sealant, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 66.7%, the cohesive failure between the dentin and the adhesives was 22.2%, the failure within the adhesives was 11.1%. In the group of glass ionomer cement, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 87.5%, the failure within the adhesives was 12.5%. The major failure mode in fibrin sealant and glass ionomer cement was the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives. No major failure modes were found in the group of cyanoacrylates. CONCLUSION: The bond strength of fibrin sealant is low, which cannot meet the requirement of clinical use. The bond strengths of cyanoacrylates and glass ionomer cement are suitable for clinical use. The cyanoacrylates are a kind of absorbable adhesive which has suitable bonding properties for the absorbable polylactic acid root canal post.


Subject(s)
Adhesives , Dentin-Bonding Agents , Post and Core Technique , Dental Bonding , Dental Pulp Cavity , Dentin , Glass Ionomer Cements , Humans , Lactic Acid , Materials Testing , Polyesters , Polymers , Root Canal Therapy
15.
Yi Chuan ; 37(9): 932-8, 2015 09.
Article in English | MEDLINE | ID: mdl-26399533

ABSTRACT

Gene expression profiling using microarray has contributed significantly to heterosis studies. Using the Affymetrix rice genome array, we investigated gene expression profiles in the flag leaves of the japonica hybrid rice Huayou14 and its parental cultivars Shen9A and Fan14 at the booting stage. A total of 2057 genes differentially expressed (fold change ≥2 or ≤0.5) between Huayou14 and its parents were identified. Functional classification of the differentially expressed genes by Gene Ontology (GO) analysis indicated the differentially expressed genes were significantly enriched in photosynthesis-related cellular component categories (e.g. photosystem Ⅰ, chloroplast membrane and chloroplast envelope), and biological process categories (e.g. chlorophyll catabolic, chlorophyll biosynthetic and carotenoid biosynthetic processes). These results suggest that the changes in the photosynthetic ability of the japonica hybrid rice Huayou14 may be related to heterosis. Metabolic pathway analysis indicated that differentially expressed genes were significantly enriched in photosynthesis-antenna proteins and starch and sucrose metabolic pathways, instead of photosynthesis and carbon fixation pathways as reported previously. These results suggest that different genes or metabolic pathways might contribute to the heterosis of different hybrid combinations.


Subject(s)
Gene Expression Profiling , Oligonucleotide Array Sequence Analysis/methods , Oryza/genetics , Gene Ontology , Photosynthesis , Plant Leaves/metabolism , Polymerase Chain Reaction
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(11): 3123-6, 2014 Nov.
Article in Zh | MEDLINE | ID: mdl-25752071

ABSTRACT

In the present paper, a new combined detection method was proposed using prompt gamma neutron activation analysis (PGNAA) and characteristic X-ray fluorescence to improve the heavy metals measurement accuracy for in-situ environmental water rejects analysis by PGNAA technology. Especially, the characteristic X-ray fluorescence (XRF) of heavy metals is induced by prompt gamma-ray directly instead of the traditional excitation sources. Thus, a combined measurement facility with an 241 AmBe neutron source, a BGO detector and a NaI-Be detector was developed to analyze the pollutants in water. The two detectors were respectively used to record prompt gamma-ray and characteristic X-ray fluorescence of heavy metals. The prompt gamma-ray intensity (I(γ)) and characteristic X-ray fluorescence intensity (I(x)) was determined by MCNP calculations for different concentration (c(i)) of chromium (Cr), cadmium (Cd), mercury (Hg) and lead (Pb), respectively. The simulation results showed that there was a good linear relationship between I(γ), I(x) and (c(i)), respectively. The empirical formula of combined detection method was given based on the above calculations. It was found that the combined detection method was more sensitive for high atomic number heavy metals like Hg and Pb measurement than low atomic number like Cr and Cd by comparing and analyzing I(γ) and I(x). The limits of detection for Hg and Pb by the combined measurement instrument were 17.4 and 24.2 mg x kg(-1), respectively.

17.
J Mater Chem B ; 12(23): 5734-5748, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38771222

ABSTRACT

Biomaterials with dual functions of osteoimmunomodulation and bone repair are very promising in the field of orthopedic materials. For this purpose, we prepared copper-based carbon dots (CuCDs) and doped them into oxychondroitin sulfate/poly-acrylamide hydrogel (OPAM) to obtain a hybrid hydrogel (CuCDs/OPAM). We evaluated its osteoimmunomodulatory and bone repair properties in vitro and in vivo. The obtained CuCDs/OPAM exhibited good rBMSCs-cytocompatibility and anti-inflammatory properties in vitro. It also could effectively promote rBMSCs differentiation and the expression of osteogenic differentiation factors from rBMSCs under an inflammatory environment. Moreover, CuCDs/OPAM could induce macrophage phenotype switching (from M1-type macrophages to M2-type macrophages) in vivo, which is beneficial for anti-inflammatory action and presents good osteoimmunomodulation capability to induce a bone immune microenvironment to promote the differentiation of rBMSCs. In conclusion, CuCDs/OPAM hydrogel has dual functions of osteoimmunomodulatory and bone repair and is a promising bone filling and repair material.


Subject(s)
Bone Regeneration , Carbon , Copper , Hydrogels , Osteogenesis , Osteogenesis/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Bone Regeneration/drug effects , Carbon/chemistry , Carbon/pharmacology , Animals , Copper/chemistry , Copper/pharmacology , Cell Differentiation/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Quantum Dots/chemistry , Mice , Cells, Cultured , Macrophages/drug effects , Macrophages/cytology
18.
J Mater Chem B ; 12(14): 3417-3435, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38525920

ABSTRACT

Due to the increasing aging population and the advancements in transcatheter aortic valve replacement (TAVR), the use of bioprosthetic heart valves (BHVs) in patients diagnosed with valvular disease has increased substantially. Commercially available glutaraldehyde (GA) cross-linked biological valves suffer from reduced durability due to a combination of factors, including the high cell toxicity of GA, subacute thrombus, inflammation and calcification. In this study, oxidized chondroitin sulfate (OCS), a natural polysaccharide derivative, was used to replace GA to cross-link decellularized bovine pericardium (DBP), carrying out the first crosslinking of DBP to obtain OCS-BP. Subsequently, the zwitterion radical copolymerization system was introduced in situ to perform double cross-linking to obtain double crosslinked BHVs with biomimetic modification (P(APM/MPC)-OCS-BP). P(APM/MPC)-OCS-BP presented enhanced mechanical properties, collagen stability and enzymatic degradation resistance due to double crosslinking. The ex vivo AV-shunt assay and coagulation factors test suggested that P(APM/MPC)-OCS-BP exhibited excellent anticoagulant and antithrombotic properties due to the introduction of P(APM/MPC). P(APM/MPC)-OCS-BP also showed good HUVEC-cytocompatibility due to the substantial reduction of its residual aldehyde group. The subcutaneous implantation also demonstrated that P(APM/MPC)-OCS-BP showed a weak inflammatory response due to the anti-inflammatory effect of OCS. Finally, in vivo and in vitro results revealed that P(APM/MPC)-OCS-BP exhibited an excellent anti-calcification property. In a word, this simple cooperative crosslinking strategy provides a novel solution to obtain BHVs with good mechanical properties, and HUVEC-cytocompatibility, anti-coagulation, anti-inflammatory and anti-calcification properties. It might be a promising alternative to GA-fixed BP and exhibited good prospects in clinical applications.


Subject(s)
Calcinosis , Heart Valve Prosthesis , Humans , Animals , Cattle , Aged , Chondroitin Sulfates/pharmacology , Cross-Linking Reagents/pharmacology , Heart Valves , Glutaral , Anti-Inflammatory Agents/pharmacology , Pericardium
19.
Plants (Basel) ; 13(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38337993

ABSTRACT

Temperature determines biochar structure during pyrolysis. However, differences in holding time and feedstock types may affect this relationship. The conditional process analysis model was used in this paper to investigate the potential to affect this mechanism. The branch and leaf parts of Taxodium ascendens were separately pyrolyzed at 350, 450, 650, and 750 °C, and kept for 0.5, 1, and 2 h at each target temperature. We measured the fixed carbon and ash contents and the elemental composition (C, H, O and N) of the raw materials and their char samples. After plotting a Van Krevelen (VK) diagram to determine the aromatization of chars, the changes in the functional groups were analyzed using Fourier transform infrared (FTIR), Raman, and X-ray photoelectron spectroscopy (XPS). The results revealed that pyrolysis at temperatures between 450 and 750 °C accounted for the aromatization of biochar because the atomic H/C ratio of branch-based chars (BC) decreased from 0.53-0.59 to 0.15-0.18, and the ratio of leaf-based chars (LC) decreased from 0.56-0.68 to 0.20-0.22; the atomic O/C ratio of BC decreased from 0.22-0.27 to 0.08-0.11, while that of LC decreased from 0.26-0.28 to 0.18-0.21. Moreover, the average contents of N (1.89%) and ash (13%) in LC were evidently greater than that in BC (N:0.62%; Ash: 4%). Therefore, BC was superior to LC in terms of the stability of biochar. In addition, the increasing ID/IG and ID/I(DR+GL) ratios in BC and LC indicated an increasing amount of the amorphous aromatic carbon structure with medium-sized (2~6 rings) fused benzene rings. According to the CPA analysis, an extension of the holding time significantly enhanced the increase in aromatic structures of LC with temperature. But this extension slightly reduced the growth in aromatic structures of BC. All indicate that holding time and feedstock types (branch or leaf feedstock) could significantly affect the variation in biochar aromatic structure with respect to temperature.

20.
Mater Horiz ; 11(8): 1889-1898, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38372122

ABSTRACT

Developing reliable solid sorbents for efficient capture and removal of trace sulfur dioxide (SO2) under ambient conditions is critical for industrial desulfurization operations, but poses a great challenge. Herein, we focus on SNFSIX-Cu-TPA, a highly stable fluorinated MOF that utilizes SnF62- as pillars, for effectively capturing SO2 at extremely low pressures. The exceptional affinity of SNFSIX-Cu-TPA towards SO2 over CO2 and N2 was demonstrated through single-component isotherms and corroborated by computational simulations. At 298 K and 0.002 bar, this material displays a remarkable gas uptake of 2.22 mmol g-1. Among various anion fluorinated MOFs, SNFSIX-Cu-TPA shows the highest SO2/MF62- of 1.39 mmol mmol-1 and exhibits a low Qst of 58.81 kJ mol-1. Additionally, SNFSIX-Cu-TPA displays excellent potential for SO2/CO2 separation, as evidenced by its ideal adsorbed solution theory (IAST) selectivity of 148 at a molar fraction of SO2 of 0.01. Dynamic breakthrough curves were obtained to reveal the effective removal of trace SO2 from simulated flue gas (SO2/CO2/N2; v/v/v 0.2/10/89.8) with a high dynamic capacity of up to 1.52 mmol g-1. Furthermore, in situ TGA demonstrated the efficient and reversible capture of 500 ppm SO2 over 20 adsorption-desorption tests. This durable material presents a rare combination of exceptional SO2 capturing performance, good adsorption selectivity, and mild regeneration, thus making it a good candidate for a realistic desulfurization process.

SELECTION OF CITATIONS
SEARCH DETAIL