Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 826
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 20(6): e1012355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935808

ABSTRACT

Stress granules (SGs), formed by untranslated messenger ribonucleoproteins (mRNPs) during cellular stress in eukaryotes, have been linked to flavivirus interference without clear understanding. This study reveals the role of Zika virus (ZIKV) NS2B as a scaffold protein mediating interaction between protein phosphatase 1α (PP1α) and eukaryotic initiation factor 2α (eIF2α). This interaction promotes eIF2α dephosphorylation by PP1α, inhibiting SG formation. The NS2B-PP1α complex exhibits remarkable stability, resisting ubiquitin-induced degradation and amplifying eIF2α dephosphorylation, thus promoting ZIKV replication. In contrast, the NS2BV35A mutant, interacting exclusively with eIF2α, fails to inhibit SG formation, resulting in reduced viral replication and diminished impact on brain organoid growth. These findings reveal PP1α's dual role in ZIKV infection, inducing interferon production as an antiviral factor and suppressing SG formation as a viral promoter. Moreover, we found that NS2B also serves as a versatile mechanism employed by flaviviruses to counter host antiviral defenses, primarily by broadly inhibiting SG formation. This research advances our comprehension of the complex interplay in flavivirus-host interactions, offering potential for innovative therapeutic strategies against flavivirus infections.


Subject(s)
Eukaryotic Initiation Factor-2 , Protein Phosphatase 1 , Stress Granules , Viral Nonstructural Proteins , Virus Replication , Zika Virus Infection , Zika Virus , Zika Virus/physiology , Virus Replication/physiology , Humans , Zika Virus Infection/virology , Zika Virus Infection/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Protein Phosphatase 1/metabolism , Eukaryotic Initiation Factor-2/metabolism , Stress Granules/metabolism , Animals
2.
Proc Natl Acad Sci U S A ; 120(7): e2215423120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745780

ABSTRACT

Due to the ubiquitous nature of language in the environment of infants, how it affects the anatomical structure of the brain language system over the lifespan is not well understood. In this study, we investigated the effects of early language experience on the adult brain by examining anatomical features of individuals born deaf with typical or restricted language experience in early childhood. Twenty-two deaf adults whose primary language was American Sign Language and were first immersed in it at ages ranging from birth to 14 y participated. The control group was 21 hearing non-signers. We acquired T1-weighted magnetic resonance images and used FreeSurfer [B. Fischl, Neuroimage 62, 774-781(2012)] to reconstruct the brain surface. Using an a priori regions of interest (ROI) approach, we identified 17 language and 19 somatomotor ROIs in each hemisphere from the Human Connectome Project parcellation map [M. F. Glasser et al., Nature 536, 171-178 (2016)]. Restricted language experience in early childhood was associated with negative changes in adjusted grey matter volume and/or cortical thickness in bilateral fronto-temporal regions. No evidence of anatomical differences was observed in any of these regions when deaf signers with infant sign language experience were compared with hearing speakers with infant spoken language experience, showing that the effects of early language experience on the brain language system are supramodal.


Subject(s)
Deafness , Child, Preschool , Humans , Adult , Deafness/pathology , Brain/diagnostic imaging , Brain/pathology , Language , Hearing , Sign Language
3.
Arterioscler Thromb Vasc Biol ; 44(4): 898-914, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38328934

ABSTRACT

BACKGROUND: Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular disease, the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a contractile to a synthetic phenotype characterized by an increased proliferation, migration, production of ECM (extracellular matrix) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of cardiovascular disease, including coronary artery disease, stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies. METHODS: Using human aortic SMCs from 123 multiancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted liquid chromatography-tandem mass spectrometry-based proteomic analysis of the conditioned media. RESULTS: We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 (latent-transforming growth factor beta-binding protein 1) in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. CONCLUSIONS: Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Humans , Cardiovascular Diseases/metabolism , Genome-Wide Association Study , Proteomics , Muscle, Smooth, Vascular/metabolism , Aorta/metabolism , Atherosclerosis/pathology , Myocytes, Smooth Muscle/metabolism , Cells, Cultured
4.
Nature ; 574(7780): 722-725, 2019 10.
Article in English | MEDLINE | ID: mdl-31645759

ABSTRACT

The enzyme protochlorophyllide oxidoreductase (POR) catalyses a light-dependent step in chlorophyll biosynthesis that is essential to photosynthesis and, ultimately, all life on Earth1-3. POR, which is one of three known light-dependent enzymes4,5, catalyses reduction of the photosensitizer and substrate protochlorophyllide to form the pigment chlorophyllide. Despite its biological importance, the structural basis for POR photocatalysis has remained unknown. Here we report crystal structures of cyanobacterial PORs from Thermosynechococcus elongatus and Synechocystis sp. in their free forms, and in complex with the nicotinamide coenzyme. Our structural models and simulations of the ternary protochlorophyllide-NADPH-POR complex identify multiple interactions in the POR active site that are important for protochlorophyllide binding, photosensitization and photochemical conversion to chlorophyllide. We demonstrate the importance of active-site architecture and protochlorophyllide structure in driving POR photochemistry in experiments using POR variants and protochlorophyllide analogues. These studies reveal how the POR active site facilitates light-driven reduction of protochlorophyllide by localized hydride transfer from NADPH and long-range proton transfer along structurally defined proton-transfer pathways.


Subject(s)
Chlorophyll/biosynthesis , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Synechococcus/enzymology , Synechocystis/enzymology , Catalysis , Chlorophyll/chemistry , Molecular Structure , Photochemistry , Protochlorophyllide/metabolism , Structure-Activity Relationship , Substrate Specificity
5.
J Neurosci ; 43(18): 3219-3231, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37001993

ABSTRACT

The mechanoelectrical transduction (MET) protein complex in the inner-ear hair cells is essential for hearing and balance perception. Calcium and integrin-binding protein 2 (CIB2) has been reported to be a component of MET complex, and loss of CIB2 completely abolishes MET currents in auditory hair cells, causing profound congenital hearing loss. However, loss of CIB2 does not affect MET currents in vestibular hair cells (VHCs) as well as general balance function. Here, we show that CIB2 and CIB3 act redundantly to regulate MET in VHCs, as MET currents are completely abolished in the VHCs of Cib2/Cib3 double knock-out mice of either sex. Furthermore, we show that Cib2 and Cib3 transcripts have complementary expression patterns in the vestibular maculae, and that they play different roles in stereocilia maintenance in VHCs. Cib2 transcripts are highly expressed in the striolar region, and knock-out of Cib2 affects stereocilia maintenance in striolar VHCs. In contrast, Cib3 transcripts are highly expressed in the extrastriolar region, and knock-out of Cib3 mainly affects stereocilia maintenance in extrastriolar VHCs. Simultaneous knock-out of Cib2 and Cib3 affects stereocilia maintenance in all VHCs and leads to severe balance deficits. Taken together, our present work reveals that CIB2 and CIB3 are important for stereocilia maintenance as well as MET in mouse VHCs.SIGNIFICANCE STATEMENT Calcium and integrin-binding protein 2 (CIB2) is an important component of mechanoelectrical transduction (MET) complex, and loss of CIB2 completely abolishes MET in auditory hair cells. However, MET is unaffected in Cib2 knock-out vestibular hair cells (VHCs). In the present work, we show that CIB3 could compensate for the loss of CIB2 in VHCs, and Cib2/Cib3 double knock-out completely abolishes MET in VHCs. Interestingly, CIB2 and CIB3 could also regulate VHC stereocilia maintenance in a nonredundant way. Cib2 and Cib3 transcripts are highly expressed in the striolar and extrastriolar regions, respectively. Stereocilia maintenance and balance function are differently affected in Cib2 or Cib3 knock-out mice. In conclusion, our data suggest that CIB2 and CIB3 are important for stereocilia maintenance and MET in mouse VHCs.


Subject(s)
Hair Cells, Vestibular , Animals , Mice , Calcium/metabolism , Hair Cells, Vestibular/metabolism , Integrins , Mice, Knockout , Stereocilia/metabolism
6.
Neurobiol Dis ; 200: 106606, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019292

ABSTRACT

The gut microbiota produces metabolites that enrich the host metabolome and play a part in host physiology, including brain functions. Yet the biological mediators of this gut-brain signal transduction remain largely unknown. In this study, the possible role of the gut microbiota metabolite indole, originating from tryptophan, was investigated. Oral administration of indole to simulate microbial overproduction of this compound in the gut consistently led to impaired locomotion and anxiety-like behaviour in both C3H/HeN and C57BL/6J mice. By employing c-Fos protein expression mapping in mice, we observed a noticeable increase in brain activation within the dorsal motor nucleus of the vagus nerve (DMX) and the locus coeruleus (LC) regions in a dose-dependent manner. Further immune co-labelling experiments elucidated that the primary cells activated within the LC were tyrosine hydroxylase positive. To delve deeper into the mechanistic aspects, we conducted chemogenetic activation experiments on LC norepinephrine neurons with two doses of clozapine N-oxide (CNO). Low dose of CNO at 0.5 mg/kg induced no change in locomotion but anxiety-like behaviour, while high dose of CNO at 2 mg/kg resulted in locomotion impairment and anxiety-like behaviour. These findings support the neuroactive roles of indole in mediating gut-brain communication. It also highlights the LC as a novel hub in the gut-brain axis, encouraging further investigations.

7.
J Gene Med ; 26(1): e3582, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37727011

ABSTRACT

BACKGROUND: There are large differences in clinical manifestations and biological markers between elderly patients with rheumatoid arthritis (EPRA, age >60) and younger patients with RA (YPRA, age ≤60), partly owing to variations in the immune system of different age groups. Here, we focused on the changes of immune cell infiltration in YPRA and EPRA. METHODS: The R packages "ssGSEA" and "GSEA" were used to identify the changes in immune cell infiltration and immune-related pathways between the two groups. The R packages "WGCNA" and "DEseq2" were used to screen and verify age-related differentially expressed genes (DEGs). Hub genes were identified using Cytoscape and cytoHubba. Spearman correlation coefficient was conducted to evaluate correlations between hub age-related genes and immune cells. RESULTS: Compared with 54 established YPRA, several immune cells and immune-related pathways were markedly decreased in 29 EPRA synovial tissues. Moreover, 78 age-related DEGs related to amino acid and glycosphingolipid synthesis and metabolism were identified. USP2 and ARG2 were verified to be upregulated in EPRA, signifying that these two genes could effectively distinguish YPRA and EPRA and have potential as biomarkers. In addition, we found that USP2 was significantly negatively correlated with B cells and monocytes, while there was a significant negative association between ARG2 and T cells. CONCLUSIONS: In conclusion, this study is the first to systematically analyze changes in immune cell infiltration between YPRA and EPRA patients and obtain hub age-related genes, which may provide the basis for illuminating the pathogenesis of EPRA and informing treatment strategies.


Subject(s)
Arthritis, Rheumatoid , Aged , Humans , Amino Acids , Arthritis, Rheumatoid/genetics , B-Lymphocytes , Computational Biology , Synovial Membrane , Ubiquitin Thiolesterase
8.
Small ; : e2311649, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552254

ABSTRACT

X-ray detection and imaging are widely used in medical diagnosis, product inspection, security monitoring, etc. Large-scale polycrystalline perovskite thick films possess high potential for direct X-ray imaging. However, the notorious problems of baseline drift and high detection limit caused by ions migration are still remained. Here, ion migration is reduced by incorporating 2D perovskite into 3D perovskite, thereby increasing the ion activation energy. This approach hinders ion migration within the perovskite film, consequently suppressing baseline drift and reducing the lowest detection limit(LOD) of the device. As a result, the baseline drifting declines by 20 times and the LOD reduces to 21.1 nGy s-1, while the device maintains a satisfactory sensitivity of 5.6 × 103 µC Gy-1 cm-2. This work provides a new strategy to achieve low ion migration in large-scale X-ray detectors and may provide new thoughts for the application of mixed-dimension perovskite.

9.
Brief Bioinform ; 23(6)2022 11 19.
Article in English | MEDLINE | ID: mdl-36184189

ABSTRACT

Short hairpin RNA (shRNA)-mediated gene silencing is an important technology to achieve RNA interference, in which the design of potent and reliable shRNA molecules plays a crucial role. However, efficient shRNA target selection through biological technology is expensive and time consuming. Hence, it is crucial to develop a more precise and efficient computational method to design potent and reliable shRNA molecules. In this work, we present an interpretable classification model for the shRNA target prediction using the Light Gradient Boosting Machine algorithm called ILGBMSH. Rather than utilizing only the shRNA sequence feature, we extracted 554 biological and deep learning features, which were not considered in previous shRNA prediction research. We evaluated the performance of our model compared with the state-of-the-art shRNA target prediction models. Besides, we investigated the feature explanation from the model's parameters and interpretable method called Shapley Additive Explanations, which provided us with biological insights from the model. We used independent shRNA experiment data from other resources to prove the predictive ability and robustness of our model. Finally, we used our model to design the miR30-shRNA sequences and conducted a gene knockdown experiment. The experimental result was perfectly in correspondence with our expectation with a Pearson's coefficient correlation of 0.985. In summary, the ILGBMSH model can achieve state-of-the-art shRNA prediction performance and give biological insights from the machine learning model parameters.


Subject(s)
Algorithms , Machine Learning , RNA, Small Interfering/genetics
10.
Cell Commun Signal ; 22(1): 82, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291428

ABSTRACT

BACKGROUND: As a dual-function metabolite, succinate has emerged in cell function and plays a key signaling role in linking mitochondrial function to other cellular functions. Succinate accumulation in the cytoplasm is commonly associated with hypoxia in the microenvironment and immune cell activation. Extracellular succinate released into the microenvironment is considered an inflammatory alarm that can be sensed by its membrane receptor SUCNR1, which boosts proinflammatory responses and acts akin to classical hormones and cytokines. Succinate plays an important role in the development of inflammatory diseases. Whether succinate facilitates the progression of endometriosis (EMs), characterized by chronic inflammation and peritoneal adhesion, is worth exploring. OBJECTIVE: We mimicked the ectopic milieu in vitro and in vivo to evaluate the main source and potential role of succinate in endometriosis. We assessed the molecular and functional effects of succinate on macrophages and peritoneal mesothelial cells in peritoneal cavity. The effect of succinate/SUCNR1 signaling on ectopic endometrial stromal cells (ESCs) was further explored in this study. METHODS: In this study, we used targeted organic acid metabolomics analysis and in vitro assays to assess the potential accumulation of succinate in the peritoneal fluid of EMs patients. We examined its correlation with disease severity, Visual Analogue Scale, and the Endometriosis Fertility Index. Flow cytometry, enzyme linked immunosorbent assay, western blot assay, quantitative real-time PCR, and other molecular biology techniques were used to explore the potential mechanisms. RESULTS: By mimicking the ectopic milieu, we constructed an in vitro co-culture system and found that M1 polarized macrophages and that the peritoneal mesothelial cell line (HMrSV5) mainly released succinate into their microenvironment and activated the succinate receptor (SUCNR1) signal, which further polarized the macrophages and significantly enhanced the invasive survival of ESCs, and the adhesion to the peritoneum. We further investigated the pathological effects of extracellular succinate in vivo using a xenograft mouse models of endometriosis. CONCLUSIONS: Succinate-SUCNR1 signaling facilitates the creation of inflammatory cells and plays a vital role in EMs progression and peritoneal adhesion. Our work on the molecular mechanisms underlying succinate accumulation and function will help elucidate the phenotypic mysteries of pain and infertility in EMs. Video Abstract.


Subject(s)
Endometriosis , Succinic Acid , Female , Humans , Animals , Mice , Succinic Acid/metabolism , Endometriosis/metabolism , Coculture Techniques , Succinates , Stromal Cells/metabolism
11.
Catheter Cardiovasc Interv ; 104(1): 10-20, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38769726

ABSTRACT

BACKGROUND: During the transition from dual antiplatelet therapy (DAPT) to single antiplatelet therapy (SAPT), previous studies have raised concerns about a rebound effect. We compared platelet and inflammatory cell adhesion on different types of stents in the setting of clopidogrel presence and withdrawal. METHODS: In Experiment 1, three pigs were administered with DAPT, that is, clopidogrel and acetylsalicylic acid (ASA), for 7 days. Each animal underwent an extracorporeal carotid arteriovenous shunt model implanted with fluoropolymer-coated everolimus-eluting stent (FP-EES), biodegradable-polymer sirolimus-eluting stent (BP-SES), and biodegradable-polymer everolimus-eluting stents (BP-EES). In Experiment 2, two pigs were administered DAPT, clopidogrel was then withdrawn at day 7, and SAPT with ASA was continued for next 21 days. Then flow-loop experiments with the drawn blood from each time point were performed for FP-EES, BioLinx-polymer zotarolimus-eluting stents (BL-ZES), and BP-EES. The rebound effect was defined as the statistical increase of inflammation and platelet adhesion assessed with immunohistochemistry on the stent-strut level basis from baseline to day-14 or 28. RESULTS: Both experiments showed platelet adhesion value was highest in BP-EES, while the least in FP-EES during DAPT therapy. There was no increase in platelet or inflammatory cell adhesion above baseline values (i.e., no therapy) due to the cessation of clopidogrel on the stent-strut level. Monocyte adhesion was the least for FP-EES with the same trend observed for neutrophil adhesion. CONCLUSIONS: No evidence of rebound effect was seen after the transition from DAPT to SAPT. FP-EES demonstrated the most favorable antithrombotic and anti-inflammatory profile regardless of the different experimental designs.


Subject(s)
Aspirin , Clopidogrel , Drug-Eluting Stents , Dual Anti-Platelet Therapy , Everolimus , Platelet Adhesiveness , Platelet Aggregation Inhibitors , Prosthesis Design , Sirolimus , Thrombosis , Animals , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/adverse effects , Clopidogrel/administration & dosage , Clopidogrel/pharmacology , Time Factors , Sirolimus/analogs & derivatives , Sirolimus/administration & dosage , Sirolimus/pharmacology , Everolimus/administration & dosage , Everolimus/pharmacology , Thrombosis/prevention & control , Thrombosis/etiology , Aspirin/administration & dosage , Platelet Adhesiveness/drug effects , Arteriovenous Shunt, Surgical/adverse effects , Sus scrofa , Blood Platelets/drug effects , Blood Platelets/metabolism , Drug Administration Schedule , Disease Models, Animal
12.
Reprod Biomed Online ; 49(2): 103771, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761561

ABSTRACT

RESEARCH QUESTION: What is the value of 2D ultrasonography in the diagnosis and assessment of intrauterine adhesions (IUA)? DESIGN: This was a prospective study conducted at a hysteroscopy centre. RESULTS: Of a total of 600 subjects recruited, 41 dropped out and 559 were finally enrolled and analysed. The observed 2D ultrasonography features, in decreasing order of frequency, were 'irregular endometrium' (37.9%), 'broken endometrial echo' (23.4%), 'thin endometrium' (13.7%), 'loss of endometrial echo' (13.1%,), 'hyperechoic focus' (12.5%) and 'fluid in the cavity' (8.8%). The sensitivity of individual ultrasound features ranged from 8.8% to 37.9%, whereas the specificity of individual ultrasound features ranged from 78.9% to 100%. When all the six ultrasound features were considered together, the sensitivity and specificity were 71.7% and 66.2% respectively. The sensitivity, specificity and accuracy of ultrasound diagnosis in the mid-proliferative phase, peri-ovulatory phase and mid-luteal phase did not appear to be significantly different statistically, although the results in the mid-proliferative phase appeared to be consistently higher than those in the mid-luteal phase. In women confirmed to have IUA, the likelihood of the adhesions being severe in nature in the presence of zero, one, two or three or more ultrasound features was 8.7%, 23.0%, 40.2% and 80.5%, respectively (P < 0.001). CONCLUSIONS: The findings in this study support the notions that ultrasonography examination in women suspected to have IUA cannot replace hysteroscopy in the diagnosis of the condition. However, it does provide useful clinical information regarding severity and could help in the planning of hysteroscopy to optimize management.


Subject(s)
Sensitivity and Specificity , Ultrasonography , Uterine Diseases , Humans , Female , Tissue Adhesions/diagnostic imaging , Prospective Studies , Ultrasonography/methods , Adult , Uterine Diseases/diagnostic imaging , Middle Aged , Hysteroscopy/methods , Endometrium/diagnostic imaging , Endometrium/pathology
13.
Dev Sci ; 27(1): e13416, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37255282

ABSTRACT

The hypothesis that impoverished language experience affects complex sentence structure development around the end of early childhood was tested using a fully randomized, sentence-to-picture matching study in American Sign Language (ASL). The participants were ASL signers who had impoverished or typical access to language in early childhood. Deaf signers whose access to language was highly impoverished in early childhood (N = 11) primarily comprehended structures consisting of a single verb and argument (Subject or Object), agreeing verbs, and the spatial relation or path of semantic classifiers. They showed difficulty comprehending more complex sentence structures involving dual lexical arguments or multiple verbs. As predicted, participants with typical language access in early childhood, deaf native signers (N = 17) or hearing second-language learners (N = 10), comprehended the range of 12 ASL sentence structures, independent of the subjective iconicity or frequency of the stimulus lexical items, or length of ASL experience and performance on non-verbal cognitive tasks. The results show that language experience in early childhood is necessary for the development of complex syntax. RESEARCH HIGHLIGHTS: Previous research with deaf signers suggests an inflection point around the end of early childhood for sentence structure development. Deaf signers who experienced impoverished language until the age of 9 or older comprehend several basic sentence structures but few complex structures. Language experience in early childhood is necessary for the development of complex sentence structure.


Subject(s)
Deafness , Language , Child, Preschool , Humans , Sign Language , Semantics , Hearing
14.
J Pediatr Hematol Oncol ; 46(3): 159-164, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38408140

ABSTRACT

INTRODUCTION: Desmoplastic small round cell tumor (DSRCT) is a highly aggressive primitive sarcoma with a 5-year survival rate estimated at only 15% to 30%. Although few curative treatment options exist, patients are most often treated with a combination of aggressive chemotherapy, radiation, and surgery. Targeted therapy inhibitors of platelet-derived growth factor A, insulin-like growth factor receptor 1, and vascular endothelial growth factor receptor-2, which are almost uniformly overexpressed in DSRCT, have largely failed in clinical trials. Anlotinib is a multitarget receptor tyrosine kinase inhibitor that inhibits vascular endothelial growth factor receptor 1-3, fibroblast growth factor receptor 1-4, platelet-derived growth factor receptor α/ß, c-Kit, and Met. In this study, we presented 3 cases of DSRCT treated effectively with anlotinib combined with chemotherapy. CASE PRESENTATION: Three children DSRCT patients were enrolled from September 2020 to December 2021 and monitored until August 30, 2022. The clinical data were prospectively studied. The peritoneal cancer index classified all 3 patients as stage IV. After surgery, all 3 patients received anlotinib in combination with chemotherapy and reacted to the medication. For all 3 patients, clinical symptoms were substantially eased, and the size of the masses was reduced. Patient 1 and patient 3's progression-free survival had been extended, and anlotinib was continued as a maintenance medication in the 2 patients who were in good health at the end of the follow-up. Patient 2 died of postoperative complications 1 month after second-stage surgery. The main side effects of anlotinib were fatigue and hypertension. However, its toxicity was controllable and tolerable in children patients. CONCLUSIONS: This is the first report that anlotinib is effective in children with DSRCT. This report may provide an additional option for the treatment of metastatic DSRCT.


Subject(s)
Desmoplastic Small Round Cell Tumor , Quinolines , Child , Humans , Desmoplastic Small Round Cell Tumor/therapy , Indoles/therapeutic use , Treatment Outcome , Vascular Endothelial Growth Factor A
15.
BMC Ophthalmol ; 24(1): 315, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075405

ABSTRACT

AIM: Recent imaging studies have found significant abnormalities in the brain's functional or structural connectivity among patients with high myopia (HM), indicating a heightened risk of cognitive impairment and other behavioral changes. However, there is a lack of research on the topological characteristics and connectivity changes of the functional networks in HM patients. In this study, we employed graph theoretical analysis to investigate the topological structure and regional connectivity of the brain function network in HM patients. METHODS: We conducted rs-fMRI scans on 82 individuals with HM and 59 healthy controls (HC), ensuring that the two groups were matched for age and education level. Through graph theoretical analysis, we studied the topological structure of whole-brain functional networks among participants, exploring the topological properties and differences between the two groups. RESULTS: In the range of 0.05 to 0.50 of sparsity, both groups demonstrated a small-world architecture of the brain network. Compared to the control group, HM patients showed significantly lower values of normalized clustering coefficient (γ) (P = 0.0101) and small-worldness (σ) (P = 0.0168). Additionally, the HM group showed lower nodal centrality in the right Amygdala (P < 0.001, Bonferroni-corrected). Notably, there is an increase in functional connectivity (FC) between the saliency network (SN) and Sensorimotor Network (SMN) in the HM group, while the strength of FC between the basal ganglia is relatively weaker (P < 0.01). CONCLUSION: HM Patients exhibit reduced small-world characteristics in their brain networks, with significant drops in γ and σ values indicating weakened global interregional information transfer ability. Not only that, the topological properties of the amygdala nodes in HM patients significantly decline, indicating dysfunction within the brain network. In addition, there are abnormalities in the FC between the SN, SMN, and basal ganglia networks in HM patients, which is related to attention regulation, motor impairment, emotions, and cognitive performance. These findings may provide a new mechanism for central pathology in HM patients.


Subject(s)
Brain , Magnetic Resonance Imaging , Nerve Net , Humans , Male , Female , Adult , Magnetic Resonance Imaging/methods , Brain/physiopathology , Brain/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Young Adult , Brain Mapping/methods , Myopia, Degenerative/physiopathology , Rest/physiology
16.
Postgrad Med J ; 100(1181): 187-195, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37978228

ABSTRACT

PURPOSE: Basal metabolic rate (BMR) as one of the most basic and significant indicators of metabolism has been associated with human health. Previous studies showed that the development of rheumatoid arthritis (RA) is linked to BMR; however, the causal relationship between BMR and RA is unknown. Thus, we aimed to explore the causal relationship between BMR and RA as well as RA-related factors. METHODS: Mendelian randomization (MR) analysis was performed on collected genome-wide association studies information. The effect of horizontal pleiotropy was detected by MR-PRESSO and MR-Radial. Five MR analysis methods were applied, including inverse variance weighted, MR-Egger, weighted median, weighted mode, and simple mode. Four sensitivity analysis methods were used for the validation of the significant MR analysis results. A two-component mixture of regressions method was additionally used to validate single nucleotide polymorphisms and to verify results. RESULTS: Genetically, there is a causal effect of BMR on overall RA (odds ratio = 1.25, 95% confidence interval: 1.07-1.47, PIVW = .006), seropositive RA (odds ratio = 1.20, 95% confidence interval: 1.01-1.44, PIVW = .035), and seronegative RA (odds ratio = 1.36, 95% confidence interval: 1.04-1.78, PIVW = .023). Sensitivity analyses validated the robustness of the above associations. No evidence supported the effect of RA on BMR. Moreover, BMR showed no causal relationship with rheumatoid factor, C-reactive protein, erythrocyte sedimentation rate, interleukin-1ß, tumor necrosis factor-α, and matrix metallopeptidase 3. CONCLUSION: MR results implied the causal effect of BMR on RA and raised our attention to the importance of BMR in RA's pathology.


Subject(s)
Arthritis, Rheumatoid , Basal Metabolism , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Arthritis, Rheumatoid/genetics , C-Reactive Protein , Polymorphism, Single Nucleotide
17.
J Med Internet Res ; 26: e54876, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39094114

ABSTRACT

BACKGROUND: The integration of telehealth-supported programs in chronic disease management has become increasingly common. However, its effectiveness for individuals with knee osteoarthritis (KOA) remains unclear. OBJECTIVE: This study aimed to assess the effectiveness of telehealth-supported exercise or physical activity programs for individuals with KOA. METHODS: A comprehensive literature search encompassing Embase, MEDLINE, CENTRAL, Web of Science, PubMed, Scopus, PEDro, GreyNet, and medRxiv from inception to September 2023 was conducted to identify randomized controlled trials comparing telehealth-supported exercise or physical activity programs to a control condition for KOA. Data were extracted and qualitatively synthesized across eligible studies, and a meta-analysis was performed to evaluate the effects. The study was reported according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020. RESULTS: In total, 23 studies met eligibility criteria, with 20 included in the meta-analysis. Results showed that telehealth-supported exercise or physical activity programs reduced pain (g=-0.39; 95% CI -0.67 to -0.11; P<.001), improved physical activity (g=0.13; 95% CI 0.03-0.23; P=.01), and enhanced physical function (g=-0.51; 95% CI -0.98 to -0.05; P=.03). Moreover, significant improvements in quality of life (g=0.25; 95% CI 0.14-0.36; P<.001), self-efficacy for pain (g=0.72; 95% CI 0.53-0.91; P<.001), and global improvement (odds ratio 2.69, 95% CI 1.41-5.15; P<.001) were observed. However, self-efficacy for physical function (g=0.14; 95% CI -0.26 to 0.53; P=.50) showed insignificant improvements. Subgroup analyses based on the World Health Organization classification of digital health (pain: χ22=6.5; P=.04 and physical function: χ22=6.4; P=.04), the type of teletechnology in the intervention group (pain: χ24=4.8; P=.31 and function: χ24=13.0; P=.01), and active or inactive controls (pain: χ21=5.3; P=.02 and physical function: χ21=3.4; P=.07) showed significant subgroup differences. CONCLUSIONS: Telehealth-supported exercise or physical activity programs might reduce knee pain and improve physical activity, physical function, quality of life, self-efficacy, and global improvement in individuals with KOA. Future research should consider longer implementation durations and assess the feasibility of incorporating wearables and standardized components into large-scale interventions to evaluate the effects. TRIAL REGISTRATION: PROSPERO CRD42022359658; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=359658.


Subject(s)
Exercise Therapy , Exercise , Osteoarthritis, Knee , Telemedicine , Humans , Osteoarthritis, Knee/rehabilitation , Osteoarthritis, Knee/therapy , Exercise Therapy/methods , Quality of Life , Randomized Controlled Trials as Topic , Female , Male , Middle Aged
18.
Pestic Biochem Physiol ; 202: 105936, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879328

ABSTRACT

The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is one of the most destructive agricultural pests. The entomopathogenic fungus Beauveria bassiana (Hypocreales: Clavicipitaceae) is a biopesticide widely used for biocontrol of various pests. Secreted fungal proteases are critical for insect cuticle destruction and successful infection. We have previously shown that the serine protease BbAorsin in B. bassiana has entomopathogenic and antiphytopathogenic activities. However, the contribution of BbAorsin to fungal growth, conidiation, germination, virulence and antiphytopathogenic activities remains unclear. In this study, the deletion (ΔBbAorsin), complementation (Comp), and overexpression (BbAorsinOE) strains of B. bassiana were generated for comparative studies. The results showed that ΔBbAorsin exhibited slower growth, reduced conidiation, lower germination rate, and longer germination time compared to WT and Comp. In contrast, BbAorsinOE showed higher growth rate, increased conidiation, higher germination rate and shorter germination time. Injection of BbAorsinOE showed the highest virulence against S. frugiperda larvae, while injection of ΔBbAorsin showed the lowest virulence. Feeding BbAorsinOE resulted in lower pupation and adult eclosion rates and malformed adults. 16S rRNA sequencing revealed no changes in the gut microbiota after feeding either WT or BbAorsinOE. However, BbAorsinOE caused a disrupted midgut, leakage of gut microbiota into the hemolymph, and upregulation of apoptosis and immunity-related genes. BbAorsin can disrupt the cell wall of the phytopathogen Fusarium graminearum and alleviate symptoms in wheat seedlings and cherry tomatoes infected with F. graminearum. These results highlight the importance of BbAorsin for B. bassiana and its potential as a multifunctional biopesticide.


Subject(s)
Beauveria , Beauveria/pathogenicity , Beauveria/genetics , Beauveria/physiology , Animals , Virulence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spodoptera/microbiology , Spores, Fungal , Larva/microbiology , Serine Proteases/metabolism , Serine Proteases/genetics , Pest Control, Biological , Fusarium/pathogenicity , Fusarium/genetics
19.
Int J Mol Sci ; 25(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542167

ABSTRACT

To investigate the effect of active immunisation with gonadotropin-releasing hormone (GnRH) on the reproductive function in male Sprague Dawley (SD) rats, 24 42-day-old rats were randomly assigned to treatment with GnRH6-MAP, GnRH-OVA, a surgical castration group, and a blank control group. Each rat in the treatment groups was intramuscularly injected at 6, 8, and 10 weeks of age. The serum concentrations of testosterone (T), follicle-stimulating hormone (FSH), luteinising hormone (LH), and anti-GnRH antibodies were determined using enzyme-linked immunosorbent assays. The results showed that active immunisation with recombinant GnRH6-MBP and GnRH-OVA significantly increased the serum levels of anti-GnRH antibodies and reduced the serum concentrations of testosterone compared to the black control. Eight weeks after immunisation, the rats' testes were surgically removed for morphological evaluation, showing atrophy of the convoluted vasculature, relative emptying of the lumen, and insignificant differentiation of spermatogonial cells, which were increased in weight and volume compared with the blank control group. These findings indicated that active immunisation with GnRH can lead to testicular atrophy and reduce gonadal hormone concentrations, suggesting that GnRH is a highly effective immunogen.


Subject(s)
Follicle Stimulating Hormone , Gonadotropin-Releasing Hormone , Male , Rats , Animals , Rats, Sprague-Dawley , Vaccination , Testosterone , Antibodies , Atrophy
20.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 505-511, 2024 Jun 18.
Article in Zh | MEDLINE | ID: mdl-38864137

ABSTRACT

OBJECTIVE: To investigate the effect of tofacitinib, a pan-Janus kinase (JAK) inhibitor, on transforming growth factor-beta 1 (TGF-ß1)-induced fibroblast to myofibroblast transition (FMT) and to explore its mechanism. To provide a theoretical basis for the clinical treatment of connective tissue disease-related interstitial lung disease (CTD-ILD). METHODS: (1) Human fetal lung fibroblast 1 (HFL-1) were cultured in vitro, and 6 groups were established: DMSO blank control group, TGF-ß1 induction group, and TGF-ß1 with different concentrations of tofacitinib (0.5, 1.0, 2.0, 5.0 µmol/L) drug intervention experimental groups. CCK-8 was used to measure the cell viability, and wound-healing assay was performed to measure cell migration ability. After 48 h of combined treatment, quantitative real-time PCR (RT-PCR) and Western blotting were used to detect the gene and protein expression levels of α-smooth muscle actin (α-SMA), fibronectin (FN), and collagen type Ⅰ (COL1). (2) RT-PCR and enzyme-linked immunosorbnent assay (ELISA) were used to detect the interleukin-6 (IL-6) gene and protein expression changes, respectively. (3) DMSO carrier controls, 1.0 µmol/L and 5.0 µmol/L tofacitinib were added to the cell culture media of different groups for pre-incubation for 30 min, and then TGF-ß1 was added to treat for 1 h, 6 h and 24 h. The phosphorylation levels of Smad2/3 and signal transducer and activator of transcription 3 (STAT3) protein were detected by Western blotting. RESULTS: (1) Tofacitinib inhibited the viability and migration ability of HFL-1 cells after TGF-ß1 induction. (2) The expression of α-SMA, COL1A1 and FN1 genes of HFL-1 in the TGF-ß1-induced groups was significantly up-regulated compared with the blank control group (P < 0.05). Compared with the TGF-ß1 induction group, α-SMA expression in the 5.0 µmol/L tofacitinib intervention group was significantly inhi-bited (P < 0.05). Compared with the TGF-ß1-induced group, FN1 gene was significantly inhibited in each intervention group at a concentration of 0.5-5.0 µmol/L (P < 0.05). Compared with the TGF-ß1-induced group, the COL1A1 gene expression in each intervention group did not change significantly. (3) Western blotting results showed that the protein levels of α-SMA and FN1 in the TGF-ß1-induced group were significantly higher than those in the control group (P < 0.05), and there was no significant difference in the expression of COL1A1. Compared with the TGF-ß1-induced group, the α-SMA protein level in the intervention groups with different concentrations decreased. And the differences between the TGF-ß1-induced group and 2.0 µmol/L or 5.0 µmol/L intervention groups were statistically significant (P < 0.05). Compared with the TGF-ß1-induced group, the FN1 protein levels in the intervention groups with different concentrations showed a downward trend, but the difference was not statistically significant. There was no difference in COL1A1 protein expression between the intervention groups compared with the TGF-ß1-induced group. (4) After TGF-ß1 acted on HFL-1 cells for 48 h, the gene expression of the IL-6 was up-regulated and IL-6 in culture supernatant was increased, the intervention with tofacitinib partly inhibited the TGF-ß1-induced IL-6 gene expression and IL-6 in culture supernatant. TGF-ß1 induced the increase of Smad2/3 protein phosphorylation in HFL-1 cells for 1 h and 6 h, STAT3 protein phosphorylation increased at 1 h, 6 h and 24 h, the pre-intervention with tofacitinib inhibited the TGF-ß1-induced Smad2/3 phosphorylation at 6 h and inhibited TGF-ß1-induced STAT3 phosphorylation at 1 h, 6 h and 24 h. CONCLUSION: Tofacitinib can inhibit the transformation of HFL-1 cells into myofibroblasts induced by TGF-ß1, and the mechanism may be through inhibiting the classic Smad2/3 pathway as well as the phosphorylation of STAT3 induced by TGF-ß1, thereby protecting the disease progression of pulmonary fibrosis.


Subject(s)
Fibroblasts , Lung , Myofibroblasts , Piperidines , Pyrimidines , STAT3 Transcription Factor , Signal Transduction , Transforming Growth Factor beta1 , Humans , Pyrimidines/pharmacology , Piperidines/pharmacology , STAT3 Transcription Factor/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Transforming Growth Factor beta1/metabolism , Myofibroblasts/metabolism , Myofibroblasts/cytology , Myofibroblasts/drug effects , Lung/cytology , Signal Transduction/drug effects , Fibronectins/metabolism , Cell Movement/drug effects , Pyrroles/pharmacology , Actins/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Janus Kinases/metabolism , Cell Survival/drug effects , Smad2 Protein/metabolism , Lung Diseases, Interstitial/metabolism , Interleukin-6/metabolism , Smad3 Protein/metabolism , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL