Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 543
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 173(1): 221-233.e12, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29551271

ABSTRACT

Tandem zinc finger (ZF) proteins are the largest and most rapidly diverging family of DNA-binding transcription regulators in mammals. ZFP568 represses a transcript of placental-specific insulin like growth factor 2 (Igf2-P0) in mice. ZFP568 binds a 24-base pair sequence-specific element upstream of Igf2-P0 via the eleven-ZF array. Both DNA and protein conformations deviate from the conventional one finger-three bases recognition, with individual ZFs contacting 2, 3, or 4 bases and recognizing thymine on the opposite strand. These interactions arise from a shortened minor groove caused by an AT-rich stretch, suggesting adaptability of ZF arrays to sequence variations. Despite conservation in mammals, mutations at Igf2 and ZFP568 reduce their binding affinity in chimpanzee and humans. Our studies provide important insights into the evolutionary and structural dynamics of ZF-DNA interactions that play a key role in mammalian development and evolution.


Subject(s)
DNA/metabolism , Nuclear Proteins/metabolism , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Carrier Proteins/chemistry , Carrier Proteins/classification , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA/chemistry , Humans , Insulin-Like Growth Factor II/chemistry , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Mice , Molecular Dynamics Simulation , Nuclear Proteins/chemistry , Nuclear Proteins/classification , Nuclear Proteins/genetics , Nucleic Acid Conformation , Pan troglodytes , Phylogeny , Polymorphism, Single Nucleotide , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment
2.
Mol Cell ; 81(2): 239-254.e8, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33301730

ABSTRACT

Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome. Loss of ZNF410 in adult-type human erythroid cell culture systems and xenotransplantation settings diminishes CHD4 levels and derepresses the fetal hemoglobin genes. While previously known to be silenced by CHD4, the fetal globin genes are exposed here as among the most sensitive to reduced CHD4 levels.. In vitro DNA binding assays and crystallographic studies reveal the ZNF410-DNA binding mode. ZNF410 is a remarkably selective transcriptional activator in erythroid cells, and its perturbation might offer new opportunities for treatment of hemoglobinopathies.


Subject(s)
DNA/genetics , Erythroid Precursor Cells/metabolism , Fetal Hemoglobin/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Transcription Factors/genetics , Animals , Binding Sites , COS Cells , CRISPR-Cas Systems , Chlorocebus aethiops , DNA/metabolism , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/transplantation , Fetal Blood/cytology , Fetal Blood/metabolism , Fetal Hemoglobin/metabolism , Fetus , Gene Editing , HEK293 Cells , Heterografts , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Models, Molecular , Mouse Embryonic Stem Cells/cytology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcriptional Activation
3.
Genes Dev ; 34(21-22): 1546-1558, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33004415

ABSTRACT

The de novo DNA methyltransferases Dnmt3a and Dnmt3b play crucial roles in developmental and cellular processes. Their enzymatic activities are stimulated by a regulatory protein Dnmt3L (Dnmt3-like) in vitro. However, genetic evidence indicates that Dnmt3L functions predominantly as a regulator of Dnmt3a in germ cells. How Dnmt3a and Dnmt3b activities are regulated during embryonic development and in somatic cells remains largely unknown. Here we show that Dnmt3b3, a catalytically inactive Dnmt3b isoform expressed in differentiated cells, positively regulates de novo methylation by Dnmt3a and Dnmt3b with a preference for Dnmt3b. Dnmt3b3 is equally potent as Dnmt3L in stimulating the activities of Dnmt3a2 and Dnmt3b2 in vitro. Like Dnmt3L, Dnmt3b3 forms a complex with Dnmt3a2 with a stoichiometry of 2:2. However, rescue experiments in Dnmt3a/3b/3l triple-knockout (TKO) mouse embryonic stem cells (mESCs) reveal that Dnmt3b3 prefers Dnmt3b2 over Dnmt3a2 in remethylating genomic sequences. Dnmt3a2, an active isoform that lacks the N-terminal uncharacterized region of Dnmt3a1 including a nuclear localization signal, has very low activity in TKO mESCs, indicating that an accessory protein is absolutely required for its function. Our results suggest that Dnmt3b3 and perhaps similar Dnmt3b isoforms facilitate de novo DNA methylation during embryonic development and in somatic cells.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , Isoenzymes/metabolism , Animals , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Embryo, Mammalian , Embryonic Development/genetics , Embryonic Stem Cells , Mice , Mice, Knockout , DNA Methyltransferase 3B
4.
Trends Biochem Sci ; 48(5): 417-419, 2023 05.
Article in English | MEDLINE | ID: mdl-36621339

ABSTRACT

Protein SUMOylation is one of the most prevalent post-translational modifications (PTMs) and important for maintaining cellular homeostasis in response to various cellular stresses. Emerging evidence reveals the role of liquid-liquid phase separation (LLPS)/biomolecular condensates in cellular SUMOylation, potentially solving a puzzle regarding the cellular mechanism of SUMOylation regulation.


Subject(s)
Protein Processing, Post-Translational , Sumoylation
5.
Genes Dev ; 33(23-24): 1702-1717, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31699778

ABSTRACT

The establishment of polyubiquitin conjugates with distinct linkages play important roles in the DNA damage response. Much remains unknown about the regulation of linkage-specific ubiquitin signaling at sites of DNA damage. Here we reveal that Cezanne (also known as Otud7B) deubiquitinating enzyme promotes the recruitment of Rap80/BRCA1-A complex by binding to Lys63-polyubiquitin and targeting Lys11-polyubiquitin. Using a ubiquitin binding domain protein array screen, we identify that the UBA domains of Cezanne and Cezanne2 (also known as Otud7A) selectively bind to Lys63-linked polyubiquitin. Increased Lys11-linkage ubiquitination due to lack of Cezanne DUB activity compromises the recruitment of Rap80/BRCA1-A. Cezanne2 interacts with Cezanne, facilitating Cezanne in the recruitment of Rap80/BRCA1-A, Rad18, and 53BP1, in cellular resistance to ionizing radiation and DNA repair. Our work presents a model that Cezanne serves as a "reader" of the Lys63-linkage polyubiquitin at DNA damage sites and an "eraser" of the Lys11-linkage ubiquitination, indicating a crosstalk between linkage-specific ubiquitination at DNA damage sites.


Subject(s)
DNA Damage , DNA Repair/genetics , Endopeptidases/genetics , Endopeptidases/metabolism , Polyubiquitin/metabolism , Signal Transduction/physiology , Cell Line, Tumor , DNA Damage/radiation effects , DNA-Binding Proteins , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Gene Knockdown Techniques , HEK293 Cells , Histone Chaperones , Humans , Lysine/metabolism , Nuclear Proteins , Protein Array Analysis , Protein Binding , Protein Domains , Protein Transport/genetics , Radiation, Ionizing
6.
Pharmacol Rev ; 75(5): 979-1006, 2023 09.
Article in English | MEDLINE | ID: mdl-37137717

ABSTRACT

Protein SUMOylation is a major post-translational modification essential for maintaining cellular homeostasis. SUMOylation has long been associated with stress responses as a diverse array of cellular stress signals are known to trigger rapid alternations in global protein SUMOylation. In addition, while there are large families of ubiquitination enzymes, all small ubiquitin-like modifiers (SUMOs) are conjugated by a set of enzymatic machinery comprising one heterodimeric SUMO-activating enzyme, a single SUMO-conjugating enzyme, and a small number of SUMO protein ligases and SUMO-specific proteases. How a few SUMOylation enzymes specifically modify thousands of functional targets in response to diverse cellular stresses remains an enigma. Here we review recent progress toward understanding the mechanisms of SUMO regulation, particularly the potential roles of liquid-liquid phase separation/biomolecular condensates in regulating cellular SUMOylation during cellular stresses. In addition, we discuss the role of protein SUMOylation in pathogenesis and the development of novel therapeutics targeting SUMOylation. SIGNIFICANCE STATEMENT: Protein SUMOylation is one of the most prevalent post-translational modifications and plays a vital role in maintaining cellular homeostasis in response to stresses. Protein SUMOylation has been implicated in human pathogenesis, such as cancer, cardiovascular diseases, neurodegeneration, and infection. After more than a quarter century of extensive research, intriguing enigmas remain regarding the mechanism of cellular SUMOylation regulation and the therapeutic potential of targeting SUMOylation.


Subject(s)
Small Ubiquitin-Related Modifier Proteins , Sumoylation , Humans , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Biomolecular Condensates , Ubiquitin/metabolism , Protein Processing, Post-Translational
7.
Trends Biochem Sci ; 46(3): 175-183, 2021 03.
Article in English | MEDLINE | ID: mdl-33077363

ABSTRACT

The leading cause of mutation due to oxidative damage is 8-oxo-2'-deoxyguanosine (8-oxoG) mispairing with adenine (Ade), which can occur in two ways. First, guanine of a G:C DNA base pair can be oxidized. If not repaired in time, DNA polymerases can mispair Ade with 8-oxoG in the template. This 8-oxoG:A can be repaired by enzymes that remove Ade opposite to template 8-oxoG, or 8-oxoG opposite to Cyt. Second, free 8-oxo-dGTP can be misincorporated by DNA polymerases into DNA opposite template Ade. However, there is no known repair activity that removes 8-oxoG opposite to template Ade. We suggest that a major role of N6-methyladenine in mammalian DNA is minimizing incorporation of 8-oxoG opposite to Ade by DNA polymerases following adduct formation.


Subject(s)
DNA Repair , Guanine , Animals , DNA Damage , DNA Replication , DNA-Directed DNA Polymerase/metabolism
8.
Physiol Rev ; 98(2): 919-1053, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29537337

ABSTRACT

This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.


Subject(s)
Acetylcysteine/analogs & derivatives , Cytoplasm/metabolism , Erythromycin/analogs & derivatives , Guanine Nucleotide Exchange Factors/metabolism , Receptors, Cyclic AMP/metabolism , Acetylcysteine/metabolism , Animals , Erythromycin/metabolism , Humans , Protein Transport/physiology , Signal Transduction/physiology
9.
Nature ; 565(7739): 372-376, 2019 01.
Article in English | MEDLINE | ID: mdl-30626964

ABSTRACT

For more than 50 years, the methylation of mammalian actin at histidine 73 has been known to occur1. Despite the pervasiveness of His73 methylation, which we find is conserved in several model animals and plants, its function remains unclear and the enzyme that generates this modification is unknown. Here we identify SET domain protein 3 (SETD3) as the physiological actin His73 methyltransferase. Structural studies reveal that an extensive network of interactions clamps the actin peptide onto the surface of SETD3 to orient His73 correctly within the catalytic pocket and to facilitate methyl transfer. His73 methylation reduces the nucleotide-exchange rate on actin monomers and modestly accelerates the assembly of actin filaments. Mice that lack SETD3 show complete loss of actin His73 methylation in several tissues, and quantitative proteomics analysis shows that actin His73 methylation is the only detectable physiological substrate of SETD3. SETD3-deficient female mice have severely decreased litter sizes owing to primary maternal dystocia that is refractory to ecbolic induction agents. Furthermore, depletion of SETD3 impairs signal-induced contraction in primary human uterine smooth muscle cells. Together, our results identify a mammalian histidine methyltransferase and uncover a pivotal role for SETD3 and actin His73 methylation in the regulation of smooth muscle contractility. Our data also support the broader hypothesis that protein histidine methylation acts as a common regulatory mechanism.


Subject(s)
Actins/chemistry , Actins/metabolism , Dystocia/enzymology , Dystocia/prevention & control , Histidine/chemistry , Histidine/metabolism , Methyltransferases/metabolism , Animals , Cell Line , Female , Histone Methyltransferases , Histones , Litter Size/genetics , Male , Methylation , Methyltransferases/deficiency , Methyltransferases/genetics , Mice , Models, Molecular , Muscle, Smooth/cytology , Muscle, Smooth/physiology , Pregnancy , Proteomics , Uterine Contraction , Uterus/cytology , Uterus/physiology
10.
Mol Cell ; 66(5): 711-720.e3, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28529057

ABSTRACT

The multidomain CCCTC-binding factor (CTCF), containing a tandem array of 11 zinc fingers (ZFs), modulates the three-dimensional organization of chromatin. We crystallized the human CTCF DNA-binding domain in complex with a known CTCF-binding site. While ZF2 does not make sequence-specific contacts, each finger of ZF3-7 contacts three bases of the 15-bp consensus sequence. Each conserved nucleotide makes base-specific hydrogen bonds with a particular residue. Most of the variable base pairs within the core sequence also engage in interactions with the protein. These interactions compensate for deviations from the consensus sequence, allowing CTCF to adapt to sequence variations. CTCF is sensitive to cytosine methylation at position 2, but insensitive at position 12 of the 15-bp core sequence. These differences can be rationalized structurally. Although included in crystallizations, ZF10 and ZF11 are not visible, while ZF8 and ZF9 span the backbone of the DNA duplex, conferring no sequence specificity but adding to overall binding stability.


Subject(s)
DNA Methylation , DNA/metabolism , Repressor Proteins/metabolism , 5-Methylcytosine/metabolism , Binding Sites , CCCTC-Binding Factor , Cloning, Molecular , Crystallography, X-Ray , DNA/chemistry , DNA/genetics , Humans , Hydrogen Bonding , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Stability , Repressor Proteins/chemistry , Repressor Proteins/genetics , Structure-Activity Relationship , Trinucleotide Repeats , Zinc Fingers
11.
Mol Cell ; 68(1): 89-103.e7, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28943313

ABSTRACT

Genomic imprinting is an allelic gene expression phenomenon primarily controlled by allele-specific DNA methylation at the imprinting control region (ICR), but the underlying mechanism remains largely unclear. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and mutation of human Naa10p is linked to severe developmental delays. Here we report that Naa10-null mice display partial embryonic lethality, growth retardation, brain disorders, and maternal effect lethality, phenotypes commonly observed in defective genomic imprinting. Genome-wide analyses further revealed global DNA hypomethylation and enriched dysregulation of imprinted genes in Naa10p-knockout embryos and embryonic stem cells. Mechanistically, Naa10p facilitates binding of DNA methyltransferase 1 (Dnmt1) to DNA substrates, including the ICRs of the imprinted allele during S phase. Moreover, the lethal Ogden syndrome-associated mutation of human Naa10p disrupts its binding to the ICR of H19 and Dnmt1 recruitment. Our study thus links Naa10p mutation-associated Ogden syndrome to defective DNA methylation and genomic imprinting.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Developmental Disabilities/genetics , Epigenesis, Genetic , Genomic Imprinting , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase E/genetics , RNA, Long Noncoding/genetics , Animals , DNA/genetics , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Disease Models, Animal , Embryo, Mammalian , Female , Gene Deletion , Genes, Lethal , Genome-Wide Association Study , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/pathology , N-Terminal Acetyltransferase A/deficiency , N-Terminal Acetyltransferase E/deficiency , Protein Binding , RNA, Long Noncoding/metabolism , S Phase/genetics
12.
Cell Mol Life Sci ; 81(1): 283, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963422

ABSTRACT

Protein SUMOylation is a prevalent stress-response posttranslational modification crucial for maintaining cellular homeostasis. Herein, we report that protein SUMOylation modulates cellular signaling mediated by cAMP, an ancient and universal stress-response second messenger. We identify K561 as a primary SUMOylation site in exchange protein directly activated by cAMP (EPAC1) via site-specific mapping of SUMOylation using mass spectrometry. Sequence and site-directed mutagenesis analyses reveal that a functional SUMO-interacting motif in EPAC1 is required for the binding of SUMO-conjugating enzyme UBC9, formation of EPAC1 nuclear condensate, and EPAC1 cellular SUMOylation. Heat shock-induced SUMO modification of EPAC1 promotes Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.


Subject(s)
Cyclic AMP , Guanine Nucleotide Exchange Factors , Sumoylation , Ubiquitin-Conjugating Enzymes , rap1 GTP-Binding Proteins , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/chemistry , Humans , Cyclic AMP/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , HEK293 Cells , Molecular Dynamics Simulation , Shelterin Complex/metabolism , Signal Transduction , Telomere-Binding Proteins/metabolism , rap GTP-Binding Proteins/metabolism , rap GTP-Binding Proteins/genetics , Heat-Shock Response , Amino Acid Sequence , Protein Binding
13.
Nucleic Acids Res ; 51(16): 8447-8462, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37439339

ABSTRACT

The CCCTC-binding factor (CTCF) binds tens of thousands of enhancers and promoters on mammalian chromosomes by means of its 11 tandem zinc finger (ZF) DNA-binding domain. In addition to the 12-15-bp CORE sequence, some of the CTCF binding sites contain 5' upstream and/or 3' downstream motifs. Here, we describe two structures for overlapping portions of human CTCF, respectively, including ZF1-ZF7 and ZF3-ZF11 in complex with DNA that incorporates the CORE sequence together with either 3' downstream or 5' upstream motifs. Like conventional tandem ZF array proteins, ZF1-ZF7 follow the right-handed twist of the DNA, with each finger occupying and recognizing one triplet of three base pairs in the DNA major groove. ZF8 plays a unique role, acting as a spacer across the DNA minor groove and positioning ZF9-ZF11 to make cross-strand contacts with DNA. We ascribe the difference between the two subgroups of ZF1-ZF7 and ZF8-ZF11 to residues at the two positions -6 and -5 within each finger, with small residues for ZF1-ZF7 and bulkier and polar/charged residues for ZF8-ZF11. ZF8 is also uniquely rich in basic amino acids, which allows salt bridges to DNA phosphates in the minor groove. Highly specific arginine-guanine and glutamine-adenine interactions, used to recognize G:C or A:T base pairs at conventional base-interacting positions of ZFs, also apply to the cross-strand interactions adopted by ZF9-ZF11. The differences between ZF1-ZF7 and ZF8-ZF11 can be rationalized structurally and may contribute to recognition of high-affinity CTCF binding sites.


Subject(s)
DNA , Zinc Fingers , Animals , Humans , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Amino Acid Sequence , Binding Sites , DNA/chemistry , Mammals/genetics
14.
Nucleic Acids Res ; 51(4): 1674-1686, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36660822

ABSTRACT

ZNF410 is a highly-conserved transcription factor, remarkable in that it recognizes a 15-base pair DNA element but has just a single responsive target gene in mammalian erythroid cells. ZNF410 includes a tandem array of five zinc-fingers (ZFs), surrounded by uncharacterized N- and C-terminal regions. Unexpectedly, full-length ZNF410 has reduced DNA binding affinity, compared to that of the isolated DNA binding ZF array, both in vitro and in cells. AlphaFold predicts a partially-folded N-terminal subdomain that includes a 30-residue long helix, preceded by a hairpin loop rich in acidic (aspartate/glutamate) and serine/threonine residues. This hairpin loop is predicted by AlphaFold to lie against the DNA binding interface of the ZF array. In solution, ZNF410 is a monomer and binds to DNA with 1:1 stoichiometry. Surprisingly, the single best-fit model for the experimental small angle X-ray scattering profile, in the absence of DNA, is the original AlphaFold model with the N-terminal long-helix and the hairpin loop occupying the ZF DNA binding surface. For DNA binding, the hairpin loop presumably must be displaced. After combining biophysical, biochemical, bioinformatic and artificial intelligence-based AlphaFold analyses, we suggest that the hairpin loop mimics the structure and electrostatics of DNA, and provides an additional mechanism, supplementary to sequence specificity, of regulating ZNF410 DNA binding.


Subject(s)
Transcription Factors , Animals , Amino Acid Sequence , Artificial Intelligence , Mammals/genetics , Protein Binding , Protein Domains , Zinc Fingers/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism
15.
Nano Lett ; 24(10): 3082-3088, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416583

ABSTRACT

The translational and rotational dynamics of anisotropic optical nanoprobes revealed in single particle tracking (SPT) experiments offer molecular-level information about cellular activities. Here, we report an automated high-speed multidimensional SPT system integrated with a deep learning algorithm for tracking the 3D orientation of anisotropic gold nanoparticle probes in living cells with high localization precision (<10 nm) and temporal resolution (0.9 ms), overcoming the limitations of rotational tracking under low signal-to-noise ratio (S/N) conditions. This method can resolve the azimuth (0°-360°) and polar angles (0°-90°) with errors of less than 2° on the experimental and simulated data under S/N of ∼4. Even when the S/N approaches the limit of 1, this method still maintains better robustness and noise resistance than the conventional pattern matching methods. The usefulness of this multidimensional SPT system has been demonstrated with a study of the motions of cargos transported along the microtubules within living cells.


Subject(s)
Deep Learning , Metal Nanoparticles , Single Molecule Imaging , Gold , Biological Transport
16.
J Biol Chem ; 299(2): 102862, 2023 02.
Article in English | MEDLINE | ID: mdl-36596360

ABSTRACT

The N-terminal half of PHF2 harbors both a plant homeodomain (PHD) and a Jumonji domain. The PHD recognizes both histone H3 trimethylated at lysine 4 and methylated nonhistone proteins including vaccinia-related kinase 1 (VRK1). The Jumonji domain erases the repressive dimethylation mark from histone H3 lysine 9 (H3K9me2) at select promoters. The N-terminal amino acid sequences of H3 (AR2TK4) and VRK1 (PR2VK4) bear an arginine at position 2 and lysine at position 4. Here, we show that the PHF2 N-terminal half binds to H3 and VRK1 peptides containing K4me3, with dissociation constants (KD values) of 160 nM and 42 nM, respectively, which are 4 × and 21 × lower (and higher affinities) than for the isolated PHD domain of PHF2. X-ray crystallography revealed that the K4me3-containing peptide is positioned within the PHD and Jumonji interface, with the positively charged R2 residue engaging acidic residues of the PHD and Jumonji domains and with the K4me3 moiety encircled by aromatic residues from both domains. We suggest that the micromolar binding affinities commonly observed for isolated methyl-lysine reader domains could be improved via additional functional interactions within the same polypeptide or its binding partners.


Subject(s)
Histones , Homeodomain Proteins , Lysine , Histones/chemistry , Lysine/chemistry , Methylation , Peptides/chemistry , Protein Binding , Protein Domains , Homeodomain Proteins/chemistry
17.
J Biol Chem ; 299(2): 102885, 2023 02.
Article in English | MEDLINE | ID: mdl-36626981

ABSTRACT

ZBTB7A belongs to a small family of transcription factors having three members in humans (7A, 7B, and 7C). They share a BTB/POZ protein interaction domain at the amino end and a zinc-finger DNA-binding domain at the carboxyl end. They control the transcription of a wide range of genes, having varied functions in hematopoiesis, oncogenesis, and metabolism (in particular glycolysis). ZBTB7A-binding profiles at gene promoters contain a consensus G(a/c)CCC motif, followed by a CCCC sequence in some instances. Structural and mutational investigations suggest that DNA-specific contacts with the four-finger tandem array of ZBTB7A are formed sequentially, initiated from ZF1-ZF2 binding to G(a/c)CCC before spreading to ZF3-ZF4, which bind the DNA backbone and the 3' CCCC sequence, respectively. Here, we studied some mutations found in t(8;21)-positive acute myeloid leukemia patients that occur within the ZBTB7A DNA-binding domain. We determined that these mutations generally impair ZBTB7A DNA binding, with the most severe disruptions resulting from mutations in ZF1 and ZF2, and the least from a frameshift mutation in ZF3 that results in partial mislocalization. Information provided here on ZBTB7A-DNA interactions is likely applicable to ZBTB7B/C, which have overlapping functions with ZBTB7A in controlling primary metabolism.


Subject(s)
Leukemia, Myeloid, Acute , Transcription Factors , Humans , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Leukemia, Myeloid, Acute/genetics , Mutation , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers/genetics , Protein Domains/genetics , Protein Binding/genetics
18.
J Biol Chem ; 299(8): 105017, 2023 08.
Article in English | MEDLINE | ID: mdl-37414145

ABSTRACT

Much is known about the generation, removal, and roles of 5-methylcytosine (5mC) in eukaryote DNA, and there is a growing body of evidence regarding N6-methyladenine, but very little is known about N4-methylcytosine (4mC) in the DNA of eukaryotes. The gene for the first metazoan DNA methyltransferase generating 4mC (N4CMT) was reported and characterized recently by others, in tiny freshwater invertebrates called bdelloid rotifers. Bdelloid rotifers are ancient, apparently asexual animals, and lack canonical 5mC DNA methyltransferases. Here, we characterize the kinetic properties and structural features of the catalytic domain of the N4CMT protein from the bdelloid rotifer Adineta vaga. We find that N4CMT generates high-level methylation at preferred sites, (a/c)CG(t/c/a), and low-level methylation at disfavored sites, exemplified by ACGG. Like the mammalian de novo 5mC DNA methyltransferase 3A/3B (DNMT3A/3B), N4CMT methylates CpG dinucleotides on both DNA strands, generating hemimethylated intermediates and eventually fully methylated CpG sites, particularly in the context of favored symmetric sites. In addition, like DNMT3A/3B, N4CMT methylates non-CpG sites, mainly CpA/TpG, though at a lower rate. Both N4CMT and DNMT3A/3B even prefer similar CpG-flanking sequences. Structurally, the catalytic domain of N4CMT closely resembles the Caulobacter crescentus cell cycle-regulated DNA methyltransferase. The symmetric methylation of CpG, and similarity to a cell cycle-regulated DNA methyltransferase, together suggest that N4CMT might also carry out DNA synthesis-dependent methylation following DNA replication.


Subject(s)
DNA-Cytosine Methylases , Rotifera , Animals , DNA Methylation , DNA-Cytosine Methylases/chemistry , DNA-Cytosine Methylases/isolation & purification , Mammals/metabolism , Rotifera/classification , Rotifera/enzymology
19.
Future Oncol ; 20(4): 215-228, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38390682

ABSTRACT

Recently, there has been an increased focus on cancer stem cells (CSCs) due to their resilience, making them difficult to eradicate. This resilience often leads to tumor recurrence and metastasis. CSCs adeptly manipulate their surroundings to create an environment conducive to their survival. In this environment, myeloid-derived suppressor cells (MDSCs) play a crucial role in promoting epithelial-mesenchymal transition and bolstering CSCs' stemness. In response, CSCs attract MDSCs, enhancing their infiltration, expansion and immunosuppressive capabilities. This interaction between CSCs and MDSCs increases the difficulty of antitumor therapy. In this paper, we discuss the interplay between CSCs and MDSCs based on current research and highlight recent therapeutic strategies targeting either CSCs or MDSCs that show promise in achieving effective antitumor outcomes.


Cancer stem cells (CSCs) are a kind of tumor cell. These cells are hard to kill but contribute to tumor progression and metastasis. Myeloid-derived suppressor cells (MDSCs) exist in the tumor tissue and are unfriendly to the antitumor immune response. The interaction between CSCs and MDSCs has a protective effect on tumor progression. Therapeutic strategies targeting CSCs or MDSCs present potential to weaken the complex interaction between the two cell types. This review summarizes the current knowledge of CSCs­MDSCs interaction and offers fresh perspectives on the future development of antitumor therapies targeting CSCs or MDSCs.


Subject(s)
Myeloid-Derived Suppressor Cells , Humans , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/pathology , Tumor Microenvironment
20.
Mol Cell ; 61(1): 153-60, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26711009

ABSTRACT

Lin28, a well-known RNA-binding protein, regulates diverse cellular properties. All physiological functions of Lin28A characterized so far have been attributed to its repression of let-7 miRNA biogenesis or modulation of mRNA translational efficiency. Here we show that Lin28A directly binds to a consensus DNA sequence in vitro and in mouse embryonic stem cells in vivo. ChIP-seq and RNA-seq reveal enrichment of Lin28A binding around transcription start sites and a positive correlation between its genomic occupancy and expression of many associated genes. Mechanistically, Lin28A recruits 5-methylcytosine-dioxygenase Tet1 to genomic binding sites to orchestrate 5-methylcytosine and 5-hydroxymethylcytosine dynamics. Either Lin28A or Tet1 knockdown leads to dysregulated DNA methylation and expression of common target genes. These results reveal a surprising role for Lin28A in transcriptional regulation via epigenetic DNA modifications and have implications for understanding mechanisms underlying versatile functions of Lin28A in mammalian systems.


Subject(s)
DNA-Binding Proteins/metabolism , Embryonic Stem Cells/metabolism , Gene Expression Regulation , Promoter Regions, Genetic , Proto-Oncogene Proteins/metabolism , RNA-Binding Proteins/metabolism , Transcriptional Activation , Animals , Binding Sites , Cell Line , DNA Methylation , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Mice , Proto-Oncogene Proteins/genetics , RNA Interference , RNA-Binding Proteins/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL