Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Nano Lett ; 24(19): 5699-5704, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695662

ABSTRACT

We report the second harmonic generation (SHG) response from a single 34 nm diameter lithium niobate nanoparticle. The experimental setup involves a first beam devoted to the optical trapping of single nanoparticles, whereas a second arm involves a femtosecond laser source leading to the SHG emission from the trapped nanoparticles. SHG operation where one to three nanoparticles are present in the optical trap is first demonstrated, highlighting the transition between coherent and incoherent SHG, the latter known as hyper-Rayleigh scattering (HRS). With a spatial light modulator moving the optical trap in and out of the focus of the femtosecond beam, the SHG intensity is switched back and forth between a low and a high level. This controlled operation opens new avenues for nanoparticle characterization and applications in sensing or communication and information technologies and constitutes the first step in the design of active substrateless metasurfaces.

2.
Langmuir ; 37(18): 5563-5572, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33914530

ABSTRACT

Understanding the organization of the hydration layer at functionalized silica surfaces is relevant for a large range of biosensing applications or surface phenomena such as biomolecule adsorption. Silane monolayers are widely used to functionalize silica surfaces. Using molecular dynamics simulations, we have investigated the role of silane molecule head-group charge, alkyl chain length, and surface coverage in the structural organization and dynamic properties of Na+ ions, Cl- ions, and water molecules at the interface. The silane molecules studied are 3-aminopropyldimethylethoxysilane, n-propyldimethylmethoxysilane, octadecyldimethylmethoxysilane, and (dimethylamino)dimethylsilylundecanoate. Our results suggest that the distribution of interfacial ions is sensitive to the 2D dispersion of the silane-charged head groups. Also, while charged silane monolayers show a strong orientation of interfacial water molecules, which leads to a rupture in the hydrogen bond network and disturbs their tetrahedral organization, the arrangement of water molecules at the interface with uncharged silane monolayers seems to be related to the surface roughness and to alkyl chain length. In line with these results, the diffusion of ions and water molecules is higher at the CH3 long monolayer interface than at the CH3 short monolayer interface and at the charged monolayer interfaces. Also, whatever the silane molecules studied, bulk properties are recovered around 0.7 nm above the interface. The interfacial water organization is known to impact biomolecule adsorption. Therefore, these results could further help in optimizing the functionalization layers to capture analytes.

3.
Langmuir ; 36(49): 14960-14966, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33256413

ABSTRACT

Macropatterned and micropatterned gold/silicon dioxide/titanium tungsten (Au/SiO2/TiW) substrates were orthogonally functionalized: three different molecules (monovalent silane, thiol, and phosphonic acid) were used to specifically form organolayers on Au, SiO2, or TiW areas of patterned substrates. The orthogonality of the functionalization (i.e., selective grafting of thiol on Au, phosphonic acid on TiW, and silane on SiO2) was assessed by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), Fourier transform infrared spectroscopy (FTIR), and contact angle measurements. These results are especially promising for the selective anchoring of targets (e.g., biomolecules, nanoparticles, nanowires, nanotubes, or other nano-objects) onto patterned zones of multimaterial substrates, such as nanosensors or other nanodevices.

4.
Langmuir ; 35(29): 9554-9563, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31290675

ABSTRACT

Titanium tungsten (TiW) films (200 nm thick) were cleaned by oxygen plasma, and the resulting oxidized surfaces were functionalized by 3-aminopropylphosphonic acid (APPA), 3-ethoxydimethylsilylpropylamine (APDMES), or dopamine (DA) to form three different organolayers. The three resulting organolayers were characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and Fourier transform infrared spectroscopy analyses. The stability of each organolayer was investigated. Our results suggested that the Si-O-Ti or Si-O-W bonds formed by the reactions of APDMES with surface-oxidized TiW were rather labile, whereas the catechol layer was less labile. The APPA layer was the most stable of all tested surface modifications.

5.
Soft Matter ; 15(36): 7211-7218, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31475271

ABSTRACT

Pseudomonas aeruginosa is a human opportunistic pathogen responsible for lung infections in cystic fibrosis patients. The emergence of resistant strains and its ability to form a biofilm seem to give a selective advantage to the bacterium and thus new therapeutic approaches are needed. To infect the lung, the bacterium uses several virulence factors, like LecA lectins. These proteins are involved in bacterial adhesion due to their specific interaction with carbohydrates of the host epithelial cells. The tetrameric LecA lectin specifically binds galactose residues. A new therapeutic approach is based on the development of highly affine synthetic glycoclusters able to selectively link with LecA to interfere with the natural carbohydrate-LecA interaction. In this study, we combined atomic force microscopy imaging and molecular dynamics simulations to visualize and understand the arrangements formed by LecA and five different glycoclusters. Our glycoclusters are small scaffolds characterized by a core and four branches, which terminate in a galactose residue. Depending on the nature of the core and the branches, the glycocluster-lectin interaction can be modulated and the affinity increased. We show that glycocluster-LecA arrangements highly depend on the glycocluster architecture: the core influences the rigidity of the geometry and the directionality of the branches, whereas the nature of the branch determines the compactness of the structure and the ease of binding.


Subject(s)
Carbohydrates/chemistry , Lectins/chemistry , Microscopy, Atomic Force/methods , Nanostructures/chemistry , Bacterial Adhesion/drug effects , Computer Simulation , Epithelial Cells/drug effects , Humans , Models, Molecular , Monte Carlo Method , Protein Binding/drug effects , Protein Conformation , Protein Multimerization , Pseudomonas aeruginosa , Thermodynamics
6.
Nanotechnology ; 30(32): 325601, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-30939458

ABSTRACT

The evolution of nanobiosensors stresses the need for multi-material nanopatterned surfaces to enhance sensing performances. Titanium tungsten (TiW) has been mastered and routinely implemented in nanoelectronic devices, in a reproducible way and at industrial production scales. Such a material may be envisioned for use in (bio)chemical nanoelectronic sensors, but the surface functionalization of such material has yet to be studied. In the present article, the orthogonal chemical functionalization of patterned Au on TiW substrates has been explored for the first time. Surface functionalizations were assessed by x-ray photoelectron spectroscopy, polarization modulation infrared reflection-absorption spectroscopy and time-of-flight secondary ion mass spectrometry imaging. Au/TiW patterned substrates were functionalized with mercapto-undecamine. Thanks to the orthogonality of thiol/Au versus phosphonic acid/TiW reactions, only the Au features were modified leading to the amine derivatized surface. This allowed for the localizing of carboxy-functionalized nanoparticles by electrostatic interaction on Au with a selectivity above 10 when compared to TiW.

7.
Molecules ; 23(12)2018 Nov 24.
Article in English | MEDLINE | ID: mdl-30477231

ABSTRACT

The Gram negative bacterium Pseudomonas aeruginosa (PA) is an opportunistic bacterium that causes severe and chronic infection of immune-depressed patients. It has the ability to form a biofilm that gives a selective advantage to the bacteria with respect to antibiotherapy and host defenses. Herein, we have focused on the tetrameric soluble lectin which is involved in bacterium adherence to host cells, biofilm formation, and cytotoxicity. It binds to l-fucose, d-mannose and glycan exposing terminal fucose or mannose. Using a competitive assay on microarray, 156 oligosaccharides and polysaccharides issued from fermentation or from the biomass were screened toward their affinity to LecB. Next, the five best ligands (Lewisa, Lewisb, Lewisx, siayl-Lewisx and 3-fucosyllactose) were derivatized with a propargyl aglycon allowing the synthesis of 25 trivalent, 25 tetravalent and 5 monovalent constructions thanks to copper catalyzed azide alkyne cycloaddition. The 55 clusters were immobilized by DNA Directed immobilization leading to the fabrication of a glycocluster microarray. Their binding to LecB was studied. Multivalency improved the binding to LecB. The binding structure relationship of the clusters is mainly influenced by the carbohydrate residues. Molecular simulations indicated that the simultaneous contact of both binding sites of monomer A and D seems to be energetically possible.


Subject(s)
Lectins/chemistry , Oligosaccharides/chemistry , Pseudomonas aeruginosa/chemistry , Binding Sites , Lectins/metabolism , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding
8.
Chembiochem ; 18(11): 1036-1047, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28318079

ABSTRACT

Lectin A (LecA) from Pseudomonas aeruginosa is an established virulence factor. Glycoclusters that target LecA and are able to compete with human glycoconjugates present on epithelial cells are promising candidates to treat P. aeruginosa infection. A family of 32 glycodendrimers of generation 0 and 1 based on a bifurcated bis-galactoside motif have been designed to interact with LecA. The influences both of the central multivalent core and of the aglycon of these glycodendrimers on their affinity toward LecA have been evaluated by use of a microarray technique, both qualitatively for rapid screening of the binding properties and also quantitatively (Kd ). This has led to high-affinity LecA ligands with Kd values in the low nanomolar range (Kd =22 nm for the best one).


Subject(s)
Adhesins, Bacterial/metabolism , Drug Design , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/chemistry , Dendrimers/metabolism , Epithelial Cells/chemistry , Glycoconjugates/therapeutic use , Humans , Lectins/metabolism , Ligands , Protein Binding , Virulence Factors/metabolism
9.
Chemistry ; 22(33): 11785-94, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27412649

ABSTRACT

Anti-infectious strategies against pathogen infections can be achieved through antiadhesive strategies by using multivalent ligands of bacterial virulence factors. LecA and LecB are lectins of Pseudomonas aeruginosa implicated in biofilm formation. A series of 27 LecA-targeting glycoclusters have been synthesized. Nine aromatic galactose aglycons were investigated with three different linker arms that connect the central mannopyranoside core. A low-nanomolar (Kd =19 nm, microarray) ligand with a tyrosine-based linker arm could be identified in a structure-activity relationship study. Molecular modeling of the glycoclusters bound to the lectin tetramer was also used to rationalize the binding properties observed.


Subject(s)
Adhesins, Bacterial/chemistry , Galactose/chemistry , Lectins/chemistry , Pseudomonas aeruginosa/chemistry , Adhesins, Bacterial/metabolism , Galactose/metabolism , Lectins/metabolism , Ligands , Models, Molecular , Structure-Activity Relationship
10.
Nanotechnology ; 27(29): 295602, 2016 Jul 22.
Article in English | MEDLINE | ID: mdl-27275545

ABSTRACT

pH was used as the main driving parameter for specifically immobilizing silicon nanowires onto Si3N4 microsquares at the surface of a SiO2 substrate. Different pH values of the coating aqueous solution enabled to experimentally distribute nanowires between silicon nitride and silicon dioxide: at pH 3 nanowires were mainly anchored on Si3N4; they were evenly distributed between SiO2 and Si3N4 at pH 2.8; and they were mainly anchored on SiO2 at pH 2. A theoretical model based on DLVO theory and surface protonation/deprotonation equilibria was used to study how, in adequate pH conditions, Si nanowires could be anchored onto specific regions of a patterned Si3N4/SiO2 surface. Instead of using capillary forces, or hydrophilic/hydrophobic contrast between the two types of materials, the specificity of immobilization could rely on surface electric charge contrasts between Si3N4 and SiO2. This simple and generic method could be used for addressing a large diversity of nano-objects onto patterned substrates.

11.
Anal Bioanal Chem ; 408(5): 1497-506, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26715250

ABSTRACT

Heat shock proteins (HSPs) are over-expressed in a wide range of human cancers. It results in the stimulation of the immune system and consequently in elevated concentration of anti-HSP autoantibodies. Elevated anti-HSP autoantibodies were found in breast cancer patients, and they are associated with tumor metastasis. Therefore, screening these autoantibodies could be of diagnostic and prognostic values. Protein microarrays have already demonstrated their great potential as a diagnostic tool. However, protein diversity requires optimization of the microarray fabrication to achieve high sensitivity and specificity. In this study, seven HSPs were immobilized on six different surface chemistries. After evaluation and optimization with purified antibodies of the six surface chemistries, two surfaces were selected to detect anti-HSP autoantibodies in breast cancer sera. Multiplex detection of anti-HSP autoantibodies allowed discrimination of breast cancer patients (50) from healthy controls (26) with a sensitivity of 86% and a specificity of 100%.


Subject(s)
Autoantibodies/blood , Biomarkers, Tumor/blood , Breast Neoplasms/diagnosis , Heat-Shock Proteins/immunology , Protein Array Analysis/instrumentation , Protein Array Analysis/methods , Antigens, Neoplasm/blood , Autoantibodies/immunology , Biomarkers, Tumor/immunology , Breast Neoplasms/immunology , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoassay/methods , Neoplasm Staging , Prospective Studies
12.
Chembiochem ; 16(16): 2329-36, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26360327

ABSTRACT

Pseudomonas aeruginosa (PA) is an opportunistic bacterium involved in 10-30% of nosocomial diseases. It causes severe lung injury to cystic fibrosis patients, often leading to patient death. PA strains are multidrug resistant, thus making the design of new therapeutics a challenge for public health. One promising therapeutic option is to design glycoclusters that target the virulence factor of PA. LecA is a galactose-specific lectin that might be involved in adhesion and biofilm formation by PA. The DNA-directed immobilization (DDI) microarray is a powerful tool for screening and understanding of structure-activity relationships between glycoclusters and lectins. High-throughput and multiplexed analysis of lectin-glycocluster interactions on a DDI microarray allows measurement of IC50 and dissociation constant (Kd ) values with minute amounts of material. In order to study the robustness of the DDI microarray in determination of IC50 and Kd values, the impact of glycocluster surface density was investigated. The data obtained show that measured IC50 values were influenced by glycocluster surface density: as the density of glycoclusters increases, the measured IC50 values increase too. In contrast, the measured Kd values were not affected by glycocluster surface density, provided that the experimental conditions allow interaction between glycocluster and lectin at single-molecule level (no surface cluster effect).


Subject(s)
Adhesins, Bacterial/metabolism , Glycoproteins/metabolism , Microarray Analysis , Pseudomonas aeruginosa/metabolism , Adhesins, Bacterial/chemistry , Bacterial Adhesion , Biofilms , Fluorescence Resonance Energy Transfer , Glycoproteins/chemistry , Inhibitory Concentration 50 , Kinetics , Microscopy, Atomic Force , Protein Binding , Pseudomonas aeruginosa/genetics , Virulence Factors
13.
Org Biomol Chem ; 13(46): 11244-54, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26412676

ABSTRACT

Pseudomonas aeruginosa (PA) and Burkholderia ambifaria (BA) are two opportunistic Gram negative bacteria and major infectious agents involved in lung infection of cystic fibrosis patients. Both bacteria can develop resistance to conventional antibiotherapies. An alternative strategy consists of targeting virulence factors in particular lectins with high affinity ligands such as multivalent glycoclusters. LecA (PA-IL) and LecB (PA-IIL) are two tetravalent lectins from PA that recognise galactose and fucose respectively. BambL lectin from BA is trimeric with 2 binding sites per monomer and is also specific for fucose. These three lectins are potential therapeutic targets in an anti-adhesive anti-bacterial approach. Herein, we report the synthesis of 18 oligonucleotide pentofuranose-centered or mannitol-centered glycoclusters leading to tri-, penta- or decavalent clusters with different topologies. The linker arm length between the core and the carbohydrate epitope was also varied leading to 9 galactoclusters targeting LecA and 9 fucoclusters targeting both LecB and BambL. Their dissociation constants (Kd) were determined using a DNA-based carbohydrate microarray technology. The trivalent xylo-centered galactocluster and the ribo-centered fucocluster exhibited the best affinity for LecA and LecB respectively while the mannitol-centered decafucocluster displayed the best affinity to BambL. These data demonstrated that the topology and nature of linkers were the predominant factors for achieving high affinity rather than valency.


Subject(s)
Adhesins, Bacterial/metabolism , Burkholderia/metabolism , Glycoconjugates/chemistry , Glycoconjugates/pharmacology , Lectins/metabolism , Pseudomonas aeruginosa/metabolism , Binding Sites , Burkholderia/drug effects , Burkholderia Infections/drug therapy , Burkholderia Infections/microbiology , Drug Discovery , Humans , Models, Molecular , Molecular Targeted Therapy , Oligonucleotides/chemistry , Oligonucleotides/pharmacology , Protein Binding , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects
14.
Org Biomol Chem ; 13(31): 8433-44, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26090586

ABSTRACT

Pseudomonas aeruginosa (PA) is a major public health care issue due to its ability to develop antibiotic resistance mainly through adhesion and biofilm formation. Therefore, targeting the bacterial molecular arsenal involved in its adhesion and the formation of its biofilm appears as a promising tool against this pathogen. The galactose-binding LecA (or PA-IL) has been described as one of the PA virulence factors involved in these processes. Herein, the affinity of three tetravalent mannose-centered galactoclusters toward LecA was evaluated with five different bioanalytical methods: HIA, ELLA, SPR, ITC and DNA-based glycoarray. Inhibitory potential towards biofilms was then assessed for the two glycoclusters with highest affinity towards LecA (Kd values of 157 and 194 nM from ITC measurements). An inhibition of biofilm formation of 40% was found for these galactoclusters at 10 µM concentration. Applications of these macromolecules in anti-bacterial therapy are therefore possible through an anti-adhesive strategy.


Subject(s)
Biofilms/drug effects , Biofilms/growth & development , Galactose/chemistry , Galactose/pharmacology , Mannose/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Microbial Sensitivity Tests
15.
Bioconjug Chem ; 25(2): 379-92, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24479549

ABSTRACT

Pseudomonas aeruginosa (PA) is a major public health issue due to its impact on nosocomial infections as well as its impact on cystic fibrosis patient mortality. One of the main concerns is its ability to develop antibiotic resistance. Therefore, inhibition of PA virulence has been proposed as an alternative strategy to tackle PA based infections. LecA (or PA-IL), a galactose binding lectin from PA, is involved in its virulence. Herein, we aimed at designing high affinity synthetic ligands toward LecA for its inhibition and at understanding the key parameters governing the binding of multivalent galactosylated clusters. Twenty-five glycoclusters were synthesized and their bindings were studied on a carbohydrate microarray. Monosaccharide centered clusters and linear comb-like clusters were synthesized with different linkers separating the core and the galactosyl residues. Their length, flexibility, and aromaticity were varied. Our results showed that the binding profile of LecA to galactosylated clusters was dependent on both the core and the linker and also that the optimal linker was different for each core. Nevertheless, an aryl group in the linker structure drastically improved the binding to LecA. Our results also suggest that optimal distances are preferred between the core and the aromatic group and the core and the galactose.


Subject(s)
Adhesins, Bacterial/chemistry , DNA/chemistry , Galactose/chemistry , Pseudomonas aeruginosa/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Spectrometry, Mass, Electrospray Ionization
16.
Langmuir ; 30(16): 4545-50, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24720739

ABSTRACT

COOH-terminated self-assembled monolayers (SAMs) are widely used in biosensor technology to bind different amine-containing biomolecules. A covalent amide bond, however, can be achieved only if the carboxylic acids are activated. This activation process usually consists of forming an N-hydroxysuccinimidyl ester (NHS-ester) by consecutively reacting carboxylic acids with a carbodiimide and NHS. Though many papers report using this method,1-8 the experimental conditions vary greatly between them and chemical characterization at this stage is often omitted. Evidence of an efficient activation is therefore rarely shown. Furthermore, recent publications9-11 have highlighted the complexity of this process, with the possible formation of different byproducts. In this paper, we have conducted a study on NHS activation under different conditions with chemical characterization by polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). Our results indicate that the nature of the solvent and carbodiimide and the reactant concentrations play crucial roles in activation kinetics and efficiency.


Subject(s)
Carbodiimides/chemistry , Carboxylic Acids/chemistry , Biosensing Techniques , Solvents/chemistry , Spectrometry, Mass, Secondary Ion , Surface Properties
17.
Org Biomol Chem ; 12(45): 9166-79, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25295668

ABSTRACT

A library of 24 new mannose-centered tetragalactoclusters with four different linkers (di- and triethyleneglycol with phosphodiester or phosphorothioate linkages) and six different aromatic aglycons (O-phenyl, S-phenyl, O-benzyl, S-benzyl, O-biphenyl and O-naphthyl) was synthesized. Their interactions with LecA were evaluated on a DNA Directed Immobilization (DDI) based glycocluster array allowing the determination of their IC50 against lactose and the evaluation of their dissociation constant (Kd). Finally, the docking simulations confirm the experimental results and demonstrated that the better affinity of O-biphenyl- and O-naphthyl-galactoside is due to a double interaction between the aromatic ring and the histidine 50 and proline 51 of LecA.


Subject(s)
Adhesins, Bacterial/metabolism , Azides/chemistry , Biphenyl Compounds/chemistry , Galactose/chemistry , Galactosides/chemistry , Models, Molecular , Naphthols/chemistry , Galactosides/chemical synthesis
18.
Langmuir ; 29(5): 1498-509, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23305497

ABSTRACT

Antibody microarrays are powerful and high-throughput tools for screening and identifying tumor markers from small sample volumes of only a few microliters. Optimization of surface chemistry and spotting conditions are crucial parameters to enhance antibodies' immobilization efficiency and to maintain their biological activity. Here, we report the implementation of an antibody microarray for the detection of tumor markers involved in colorectal cancer. Three-dimensional microstructured glass slides were functionalized with three different aminated molecules ((3-aminopropyl)dimethylethoxysilane (APDMES), Jeffamine, and chitosan) varying in their chain length, their amine density, and their hydrophilic/hydrophobic balance. The physicochemical properties of the resulting surfaces were characterized. Antibody immobilization efficiency through physical interaction was studied as a function of surface properties as well as a function of the immobilization conditions. The results show that surface energy, steric hindrance, and pH of spotting buffer have great effects on protein immobilization. Under optimal conditions, biological activities of four immobilized antitumor marker antibodies were evaluated in multiplex immunoassay for the detection of the corresponding tumor markers. Results indicated that the chitosan functionalized surface displayed the highest binding capacity and allowed to retain maximal biological activity of the four tested antibody/antigen systems. Thus, we successfully demonstrated the application of amino-based surface modification for antibody microarrays to efficiently detect tumor markers.


Subject(s)
Amines/chemistry , Antibodies/chemistry , Biomarkers, Tumor/analysis , Chitosan/chemistry , Colorectal Neoplasms/diagnosis , Propylamines/chemistry , Silanes/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Protein Array Analysis , Surface Properties
19.
ACS Appl Mater Interfaces ; 15(15): 18685-18693, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37014887

ABSTRACT

Desorption ionization on silicon mass spectrometry (DIOS-MS) enables high throughput analysis of low-molecular-weight biomolecules. However, detection of metabolite biomarkers in complex fluids such as plasma requires sample pretreatment, limiting clinical application. Here, we show that porous silicon, chemically modified using monolayers of n-propyldimethylmethoxysilane molecules, is a good candidate for fingerprinting lysophosphatidylcholine (lysoPC) in plasma, without sample pretreatment, for DIOS-MS-based diagnosis (e.g., sepsis). Results were correlated to lysoPC molecule location inside/outside the pores, determined by time-of-flight secondary ion mass spectrometry profiling, and to physicochemical properties.


Subject(s)
Silanes , Silicon , Silicon/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Lysophosphatidylcholines , Porosity
20.
ACS Omega ; 8(31): 28898-28909, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576693

ABSTRACT

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) is a promising strategy for clinical diagnosis based on metabolite detection. However, several bottlenecks (such as the lack of reproducibility in analysis, the presence of an important background in low-mass range, and the lack of organic matrix for some molecules) prevent its transfer to clinical cases. These limitations can be addressed by using nanoporous silicon surfaces chemically functionalized with silane monolayers. In the present study, sepsis metabolite biomarkers were used to investigate the effects of silane monolayers and porous silicon substrates on MALDI-ToF MS analysis (signal-to-noise value (S/N), relative standard deviation of the S/N of triplicate samples (STDmean), and intra-substrates uniformity). Also, the impact of the physicochemical properties of metabolites, with different isoelectric points and hydrophobic-hydrophilic balances, was assessed. Four different silane molecules, with various alkyl chain lengths and head-group charges, were self-assembled in monolayers on plane and porous silicon surfaces. Their surface coverage and conformity were investigated by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The seven metabolites detected on the stainless-steel target plate (lysophosphatidylcholine, caffeine, phenylalanine, creatinine, valine, arginine, and glycerophosphocholine) are also detected on the silanized and bare, plane and porous silicon surfaces. Moreover, two metabolites, glycine and alanine, which are not detected on the stainless-steel target plate, are detected on all silanized surfaces, except glycine which is not detected on CH3 short-modified porous silicon and on the bare plane silicon substrate. In addition, whatever the metabolites (except phenylalanine and valine), at least one of the silicon surfaces allows to increase the S/N value in comparison with the stainless-steel target plate. Also, the heterogeneity of matrix crystallization features is linked to the STDmean which is poor on the NH3+ monolayer on plane substrate and better on the NH3+ monolayer on porous substrate, for most of the metabolites. Nevertheless, matrix crystallization features are not sufficient to systematically get high STDmean and uniformity in MALDI-ToF MS analysis. Indeed, the physicochemical properties of metabolites and surfaces, limitations in metabolite extraction from the pores, and improvement in metabolite desorption due to the pores are shown to significantly impact MS analysis. In particular, in the case of the most hydrophobic metabolites studied, the highest S/N values and the best STDmean and uniformity (the lowest values) are reached by using porous substrates, while in the case of the most hydrophilic metabolites studied, plane substrates demonstrated the highest S/N and the lowest STDmean. No clear trend of surface chemistry was evidenced.

SELECTION OF CITATIONS
SEARCH DETAIL