ABSTRACT
When studying unknown human remains, the estimation of skeletal sex and ancestry is paramount to create the victim's biological profile and attempt identification. In this paper, a multidisciplinary approach to infer the sex and biogeographical ancestry of different skeletons, using physical methods and routine forensic markers, is explored. Forensic investigators, thus, encounter two main issues: (1) the use of markers such as STRs that are not the best choice in terms of inferring biogeographical ancestry but are routine forensic markers to identify a person, and (2) the concordance of the physical and molecular results. In addition, a comparison of physical/molecular and then antemortem data (of a subset of individuals that are identified during our research) was evaluated. Antemortem data was particularly beneficial to evaluate the accuracy rates of the biological profiles produced by anthropologists and classification rates obtained by molecular experts using autosomal genetic profiles and multivariate statistical approaches. Our results highlight that physical and molecular analyses are in perfect agreement for sex estimation, but some discrepancies in ancestry estimation were observed in 5 out of 24 cases.
Subject(s)
Forensic Anthropology , Skeleton , Humans , Forensic Anthropology/methodsABSTRACT
Investigation of human mitochondrial DNA variation patterns and phylogeny has been extensively used in Anthropological and Population Genetics studies and sequencing the whole mitochondrial genome is progressively becoming the gold standard. Among the currently available massive parallel sequencing technologies, Ion Torrent™ semiconductor sequencing represents a promising approach for such studies. Nevertheless, an experimental protocol conceived to enable the achievement of both as high as possible yield and of the most homogeneous sequence coverage through the whole mitochondrial genome is still not available. The present work was thus aimed at improving the overall performance of whole mitochondrial genomes Ion Torrent™ sequencing, with special focus on the capability to obtain robust coverage and highly reliable variants calling. For this purpose, a series of cost-effective modifications in standard laboratory workflows was fine-tuned to optimize them for medium- and large-scale population studies. A total of 54 human samples were thus subjected to sequencing of the whole mitochondrial genome with the Ion Personal Genome Machine™ System in four distinct experiments and using Ion 314 chips. Seven of the selected samples were also characterized by means of conventional Sanger sequencing for the sake of comparison. Obtained results demonstrated that the implemented optimizations had definitely improved sequencing outputs in terms of both variants calling efficiency and coverage uniformity, enabling to setup an effective and accurate protocol for whole mitochondrial genome sequencing and a considerable reduction in experimental time consumption and sequencing costs.
Subject(s)
Genome, Mitochondrial , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing/methods , Genetics, Population/methods , Genome, Human , Humans , WorkflowABSTRACT
BACKGROUND: Non-celiac wheat sensitivity is an emerging wheat-related syndrome showing peak prevalence in Western populations. Recent studies hypothesize that new gliadin alleles introduced in the human diet by replacement of ancient wheat with modern varieties can prompt immune responses mediated by the CXCR3-chemokine axis potentially underlying such pathogenic inflammation. This cultural shift may also explain disease epidemiology, having turned European-specific adaptive alleles previously targeted by natural selection into disadvantageous ones. METHODS: To explore this evolutionary scenario, we performed ultra-deep sequencing of genes pivotal in the CXCR3-inflammatory pathway on individuals diagnosed for non-celiac wheat sensitivity and we applied anthropological evolutionary genetics methods to sequence data from worldwide populations to investigate the genetic legacy of natural selection on these loci. RESULTS: Our results indicate that balancing selection has maintained two divergent CXCL10/CXCL11 haplotypes in Europeans, one responsible for boosting inflammatory reactions and another for encoding moderate chemokine expression. CONCLUSIONS: This led to considerably higher occurrence of the former haplotype in Western people than in Africans and East Asians, suggesting that they might be more prone to side effects related to the consumption of modern wheat varieties. Accordingly, this study contributed to shed new light on some of the mechanisms potentially involved in the disease etiology and on the evolutionary bases of its present-day epidemiological patterns. Moreover, overrepresentation of disease homozygotes for the dis-adaptive haplotype plausibly accounts for their even more enhanced CXCR3-axis expression and for their further increase in disease risk, representing a promising finding to be validated by larger follow-up studies.
ABSTRACT
The identification of early warning signals for regime shifts in ecosystems is of crucial importance given their impact in terms of economic and social effects. We present here the results of a theoretical study on the desertification transition in semiarid ecosystems under external stress. We performed numerical simulations based on a stochastic cellular automaton model, and we studied the dynamics of the vegetation clusters in terms of percolation theory, assumed as an effective tool for analyzing the geometrical properties of the clusters. Focusing on the role played by the strength of external stresses, measured by the mortality rate m, we followed the progressive degradation of the ecosystem for increasing m, identifying different stages: first, the fragmentation transition occurring at relatively low values of m, then the desertification transition at higher mortality rates, and finally the full desertification transition corresponding to the extinction of the vegetation and the almost complete degradation of the soil, attained at the maximum value of m. For each transition we calculated the spanning probabilities as functions of m and the percolation thresholds according to different spanning criteria. The identification of the different thresholds is proposed as an useful tool for monitoring the increasing degradation of real-world finite-size systems. Moreover, we studied the time fluctuations of the sizes of the biggest clusters of vegetated and nonvegetated cells over the entire range of mortality values. The change of sign in the skewness of the size distributions, occurring at the fragmentation threshold for the biggest vegetation cluster and at the desertification threshold for the nonvegetated cluster, offers new early warning signals for desertification. Other new and robust indicators are given by the maxima of the root-mean-square deviation of the distributions, which are attained respectively inside the fragmentation interval, for the vegetated biggest cluster, and inside the desertification interval, for the nonvegetated cluster.
Subject(s)
Conservation of Natural Resources , Droughts , Ecosystem , Models, Theoretical , Climate Change , Probability , Stochastic ProcessesABSTRACT
We explored the "context of discovery" in Wason's 2-4-6 task, focusing on how the first hypothesis is generated. According to Oaksford and Chater (1994a) people generate hypotheses extracting "common features", or regularities, from the available triples, but their model does not explain why some regularities contribute to the hypothesis more than do other regularities. Our conjecture is that some regularities contribute to the hypothesis more than do other regularities because people estimate the amount of information in the perceived regularities and try to preserve as much information as possible in their initial hypotheses. Experiment 1, which used two initial triples, showed that the presence of high-information relational regularities in the initial triples affected the information in the initial hypotheses more than did the presence of low-information object regularities. Experiment 2 extended the results to the classic situation in which only one initial triple is given. It also suggested that amount of information is the only aspect of the structure of the triple that affects hypotheses generation. Experiment 3 confirmed the latter finding: Although relations are commonly distinguished between first-order and higher order relations, the latter being most important for generating hypotheses (Gentner, 1983), higher order relations do have an effect on Wason's 2-4-6 task only if their presence incre ases information. In the conclusion we discuss the statistical soundness of human hypotheses generation processes, and we ask an unanswered question: Amount of information explains why some regularities are preferred to others, but only within a set of "nonarbitrary" regularities; there are object regularities that are rich in information content, but are considered "arbitrary", and are not used in generating hypotheses. Which formal property can distinguish between these two sets of regularities?