Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant J ; 100(4): 706-719, 2019 11.
Article in English | MEDLINE | ID: mdl-31323156

ABSTRACT

Phytoplasmas are bacterial plant pathogens which can induce severe symptoms including dwarfism, phyllody and virescence in an infected plant. Because phytoplasmas infect many important crops such as peanut and papaya they have caused serious agricultural losses. The phytoplasmal effector causing phyllody 1 (PHYL1) is an important phytoplasmal pathogenic factor which affects the biological function of MADS transcription factors by interacting with their K (keratin-like) domain, thus resulting in abnormal plant developments such as phyllody. Until now, lack of information on the structure of PHYL1 has prevented a detailed understanding of the binding mechanism between PHYL1 and the MADS transcription factors. Here, we present the crystal structure of PHYL1 from peanut witches'-broom phytoplasma (PHYL1PnWB ). This protein was found to fold into a unique α-helical hairpin with exposed hydrophobic residues on its surface that may play an important role in its biological function. Using proteomics approaches, we propose a binding mode of PHYL1PnWB with the K domain of the MADS transcription factor SEPALLATA3 (SEP3_K) and identify the residues of PHYL1PnWB that are important for this interaction. Furthermore, using surface plasmon resonance we measure the binding strength of PHYL1PnWB proteins to SEP3_K. Lastly, based on confocal images, we found that α-helix 2 of PHYL1PnWB plays an important role in PHYL1-mediated degradation of SEP3. Taken together, these results provide a structural understanding of the specific binding mechanism between PHYL1PnWB and SEP3_K.


Subject(s)
Bacterial Proteins/chemistry , MADS Domain Proteins/metabolism , Phytoplasma/chemistry , Plant Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cross-Linking Reagents/chemistry , Crystallography, X-Ray , Host-Pathogen Interactions/physiology , Hydrophobic and Hydrophilic Interactions , MADS Domain Proteins/chemistry , MADS Domain Proteins/genetics , Multiprotein Complexes/chemistry , Mutation , Phytoplasma/pathogenicity , Plant Diseases/microbiology , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Interaction Domains and Motifs
2.
IUCrJ ; 11(Pt 3): 384-394, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38656311

ABSTRACT

Immunodominant membrane protein (IMP) is a prevalent membrane protein in phytoplasma and has been confirmed to be an F-actin-binding protein. However, the intricate molecular mechanisms that govern the function of IMP require further elucidation. In this study, the X-ray crystallographic structure of IMP was determined and insights into its interaction with plant actin are provided. A comparative analysis with other proteins demonstrates that IMP shares structural homology with talin rod domain-containing protein 1 (TLNRD1), which also functions as an F-actin-binding protein. Subsequent molecular-docking studies of IMP and F-actin reveal that they possess complementary surfaces, suggesting a stable interaction. The low potential energy and high confidence score of the IMP-F-actin binding model indicate stable binding. Additionally, by employing immunoprecipitation and mass spectrometry, it was discovered that IMP serves as an interaction partner for the phytoplasmal effector causing phyllody 1 (PHYL1). It was then shown that both IMP and PHYL1 are highly expressed in the S2 stage of peanut witches' broom phytoplasma-infected Catharanthus roseus. The association between IMP and PHYL1 is substantiated through in vivo immunoprecipitation, an in vitro cross-linking assay and molecular-docking analysis. Collectively, these findings expand the current understanding of IMP interactions and enhance the comprehension of the interaction of IMP with plant F-actin. They also unveil a novel interaction pathway that may influence phytoplasma pathogenicity and host plant responses related to PHYL1. This discovery could pave the way for the development of new strategies to overcome phytoplasma-related plant diseases.


Subject(s)
Phytoplasma , Phytoplasma/chemistry , Crystallography, X-Ray , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Actins/metabolism , Actins/chemistry , Plant Diseases/microbiology , Catharanthus/microbiology , Catharanthus/immunology , Molecular Docking Simulation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL