Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
Add more filters

Publication year range
1.
Development ; 150(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36786332

ABSTRACT

Precise genome manipulation in specific cell types and subtypes in vivo is crucial for neurobiological research because of the cellular heterogeneity of the brain. Site-specific recombinase systems in the mouse, such as Cre-loxP, improve cell type-specific genome manipulation; however, undesirable expression of cell type-specific Cre can occur. This could be due to transient expression during early development, natural expression in more than one cell type, kinetics of recombinases, sensitivity of the Cre reporter, and disruption in cis-regulatory elements by transgene insertion. Moreover, cell subtypes cannot be distinguished in cell type-specific Cre mice. To address these issues, we applied an intersectional genetic approach in mouse using triple recombination systems (Cre-loxP, Flp-FRT and Dre-rox). As a proof of principle, we labelled heterogeneous cell subtypes and deleted target genes within given cell subtypes by labelling neuropeptide Y (NPY)-, calretinin (calbindin 2) (CR)- and cholecystokinin (CCK)-expressing GABAergic neurons in the brain followed by deletion of RNA-binding Fox-1 homolog 3 (Rbfox3) in our engineered mice. Together, our study applies an intersectional genetic approach in vivo to generate engineered mice serving dual purposes of simultaneous cell subtype-specific labelling and gene knockout.


Subject(s)
Integrases , Recombinases , Mice , Animals , Gene Knockout Techniques , Integrases/metabolism , Recombinases/genetics , Recombinases/metabolism , Transgenes , Brain/metabolism , Mice, Transgenic
2.
Mol Psychiatry ; 29(9): 2774-2786, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38575807

ABSTRACT

Subtype 5 metabotropic glutamate receptors (mGlu5) are known to play an important role in regulating cognitive, social and valence systems. However, it remains largely unknown at which circuits and neuronal types mGlu5 act to influence these behavioral domains. Altered tissue- or cell-specific expression or function of mGlu5 has been proposed to contribute to the exacerbation of neuropsychiatric disorders. Here, we examined how these receptors regulate the activity of somatostatin-expressing (SST+) neurons, as well as their influence on behavior and brain rhythmic activity. Loss of mGlu5 in SST+ neurons elicited excitatory synaptic dysfunction in a region and sex-specific manner together with a range of emotional imbalances including diminished social novelty preference, reduced anxiety-like behavior and decreased freezing during retrieval of fear memories. In addition, the absence of mGlu5 in SST+ neurons during fear processing impaired theta frequency oscillatory activity in the medial prefrontal cortex and ventral hippocampus. These findings reveal a critical role of mGlu5 in controlling SST+ neurons excitability necessary for regulating negative emotional states.


Subject(s)
Emotions , Fear , Neurons , Receptor, Metabotropic Glutamate 5 , Somatostatin , Animals , Receptor, Metabotropic Glutamate 5/metabolism , Somatostatin/metabolism , Neurons/metabolism , Fear/physiology , Male , Emotions/physiology , Female , Mice , Prefrontal Cortex/metabolism , Hippocampus/metabolism , Mice, Inbred C57BL , Anxiety/metabolism , Anxiety/physiopathology
3.
Proc Natl Acad Sci U S A ; 119(33): e2203632119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35951651

ABSTRACT

Epilepsy is a common neurological disorder, which has been linked to mutations or deletions of RNA binding protein, fox-1 homolog (Caenorhabditis elegans) 3 (RBFOX3)/NeuN, a neuronal splicing regulator. However, the mechanism of seizure mediation by RBFOX3 remains unknown. Here, we show that mice with deletion of Rbfox3 in gamma-aminobutyric acid (GABA) ergic neurons exhibit spontaneous seizures and high premature mortality due to increased presynaptic release, postsynaptic potential, neuronal excitability, and synaptic transmission in hippocampal dentate gyrus granule cells (DGGCs). Attenuating early excitatory gamma-aminobutyric acid (GABA) action by administering bumetanide, an inhibitor of early GABA depolarization, rescued premature mortality. Rbfox3 deletion reduced hippocampal expression of vesicle-associated membrane protein 1 (VAMP1), a GABAergic neuron-specific presynaptic protein. Postnatal restoration of VAMP1 rescued premature mortality and neuronal excitability in DGGCs. Furthermore, Rbfox3 deletion in GABAergic neurons showed fewer neuropeptide Y (NPY)-expressing GABAergic neurons. In addition, deletion of Rbfox3 in NPY-expressing GABAergic neurons lowered intrinsic excitability and increased seizure susceptibility. Our results establish RBFOX3 as a critical regulator and possible treatment path for epilepsy.


Subject(s)
DNA-Binding Proteins , GABAergic Neurons , Nerve Tissue Proteins , Neuropeptide Y , Seizures , Vesicle-Associated Membrane Protein 1 , Animals , Bumetanide/pharmacology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dentate Gyrus/metabolism , GABA Antagonists/pharmacology , GABAergic Neurons/metabolism , Gene Deletion , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuropeptide Y/metabolism , Seizures/genetics , Seizures/metabolism , Vesicle-Associated Membrane Protein 1/genetics , Vesicle-Associated Membrane Protein 1/metabolism , gamma-Aminobutyric Acid/metabolism
4.
J Cell Mol Med ; 28(17): e70049, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39219013

ABSTRACT

The significance of anterior cruciate ligament (ACL) remnants during reconstruction remains unclear. Co-culturing ACL remnant cells and bone marrow stromal cells (BMSCs) may reduce apoptosis and enhance hamstring tendon activity. This study investigated whether extracellular vesicles (EVs), which facilitate cell-cell interactions, act as the active components, improving graft maturation in this co-culture. The effects of EVs on cell viability, proliferation, migration and gene expression in the rabbit ACL remnant cells and BMSCs were assessed using control (BMSC-only culture), co-culture (ACL remnant cells and BMSCs, CM) and co-culture without EVs (CM ∆ EVs) media. EVs were isolated from control (BMSC-EV) and co-culture (CM-EV) media and characterized. CM significantly enhanced the proliferation, migration and expression of transforming growth factor (TGF-ß)-, vascular endothelial growth factor (VEGF)-, collagen synthesis- and tenogenesis-related genes. However, CM-induced effects were reversed by the CM ∆ EVs treatment. CM-EV treatment exhibited higher potential to enhance proliferation, migration and gene expression in the ACL remnant cells and BMSCs than BMSC-EV and non-EV treatments. In conclusion, EVs, secreted under the coexistence of ACL remnant cells and BMSCs, primarily increase the cell viability, proliferation, migration and gene expression of collagen synthesis-, TGF-ß-, VEGF- and tenogenesis-related genes in both cell types.


Subject(s)
Anterior Cruciate Ligament , Cell Movement , Cell Proliferation , Cell Survival , Coculture Techniques , Extracellular Vesicles , Mesenchymal Stem Cells , Extracellular Vesicles/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Rabbits , Anterior Cruciate Ligament/cytology , Anterior Cruciate Ligament/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cells, Cultured , Gene Expression Regulation , Cell Communication , Transforming Growth Factor beta/metabolism , Male
5.
Small ; 20(1): e2304502, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37649185

ABSTRACT

Reduced graphene oxide (rGO) has garnered extensive attention as electrodes, sensors, and membranes, necessitating the efficient reduction of graphene oxide (GO) for optimal performance. In this work, a swift reduction of GO that involves bringing GO foam in contact with semi-molten metals like tin (Sn) and lithium (Li) is presented. These findings reveal that the electrical resistance of GO foam is significantly diminished by its interaction with these metals, even in dry air. Taking inspiration from this technique, Sn foil is employed to encase the GO foam, followed by a calcination in 15 vol% H2 /Ar environment at 235 °C to fabricate the rGO, which demonstrates a remarkably lower electrical resistivity of 0.42 Ω cm when compared to the chemically reduced GO via hydrazine hydrate (650 Ω cm). The reduction mechanism entails the migration of Sn on GO and its subsequent reaction with oxygen functional groups. SnO/Sn(OH)2 formed from the reaction can be subsequently reversed through reduction by H2 to Sn. Utilizing this rGO as the host material for a sulfur cathode, a lithium-sulfur battery is constructed that displays a specific capacity of 1146 mAh g-1 and maintains a capacity retention of 68.4% after 300 cycles at a rate of 0.2 C.

6.
Transgenic Res ; 33(4): 195-210, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39105946

ABSTRACT

Ethylene response factors have been shown to be involved in the effects of plant developmental processes and to regulate stress tolerance. The aim of this study was to recognize the regulatory mechanisms of ethylene response factors on tobacco plant height. In this study, a gene-edited mutant (ERF10-KO) and wild type (WT) were utilized as experimental materials. Transcriptome and metabolome analyses were used to investigate the regulatory mechanism of NtERF10 gene editing on plant height in tobacco. Here, through the analysis of differentially expressed genes (DEGs), 2051 genes were upregulated and 1965 genes were downregulated. We characterized the different ERF10-KO and WT plant heights and identified key genes for photosynthesis, the plant hormone signal transduction pathway and the terpene biosynthesis pathway. NtERF10 was found to affect the growth and development of tobacco by regulating the expression levels of the PSAA, PSBA, GLY17 and GGP3 genes. Amino acid metabolism was analyzed by combining analyses of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs). In addition, we found that members of the bHLH, NAC, MYB, and WRKY transcription factor families have vital roles in regulating plant height. This study not only provides important insights into the positive regulation of the ethylene response factor NtERF10 on plant height during plant growth and development but also provides new research ideas for tobacco molecular breeding.


Subject(s)
Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Transcription Factors , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Ethylenes/metabolism , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Transcriptome
7.
Neurochem Res ; 49(3): 597-616, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37978153

ABSTRACT

Neuroinflammation is assumed as the critical pathophysiologic mechanism of white matter lesions (WMLs), and infiltrated peripheral monocyte-derived macrophages are implicated in the development of neuroinflammation. This study sought to explore the blood molecules that promote the migration of peripheral monocytes to the sites of WMLs. The serum protein expression profiles of patients and Sprague-Dawley rat models with WMLs were detected by data-independent acquisition (DIA) proteomics technique. Compared with corresponding control groups, we acquired 62 and 41 differentially expressed proteins (DEPs) in the serum of patients and model rats with WMLs respectively. Bioinformatics investigations demonstrated that these DEPs were linked to various Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms involved in neuroinflammation. Afterward, we identified thrombin-activatable fibrinolysis inhibitor (TAFI) as a shared and overexpressed protein in clinical and animal serum samples, which was further verified by enzyme-linked immunosorbent assay. Additionally, an upregulation of TAFI was also observed in the white matter of rat models, and the inhibition of TAFI impeded the migration of peripheral monocytes to the area of WMLs. In vitro experiments suggested that TAFI could enhance the migration ability of RAW264.7 cells and increase the expression of Ccr2. Our study demonstrates that neuroinflammatory signals can be detected in the peripheral blood of WMLs patients and model rats. TAFI may serve as a potential protein that promotes the migration of peripheral monocytes to WMLs regions, thereby providing a novel molecular target for further investigation into the interaction between the central and peripheral immune systems.


Subject(s)
Carboxypeptidase B2 , White Matter , Humans , Rats , Animals , Fibrinolysis/physiology , Carboxypeptidase B2/genetics , Carboxypeptidase B2/metabolism , Neuroinflammatory Diseases , Monocytes/metabolism , Proteomics , White Matter/metabolism , Rats, Sprague-Dawley , Thrombin/metabolism , Thrombin/pharmacology
8.
Neurochem Res ; 49(3): 744-757, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38102341

ABSTRACT

White matter lesions (WMLs) resulting from chronic cerebral hypoperfusion (CCH) are the leading cause of vascular dementia (VaD). This study aimed to investigate whether dipyridamole could alleviate WMLs by regulating the phenotype of disease-associated microglia (DAM) through equilibrative nucleoside transporter 2 (ENT2) and adenosine A2A receptor (Adora2a) and to clarify the underlying molecular mechanisms. CCH rat models were constructed to mimic VaD. Morris water maze and Luxol Fast Blue staining were employed to assess cognitive function and quantify the severity of WMLs, respectively. Immunofluorescent staining was performed to analyze the activation of glial cells and the phenotypic transformation of DAM. Additionally, levels of ENT2, proteins in the NF-κB and ERK1/2 pathways and inflammatory cytokines were detected. The results indicated that dipyridamole diminished the activation and proliferation of microglia and astrocytes, increased the expression of myelin basic protein and ameliorated WMLs and cognitive decline in CCH rats. Further study revealed that dipyridamole decreased the expression of ENT2 and inhibited the activation of ERK1/2 and NF-κB signaling pathways, which ultimately converted DAM to anti-inflammatory phenotype and suppressed the levels of TNF-α, IL-1ß, IL-6 in WMLs. However, Adora2a inhibitor (SCH58261) attenuated above effects. Our study demonstrates that dipyridamole facilitates the conversion of DAM to the anti-inflammatory phenotype through ENT2/Adora2a pathway and inhibits the activation of ERK1/2 and NF-κB signaling pathways, thereby alleviating neuroinflammation in WMLs. The current findings establish the basis for using dipyridamole to treat VaD.


Subject(s)
Brain Ischemia , Nervous System Diseases , White Matter , Rats , Animals , Microglia/metabolism , NF-kappa B/metabolism , White Matter/metabolism , Dipyridamole/pharmacology , Dipyridamole/therapeutic use , Dipyridamole/metabolism , Brain Ischemia/metabolism , Nervous System Diseases/metabolism , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal
9.
Neurochem Res ; 49(10): 2821-2841, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39012534

ABSTRACT

Vascular dementia (VaD) causes progressive cognitive decline in the elderly population, but there is short of available therapeutic measures. Microglia-mediated neuroinflammation is vigorously involved in the pathogenesis of VaD, but the traditional classification of microglial M1/M2 phenotypes remains restrictive and controversial. This study aims to investigate whether microglia transform into novel subtypes in VaD. Chronic cerebral hypoperfusion (CCH) rat model was constructed to mimic VaD. Microglia were isolated via magnetic-activated cell sorting and analyzed by single-cell RNA sequencing (scRNA-seq) and bioinformatics. The findings inferred from scRNA-seq and bioinformatics were further validated through in vivo experiments. In this study, microglia were divided into eight clusters. The proportion of MG5 cluster was significantly increased in the white matter of the CCH group compared with the Sham group and was named chronic ischemia-associated microglia (CIAM). Immunity- and inflammation-related genes, including RT1-Db1, RT1-Da, RT1-Ba, Cd74, Spp1, C3, and Cd68, were markedly upregulated in CIAM. Enrichment analysis illustrated that CIAM possessed the function of evoking neuroinflammation. Further studies unveiled that Cd74 is associated with the most abundant GO terms involved in inflammation as well as cell proliferation and differentiation. In addition, microglia-specific Cd74 knockdown mediated by adeno-associated virus decreased the abundance of CIAM in the white matter, thereby mitigating inflammatory cytokine levels, alleviating white matter lesions, and improving cognitive impairment for CCH rats. These findings indicate that Cd74 is the core molecule of CIAM to trigger neuroinflammation and induce microglial differentiation to CIAM, suggesting that Cd74 may be a potential therapeutic target for VaD.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Histocompatibility Antigens Class II , Microglia , White Matter , Animals , Microglia/metabolism , Microglia/pathology , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , White Matter/pathology , White Matter/metabolism , Male , Rats , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Single-Cell Analysis , Rats, Sprague-Dawley , Brain Ischemia/metabolism , Brain Ischemia/pathology , Inflammation/metabolism , Inflammation/pathology , Sequence Analysis, RNA/methods , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Dementia, Vascular/metabolism , Dementia, Vascular/pathology , Dementia, Vascular/genetics
10.
Fish Shellfish Immunol ; 150: 109648, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777253

ABSTRACT

Laminin receptor (LR), which mediating cell adhesion to the extracellular matrix, plays a crucial role in cell signaling and regulatory functions. In the present study, a laminin receptor gene (SpLR) was cloned and characterized from the mud crab (Scylla paramamosain). The full length of SpLR contained an open reading frame (ORF) of 960 bp encoding 319 amino acids, a 5' untranslated region (UTR) of 66 bp and a 3' UTR of 49 bp. The predicted protein comprised two Ribosomal-S2 domains and a 40S-SA-C domain. The mRNA of SpLR was highly expressed in the gill, followed by the hepatopancreas. The expression of SpLR was up-regulated after mud crab dicistrovirus-1(MCDV-1) infection. Knocking down SpLR in vivo by RNA interference significantly down-regulated the expression of the immune genes SpJAK, SpSTAT, SpToll1, SpALF1 and SpALF5. This study shown that the expression level of SpToll1 and SpCAM in SpLR-interfered group significantly increased after MCDV-1 infection. Moreover, silencing of SpLR in vivo decreased the MCDV-1 replication and increased the survival rate of mud crabs after MCDV-1 infection. These findings collectively suggest a pivotal role for SpLR in the mud crab's response to MCDV-1 infection. By influencing the expression of critical innate immune factors and impacting viral replication dynamics, SpLR emerges as a key player in the intricate host-pathogen interaction, providing valuable insights into the molecular mechanisms underlying MCDV-1 pathogenesis in mud crabs.


Subject(s)
Amino Acid Sequence , Arthropod Proteins , Brachyura , Gene Expression Regulation , Immunity, Innate , Phylogeny , Receptors, Laminin , Sequence Alignment , Animals , Brachyura/genetics , Brachyura/immunology , Receptors, Laminin/genetics , Receptors, Laminin/immunology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Sequence Alignment/veterinary , Gene Expression Profiling/veterinary , Base Sequence
11.
Fish Shellfish Immunol ; 154: 109872, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244075

ABSTRACT

Scylla paramamosain, an economically significant crab, is widely cultivated worldwide. In recent years, S. paramamosain has faced a serious threat from viral diseases due to the expansion of culture scale and increased culture density. Among these, mud crab dicistrovirus-1 (MCDV-1) stands out as highly pathogenic, presenting substantial challenges to the healthy development of mud crab aquaculture. Therefore, a comprehensive understanding of the mud crab immune response to MCDV-1 infection is imperative for devising effective disease prevention strategies. In this study, transcriptomic analyses were conducted on the hepatopancreas of mud crabs infected with MCDV-1. The findings revealed a total of 5139 differentially expressed genes (DEGs) between healthy and MCDV-1 infected mud crabs, including 3327 upregulated and 1812 downregulated DEGs. Further analysis showed that mud crabs resist MCDV-1 infection by activating humoral immune-related pathways, including the MAPK signaling pathway, MAPK signaling pathway-fly, and Toll and Imd signaling pathway. In contrast, MCDV-1 infection triggers host metabolic disorders. Several immune-related vitamin metabolism pathways (ascorbate and aldarate metabolism, retinol metabolism, and nicotinate and nicotinamide metabolism) were significantly inhibited, which may create favorable conditions for the virus's self-replication. Notably, endocytosis emerged as significantly upregulated both in GO terms and KEGG pathways, with several viral endocytosis-related pathways showing significant activation. PPI network analysis identified 9 hub genes associated with viral endocytosis within the endocytosis. Subsequent GeneMANIA analysis confirmed the association of these hub genes with viral endocytosis. Both transcriptome data and qPCR analysis revealed a significant upregulation of these hub genes post MCDV-1 infection, suggesting MCDV-1 may use viral endocytosis to enter cells and facilitate replication. This study represents the first comprehensive report on the transcriptomic profile of mud crab hepatopancreas response to MCDV-1 infection. Future investigations should focus on elucidating the mechanisms through which MCDV-1 enters cells via endocytosis, as this may holds critical implications for the development of vaccine targets.

12.
Inorg Chem ; 63(8): 3859-3869, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38335061

ABSTRACT

During the PUREX process, the separation between U(VI) and Pu(IV) is achieved by reducing Pu(IV) to Pu(III), which is complicated and energy-consuming. To address this issue, we report here the first case of separation of U(VI) from Pu(IV) by o-phenanthroline diamide ligands under high acidity. Two new o-phenanthroline diamide ligands (1,10-phenanthroline-2,9-diyl)bis(indolin-1-ylmethanone) (L1) and (1,10-phenanthroline-2,9-diyl)bis((2-methylindolin-1-yl)methanone) (L2) were synthesized, which can effectively separate U(VI) from Pu(IV) even at 4 mol/L HNO3. The highest separation factor of U(VI) and Pu(IV) can reach over 1000, setting a new record for the separation of U(VI) from Pu(IV) under high acidity. Furthermore, extracted U(VI) can be easily recovered with water or dilute nitric acid, and the extraction performance remains stable even after 150 kGy gamma irradiation, which provides solid experimental support for potential engineering applications. The results of UV-vis titration and single-crystal X-ray diffraction measurements show that the 1:1 complex formed by L1 with U(VI) is more stable than all of the previously reported phenanthroline ligands, which reasonably reveals that the ligand L1 designed in this work has excellent affinity for U(VI). The findings of this work promise to contribute to the facilitation of the PUREX process by avoiding the use of reducing agents. It also provides new clues for designing ligands to achieve efficient separation between U(VI) and Pu(IV) at high acidity.

13.
Acta Pharmacol Sin ; 45(9): 1964-1977, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38698214

ABSTRACT

The retinoic acid receptor-related orphan receptor γ (RORγ) is regarded as an attractive therapeutic target for the treatment of prostate cancer. Herein, we report the identification, optimization, and evaluation of 1,2,3,4-tetrahydroquinoline derivatives as novel RORγ inverse agonists, starting from high throughput screening using a thermal stability shift assay (TSA). The representative compounds 13e (designated as XY039) and 14a (designated as XY077) effectively inhibited the RORγ transcriptional activity and exhibited excellent selectivity against other nuclear receptor subtypes. The structural basis for their inhibitory potency was elucidated through the crystallographic study of RORγ LBD complex with 13e. Both 13e and 14a demonstrated reasonable antiproliferative activity, potently inhibited colony formation and the expression of AR, AR regulated genes, and other oncogene in AR positive prostate cancer cell lines. Moreover, 13e and 14a effectively suppressed tumor growth in a 22Rv1 xenograft tumor model in mice. This work provides new and valuable lead compounds for further development of drugs against prostate cancer.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Nuclear Receptor Subfamily 1, Group F, Member 3 , Prostatic Neoplasms , Quinolines , Male , Animals , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Quinolines/pharmacology , Quinolines/chemistry , Quinolines/therapeutic use , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Structure-Activity Relationship , Drug Inverse Agonism , Mice , Mice, Nude , Drug Discovery , Xenograft Model Antitumor Assays , Mice, Inbred BALB C
14.
Ecotoxicol Environ Saf ; 280: 116538, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833980

ABSTRACT

Methamphetamine (Meth) is a potent psychostimulant with well-established hepatotoxicity. Gut microbiota-derived short-chain fatty acids (SCFAs) have been reported to yield beneficial effects on the liver. In this study, we aim to further reveal the mechanisms of Meth-induced hepatic injuries and investigate the potential protective effects of SCFAs. Herein, mice were intraperitoneally injected with 15 mg/kg Meth to induce hepatic injuries. The composition of fecal microbiota and SCFAs was profiled using 16 S rRNA sequencing and Gas Chromatography/Mass Spectrometry (GC/MS) analysis, respectively. Subsequently, SCFAs supplementation was performed to evaluate the protective effects against hepatic injuries. Additionally, Sigma-1 receptor knockout (S1R-/-) mice and fluvoxamine (Flu), an agonist of S1R, were introduced to investigate the mechanisms underlying the protective effects of SCFAs. Our results showed that Meth activated S1R and induced hepatic autophagy, inflammation, and oxidative stress by stimulating the MAPK/ERK pathway. Meanwhile, Meth disrupted SCFAs product-related microbiota, leading to a reduction in fecal SCFAs (especially Acetic acid and Propanoic acid). Accompanied by the optimization of gut microbiota, SCFAs supplementation normalized S1R expression and ameliorated Meth-induced hepatic injuries by repressing the MAPK/ERK pathway. Effectively, S1R knockout repressed Meth-induced activation of the MAPK/ERK pathway and further ameliorated hepatic injuries. Finally, the overexpression of S1R stimulated the MAPK/ERK pathway and yielded comparable adverse phenotypes to Meth administration. These findings suggest that Meth-induced hepatic injuries relied on the activation of S1R, which could be alleviated by SCFAs supplementation. Our study confirms the crucial role of S1R in Meth-induced hepatic injuries for the first time and provides a potential preemptive therapy.


Subject(s)
Chemical and Drug Induced Liver Injury , Fatty Acids, Volatile , Gastrointestinal Microbiome , Methamphetamine , Receptors, sigma , Sigma-1 Receptor , Animals , Male , Mice , Chemical and Drug Induced Liver Injury/prevention & control , Fatty Acids, Volatile/metabolism , Feces/chemistry , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Liver/drug effects , Liver/metabolism , Methamphetamine/toxicity , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/drug effects , Receptors, sigma/metabolism
15.
J Formos Med Assoc ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38438298

ABSTRACT

PURPOSE: Carotid artery web (CaW) is a rare focal fibromuscular dysplasia that can lead to embolic strokes with large vessel occlusion. This condition can be effectively treated with endovascular thrombectomy (EVT). Our study aims to assess the prevalence of CaW among patients with acute ischemic stroke (AIS) who underwent EVT and to compare the clinical characteristics of CaW with other carotid artery pathologies. METHODS: We enrolled consecutive patients with AIS who underwent EVT at a single medical center and two regional teaching hospitals in Taiwan from September 2014 to December 2021. We compared CaW with carotid dissection (CaD) and carotid large artery atherosclerosis (CaLAA) in terms of patient demographics and thrombus histological findings. RESULTS: Of the 576 AIS patients who underwent EVT, four (mean age: 50 years) were diagnosed with CaW, resulting in a prevalence of 0.69%. Among these four patients, three experienced successful reperfusion after EVT and achieved functional independence (defined as a modified Rankin Scale score ≤2) three months post-stroke. Importantly, none of the CaW patients suffered a recurrent stroke within one year. Patients with CaW were younger than those with CaD or CaLAA, and exhibited fewer vascular risk factors. Additionally, CaW was associated with distal occlusion sites. The thrombus composition in CaW patients was similar to that in CaD patients. CONCLUSIONS: In conclusion, CaW is a rare finding among Asian patients with carotid artery disease who undergo for AIS. It is more prevalent in younger patients with a limited number of vascular risk factors.

16.
J Formos Med Assoc ; 123(1): 7-15, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37690868

ABSTRACT

Melanoma is rare in Taiwan. Asian melanoma is distinct from Western melanoma because acral and mucosal melanoma accounts for the majority of melanoma cases, leading to distinct tumor behaviors and genetic profiling. With consideration of the clinical guidelines in Western countries, Taiwanese experts developed a local clinical practice consensus guideline. This consensus includes diagnosis, staging, and surgical and systemic treatment, based only on clinical evidence, local epidemiology, and available resources evaluated by experts in Taiwan. This consensus emphasizes the importance of surgical management, particularly for sentinel lymph node biopsies. In addition, molecular testing for BRAF is mandatory for patients before systemic treatment. Furthermore, immunotherapy and targeted therapy are prioritized for systemic treatment. This consensus aimed to assist clinicians in Taiwan in diagnosing and treating patients according to available evidence.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/diagnosis , Melanoma/therapy , Skin Neoplasms/diagnosis , Skin Neoplasms/therapy , Skin Neoplasms/genetics , Taiwan , Immunotherapy , Consensus
17.
Small ; 19(36): e2300286, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37162459

ABSTRACT

Lithium-sulfur (Li-S) battery has been considered as a strong contender for commercial aerospace battery, but the commercialization requires Ah-level pouch cells with both efficient discharge at high rates and ultra-high energy density. In this paper, the application of lithium-sulfur batteries for powering drones by using the cathode of highly dispersed sulfur nanoparticles with well-controlled particle sizes have been realized. The sulfur nanoparticles are prepared by a precipitation method in an eco-friendly and efficient way, and loaded on graphene oxide-cetyltrimethylammonium bromide by molecular grafting to realize a large-scale fabrication of sulfur-based cathodes with superior electrochemical performance. A button cell based on the cathode exhibits an excellent discharge capacity of 62.8 mAh cm-2 at a high sulfur loading of 60 mg cm-2 (i.e., 1046.7 mAh g-1 ). The assembled miniature pouch cell (PCmini) shows a discharge capacity of 130 mAh g-1 , while the formed Ah-level pouch cell (PCAh) achieves energy density of 307 Wh kg-1 at 0.3C and 92 Wh kg-1 at 4C. Especially, a four-axis propeller drone powered by the PC has successfully completed a long flight (>3 min) at high altitudes, demonstrating the practical applicability as aviation batteries.

18.
J Synchrotron Radiat ; 30(Pt 6): 1135-1142, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37850562

ABSTRACT

Synchrotron radiation can be used as a light source in X-ray microscopy to acquire a high-resolution image of a microscale object for tomography. However, numerous projections must be captured for a high-quality tomographic image to be reconstructed; thus, image acquisition is time consuming. Such dense imaging is not only expensive and time consuming but also results in the target receiving a large dose of radiation. To resolve these problems, sparse acquisition techniques have been proposed; however, the generated images often have many artefacts and are noisy. In this study, a deep-learning-based approach is proposed for the tomographic reconstruction of sparse-view projections that are acquired with a synchrotron light source; this approach proceeds as follows. A convolutional neural network (CNN) is used to first interpolate sparse X-ray projections and then synthesize a sufficiently large set of images to produce a sinogram. After the sinogram is constructed, a second CNN is used for error correction. In experiments, this method successfully produced high-quality tomography images from sparse-view projections for two data sets comprising Drosophila and mouse tomography images. However, the initial results for the smaller mouse data set were poor; therefore, transfer learning was used to apply the Drosophila model to the mouse data set, greatly improving the quality of the reconstructed sinogram. The method could be used to achieve high-quality tomography while reducing the radiation dose to imaging subjects and the imaging time and cost.

19.
Opt Express ; 31(23): 37843-37860, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017905

ABSTRACT

In this study we present an investigation of electrically tunable progressive lenses utilizing liquid crystals (LC). We introduce a polarized progressive LC lens capable of dynamically adjusting its focal length, functioning as either a positive or negative lens. Our findings reveal that the spatial distribution of lens power within the progressive LC lens, ranging from +4D to -3D, far surpassing the range of -0.87D to +0.87D which one may expect within the parabolic wavefront approximation. For a lens with a 30 mm aperture a total tunable range is 7.6 D (from +5.6D to -2D) which is 4.75 times larger than the traditional parabolic prediction∼1.6D (from +0.8D to -0.8D). This study not only challenges conventional limitations set by optical phase differences in gradient-index LC lenses (the power law) but also ushers in a new possibility for ophthalmic applications. The profound insights and outcomes presented in this paper redefine the landscape of LC lenses, paving the way for transformative advancements in optics and beyond.

20.
Soft Matter ; 19(26): 4880-4890, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37335556

ABSTRACT

Potassium ions (K+) play crucial roles in many biological processes. Abnormal K+ levels in the body are usually associated with physiological disorders or diseases, and thus, developing K+-sensitive sensors/devices is of great importance for disease diagnosis and health monitoring. Herein, we report a K+-sensitive photonic crystal hydrogel (PCH) sensor with bright structural colors for efficient monitoring of serum potassium. This PCH sensor consists of a poly(acrylamide-co-N-isopropylacrylamide-co-benzo-15-crown-5-acrylamide) (PANBC) smart hydrogel with embedded Fe3O4 colloidal photonic crystals (CPCs), which could strongly diffract visible light and endow the hydrogel with brilliant structural colors. The rich 15-crown-5 (15C5) units appended on the polymer backbone could selectively bind K+ ions to form stable 2 : 1 [15C5]2/K+ supramolecular complexes. These bis-bidentate complexes served as physical crosslinkers to crosslink the hydrogel and contracted its volume, and thus reduced the lattice spacing of Fe3O4 CPCs and blue-shifted the light diffraction, and finally reported on the K+ concentrations by a color change of the PCH. Our fabricated PCH sensor possessed high K+ selectivity and pH- and thermo-sensitive response performances to K+. Most interestingly, the K+-responding PANBC PCH sensor could be conveniently regenerated via simple alternate flushing with hot/cold water due to the excellent thermosensitivity of the introduced PNIPAM moieties into the hydrogel. Such a PCH sensor provides a simple, low-cost and efficient strategy for visualized monitoring of hyperkalemia/hypokalemia, which will significantly promote the development of biosensors.


Subject(s)
Hydrogels , Hyperkalemia , Hypokalemia , Hyperkalemia/diagnosis , Hypokalemia/diagnosis , Potassium , Optics and Photonics
SELECTION OF CITATIONS
SEARCH DETAIL