Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Virol ; 98(2): e0154623, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38299865

ABSTRACT

Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.


Subject(s)
Bacterial Proteins , COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Lipids , Recombinant Fusion Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Cricetinae , Mice , Adjuvants, Immunologic , Antibodies, Viral/immunology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Dendritic Cells/immunology , Disease Models, Animal , Receptors, IgG/classification , Receptors, IgG/immunology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/classification , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Staphylococcus aureus , Vaccine Development , Viral Load
2.
J Biomed Sci ; 29(1): 37, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35681239

ABSTRACT

BACKGROUND: Calls for the coronavirus to be treated as an endemic illness, such as the flu, are increasing. After achieving high coverage of COVID-19 vaccination, therapeutic drugs have become important for future SARS-CoV-2 variant outbreaks. Although many monoclonal antibodies have been approved for emergency use as treatments for SARS-CoV-2 infection, some monoclonal antibodies are not authorized for variant treatment. Broad-spectrum monoclonal antibodies are unmet medical needs. METHODS: We used a DNA prime-protein boost approach to generate high-quality monoclonal antibodies. A standard ELISA was employed for the primary screen, and spike protein-human angiotensin-converting enzyme 2 blocking assays were used for the secondary screen. The top 5 blocking clones were selected for further characterization, including binding ability, neutralization potency, and epitope mapping. The therapeutic effects of the best monoclonal antibody against SARS-CoV-2 infection were evaluated in a hamster infection model. RESULTS: Several monoclonal antibodies were selected that neutralize different SARS-CoV-2 variants of concern (VOCs). These VOCs include Alpha, Beta, Gamma, Delta, Kappa and Lambda variants. The high neutralizing antibody titers against the Beta variant would be important to treat Beta-like variants. Among these monoclonal antibodies, mAb-S5 displays the best potency in terms of binding affinity and neutralizing capacity. Importantly, mAb-S5 protects animals from SARS-CoV-2 challenge, including the Wuhan strain, D614G, Alpha and Delta variants, although mAb-S5 exhibits decreased neutralization potency against the Delta variant. Furthermore, the identified neutralizing epitopes of monoclonal antibodies are all located in the receptor-binding domain (RBD) of the spike protein but in different regions. CONCLUSIONS: Our approach generates high-potency monoclonal antibodies against a broad spectrum of VOCs. Multiple monoclonal antibody combinations may be the best strategy to treat future SARS-CoV-2 variant outbreaks.


Subject(s)
Antibodies, Monoclonal , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 Vaccines , Cricetinae , Humans , Spike Glycoprotein, Coronavirus/genetics
3.
Int J Mol Sci ; 23(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35563292

ABSTRACT

During the sustained COVID-19 pandemic, global mass vaccination to achieve herd immunity can prevent further viral spread and mutation. A protein subunit vaccine that is safe, effective, stable, has few storage restrictions, and involves a liable manufacturing process would be advantageous to distribute around the world. Here, we designed and produced a recombinant spike (S)-Trimer that is maintained in a prefusion state and exhibits a high ACE2 binding affinity. Rodents received different doses of S-Trimer (0.5, 5, or 20 µg) antigen formulated with aluminum hydroxide (Alum) or an emulsion-type adjuvant (SWE), or no adjuvant. After two vaccinations, the antibody response, T-cell responses, and number of follicular helper T-cells (Tfh) or germinal center (GC) B cells were assessed in mice; the protective efficacy was evaluated on a Syrian hamster infection model. The mouse studies demonstrated that adjuvating the S-Trimer with SWE induced a potent humoral immune response and Th1-biased cellular immune responses (in low dose) that were superior to those induced by Alum. In the Syrian hamster studies, when S-Trimer was adjuvanted with SWE, higher levels of neutralizing antibodies were induced against live SARS-CoV-2 from the original lineage and against the emergence of variants (Beta or Delta) with a slightly decreased potency. In addition, the SWE adjuvant demonstrated a dose-sparing effect; thus, a lower dose of S-Trimer as an antigen (0.5 µg) can induce comparable antisera and provide complete protection from viral infection. These data support the utility of SWE as an adjuvant to enhance the immunogenicity of the S-Trimer vaccine, which is feasible for further clinical testing.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Th1 Cells , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/pharmacology , Cricetinae , Emulsions , Humans , Mice , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology
4.
J Biomed Sci ; 27(1): 51, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32290844

ABSTRACT

BACKGROUND: The emergence of Zika virus (ZV) in tropical and subtropical areas of the world has created an urgent need for vaccines against ZV. However, approved vaccines that prevent ZV infection are not available. To develop an effective vaccine against ZV infection, a lipidated form of ZV envelope protein domain III that possesses an intrinsic adjuvant property was rationally designed. Our goal was to examine the immunogenicity of recombinant lipidated ZV envelope protein domain III (rLZE3) and evaluate its potential as a vaccine candidate against ZV. METHODS: Recombinant ZV envelope protein domain III (rZE3) and rLZE3 were prepared with an Escherichia coli-based system. Dendritic cell surface marker expression and cytokine production upon stimulation were analyzed to evaluate the function of rLZE3. Neutralizing antibody capacities were evaluated using focus reduction neutralization tests after immunization. To investigate the protective immunity in immunized mice, serum samples collected from immunized mice were adoptively transferred into AG129 mice, and then viremia levels and survival times were examined after ZV challenge. RESULTS: rLZE3 alone but not rZE3 alone efficiently activated dendritic cells in vitro and was taken up by dendritic cells in vivo. Immunization of C57BL/6 mice with rLZE3 alone (without exogenous adjuvant) could induce ZV-specific neutralizing antibody responses. Furthermore, serum samples obtained from rLZE3-immunized mice provided protection as indicated by a reduction in viremia levels and prolongation of survival times after ZV challenge. CONCLUSION: These results indicate that rLZE3 is an excellent vaccine candidate and has great potential that should be evaluated in further preclinical studies.


Subject(s)
Antibodies, Viral/immunology , Viral Envelope Proteins/immunology , Zika Virus Infection/immunology , Zika Virus/physiology , Animals , Antibodies, Neutralizing/immunology , Mice , Mice, Inbred C57BL , Protein Domains/immunology , Recombinant Proteins/immunology
5.
Mol Ther Methods Clin Dev ; 32(1): 101169, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38187094

ABSTRACT

DNA vaccines for infectious diseases and cancer have been explored for years. To date, only one DNA vaccine (ZyCoV-D) has been authorized for emergency use in India. DNA vaccines are inexpensive and long-term thermostable, however, limited by the low efficiency of intracellular delivery. The recent success of mRNA/lipid nanoparticle (LNP) technology in the coronavirus disease 2019 (COVID-19) pandemic has opened a new application for nucleic acid-based vaccines. Here, we report that plasmid encoding a trimeric spike protein with LNP delivery (pTS/LNP), similar to those in Moderna's COVID-19 vaccine, induced more effective humoral responses than naked pTS or pTS delivered via electroporation. Compared with TSmRNA/LNP, pTS/LNP immunization induced a comparable level of neutralizing antibody titers and significant T helper 1-biased immunity in mice; it also prolonged the maintenance of higher antigen-specific IgG and neutralizing antibody titers in hamsters. Importantly, pTS/LNP immunization exhibits enhanced cross-neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and protects hamsters from the challenge of SARS-CoV-2 (Wuhan strain and the Omicron BA.1 variant). This study indicates that pDNA/LNPs as a promising platform could be a next-generation vaccine technology.

6.
Arch Virol ; 158(7): 1523-31, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23456422

ABSTRACT

We have previously demonstrated that vaccination with a subunit dengue vaccine containing a consensus envelope domain III with aluminum phosphate elicits neutralizing antibodies against all four serotypes of dengue virus in mice. In this study, we evaluated the immunogenicity of the subunit dengue vaccine in non-human primates. After vaccination, monkeys that received the subunit vaccine with aluminum phosphate developed a significantly strong and long-lasting antibody response. A specific T cell response with cytokine production was also induced, and this correlated with the antibody response. Additionally, neutralizing antibodies against serotype 2 were detected in two of three monkeys. The increase in serotype-2-specific antibody titers and avidity observed in these two monkeys suggested that a serotype-2-biased antibody response occurs. These data provide evidence that a protective neutralizing antibody response was successfully elicited in non-human primates by the dengue subunit vaccine with aluminum phosphate adjuvant.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Dengue Vaccines/immunology , Dengue Virus/immunology , Viral Envelope Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Aluminum Compounds/administration & dosage , Animals , Antibody Affinity , Cytokines/metabolism , Dengue Vaccines/administration & dosage , Dengue Vaccines/genetics , Dengue Virus/genetics , Haplorhini , Phosphates/administration & dosage , T-Lymphocytes/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Viral Envelope Proteins/genetics
7.
NPJ Vaccines ; 8(1): 82, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268688

ABSTRACT

Formyl peptide receptor-like 1 inhibitor protein (FLIPr) is an immune evasion protein produced by Staphylococcus aureus, and FLIPr is a potential vaccine candidate for reducing Staphylococcus aureus virulence and biofilm formation. We produced recombinant lipidated FLIPr (rLF) to increase the immunogenicity of FLIPr and showed that rLF alone elicited potent anti-FLIPr antibody responses to overcome the FLIPr-mediated inhibition of phagocytosis. In addition, rLF has potent immunostimulatory properties. We demonstrated that rLF is an effective adjuvant. When an antigen is formulated with rLF, it can induce long-lasting antigen-specific immune responses and enhance mucosal and systemic antibody responses as well as broad-spectrum T-cell responses in mice. These findings support further exploration of rLF in the clinic as an adjuvant for various vaccine types with extra benefits to abolish FLIPr-mediated immunosuppressive effects.

8.
JCI Insight ; 7(8)2022 04 22.
Article in English | MEDLINE | ID: mdl-35290246

ABSTRACT

Most therapeutic mAbs target the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. Unfortunately, the RBD is a hot spot for mutations in SARS-CoV-2 variants, which will lead to loss of the neutralizing function of current therapeutic mAbs. Universal mAbs for different variants are necessary. We identified mAbs that recognized the S2 region of the spike protein, which is identical in different variants. The mAbs could neutralize SARS-CoV-2 infection and protect animals from SARS-CoV-2 challenge. After cloning the variable region of the light chain and heavy chain, the variable region sequences were humanized to select a high-affinity humanized mAb, hMab5.17. hMab5.17 protected animals from SARS-CoV-2 challenge and neutralized SARS-CoV-2 variant infection. We further identified the linear epitope of the mAb, which is not mutated in any variant of concern. These data suggest that a mAb recognizing the S2 region of the spike protein will be a potential universal therapeutic mAb for COVID-19.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Monoclonal , Antibodies, Viral , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
Biomedicines ; 9(7)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34356870

ABSTRACT

Formyl peptide receptor-like 1 inhibitor (FLIPr), an Fcγ receptor (FcγR) antagonist, can be used as a carrier to guide antigen-FLIPr fusion protein to FcγR then enhances antigen-specific immune responses. Survivin, a tumor-associated antigen, is over-expressed in various types of human cancer. In this study, we demonstrate that recombinant survivin-FLIPr fusion protein (rSur-FLIPr) binds to FcγRs, and efficient uptake by dendritic cells in vivo. In addition, rSur-FLIPr alone stimulates survivin-specific immune responses, which effectively suppresses the tumor growth. The antitumor immunities are through TAP-mediated and CD8-dependent pathways. Furthermore, preexisting anti-FLIPr antibody does not abolish antitumor responses induced by rSur-FLIPr immunization. These results suggest that FLIPr is an effective antigen delivery vector and can be repeatedly used. Combination of chemotherapy with rSur-FLIPr treatment reveals a great benefit to tumor-bearing mice. Altogether, these findings suggest that rSur-FLIPr is a potential candidate for efficient cancer therapy.

10.
Front Immunol ; 12: 751883, 2021.
Article in English | MEDLINE | ID: mdl-34707615

ABSTRACT

A simple formulation is urgently needed for mucosal vaccine development. We employed formyl peptide receptor-like 1 inhibitory protein (FLIPr), an FcγR antagonist secreted by Staphylococcus aureus, as a vector to target ovalbumin (OVA) to dendritic cells (DCs) via intranasal administration. Our results demonstrate that intranasal administration of recombinant OVA-FLIPr fusion protein (rOVA-FLIPr) alone efficiently delivers OVA to DCs in nasal lymphoid tissue. Subsequently, OVA-specific IgG and IgA antibodies in the circulatory system and IgA antibodies in mucosal tissue were detected. Importantly, activation of OVA-specific CD4+ and CD8+ T cells and induction of a broad-spectrum cytokine secretion profile were detected after intranasal administration of rOVA-FLIPr alone in immunocompetent C57BL/6 mice. Furthermore, we employed immunodeficient AG129 mice as a Zika virus infection model and demonstrated that intranasal administration of recombinant Zika virus envelope protein domain III-FLIPr fusion protein induced protective immune responses against the Zika virus. These results suggest that antigen-FLIPr fusion protein alone via intranasal administration can be applied to mucosal vaccine development.


Subject(s)
Antigens/administration & dosage , Bacterial Proteins/administration & dosage , Ovalbumin/administration & dosage , Recombinant Fusion Proteins/administration & dosage , Vaccination/methods , Administration, Intranasal , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Immunity, Mucosal , Immunoglobulin A/blood , Immunoglobulin G/blood , Mice, Inbred C57BL
11.
Front Immunol ; 11: 546, 2020.
Article in English | MEDLINE | ID: mdl-32300346

ABSTRACT

Dengue is an emerging mosquito-borne disease, and the use of prophylactic vaccines is still limited. We previously developed a tetravalent dengue vaccine (rMV-TDV) by a recombinant measles virus (MV) vector expressing envelope protein domain III (ED3). In this study, we used dengue-susceptible AG129 mice to evaluate the protective and/or pathogenic immune responses induced by rMV-TDV. Consistent with the previous study, rMV-TDV-immunized mice developed a significant neutralizing antibody response against all serotypes of DENV, as well as a significant IFN-γ response biased to DENV-3, compared to the vector controls. We further demonstrated that this DENV-3-specific IFN-γ response was dominated by one CD4+ T-cell epitope located in E349-363. After DENV-2 challenge, rMV-TDV-immunized mice showed a significantly lower viremia and no inflammatory cytokine increase compared to the vector controls, which had an ~100 times higher viremia and a significant increase in IFN-γ and TNF-α. As a correlate of protection, a robust memory IFN-γ response specific to DENV-2 was boosted in rMV-TDV-immunized mice after challenge. This result suggested that pre-existing DENV-3-dominated T-cell responses did not cross-react, but a DENV-2-specific IFN-γ response, which was undetectable during immunization, was recalled. Interestingly, this recalled T-cell response recognized the epitope in the same position as the E349-363 but in the DENV-2 serotype. This result suggested that immunodomination occurred in the CD4+ T-cell epitopes between dengue serotypes after rMV-TDV vaccination and resulted in a DENV-3-dominated CD4+ T-cell response. Although the significant increase in IgG against both DENV-2 and -3 suggested that cross-reactive antibody responses were boosted, the increased neutralizing antibodies and IgG avidity still remained DENV-2 specific, consistent with the serotype-specific T cell response post challenge. Our data reveal that immunodomination caused a biased T-cell response to one of the dengue serotypes after tetravalent dengue vaccination and highlight the roles of cross-reactive T cells in dengue protection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dengue Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , Immunodominant Epitopes/immunology , Vaccines, Combined/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue Virus/immunology , Genetic Vectors , Measles virus , Mice , Serogroup , Vaccines, Attenuated/immunology , Viral Envelope Proteins/immunology
12.
Front Immunol ; 10: 1839, 2019.
Article in English | MEDLINE | ID: mdl-31428106

ABSTRACT

A major challenge for vaccine development is targeting antigens to dendritic cells (DCs) in vivo, enabling cross-presentation, and inducing the memory responses. Fcγ receptors (FcγRs) are expressed on many cell types including DCs. Therefore, targeting of antigen to DCs via FcγRs is an attractive strategy for vaccine development. This study employ formyl peptide receptor-like 1 inhibitory protein (FLIPr), an FcγR binding protein secreted by Staphylococcus aureus, to deliver antigen to DCs. Our results show that FLIPr is a competent vehicle in delivering antigen to CD8+ DCs for induction of potent immunities without extra adjuvant formulation. Fusion antigen with FLIPr enables effective antigen presentation on both MHC class II and class I to induce memory T cell responses. Altogether, using FLIPr as an antigen delivery vector has great potential to apply antigens for cancer immunotherapy as well as other infectious disease vaccines.


Subject(s)
Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Neoplasms/immunology , Receptors, Formyl Peptide/immunology , Animals , Antigen Presentation/immunology , Cross-Priming/immunology , Female , Immunologic Memory/immunology , Immunotherapy/methods , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, IgG/immunology , Staphylococcus aureus/immunology
13.
Front Immunol ; 9: 822, 2018.
Article in English | MEDLINE | ID: mdl-29755461

ABSTRACT

Survivin is overexpressed in various types of human cancer, but rarely expressed in terminally differentiated adult tissues. Thus, survivin is a potential target antigen for a cancer vaccine. However, self-tumor-associated antigens are not highly immunogenic. Bacteria-derived lipoproteins can activate antigen-presenting cells through their toll-like receptors to enhance immune responses. In this context, lipidated survivin is an attractive candidate for cancer immunotherapy. In the present study, recombinant lipidated human survivin (LSur) was prepared from an Escherichia coli-based system. We investigated whether LSur is efficiently captured by antigen-presenting cells then facilitating effective induction of survivin cross-presentation and generation of immunity against cancer cells. Our results demonstrate that LSur, but not its non-lipidated counterpart, can activate mouse bone-marrow-derived-dendritic cells (BMDCs) to enhance cytokine (IL-6, TNF-α, and IL-12) secretion and costimulatory molecules (CD40, CD80, CD86, and MHC II) expression. However, the pathways involved in the capture of the recombinant lipidated antigen by antigen-presenting cells have not yet been elucidated. To this end, we employ various endocytosis inhibitors to study the effect on LSur internalization. We show that the internalization of LSur is suppressed by the inhibition of various routes of endocytosis. These results suggest that endocytosis of LSur by BMDCs can be mediated by multiple mechanisms. Furthermore, LSur is trafficked to the early endosome after internalization by BMDCs. These features of LSur are advantageous for cross-presentation and the induction of antitumor immunity. We demonstrate that immunization of C57BL/6 mice with LSur under treatment with exogenous adjuvant-free formulation induce survivin-specific CD8+ T-cell responses and suppress tumor growth. The antitumor responses are mediated by CD8+ cells. Our findings indicate that LSur is a potential candidate for stimulating protective antitumor immunity. This study suggests that lipidated tumor antigens may be a promising approach for raising a robust antitumor response in cancer immunotherapy.


Subject(s)
Antigen Presentation , Antigens, Neoplasm/immunology , Lipids/chemistry , Neoplasms/therapy , Survivin/chemistry , Animals , Antigens, CD/genetics , Antigens, CD/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cytokines/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Endocytosis , Escherichia coli/genetics , Female , Humans , Immunization , Immunotherapy , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Recombinant Proteins/chemistry , Survivin/genetics
14.
Intervirology ; 50(4): 254-63, 2007.
Article in English | MEDLINE | ID: mdl-17460414

ABSTRACT

OBJECTIVE: The Epstein-Barr virus (EBV) has been implicated in the development of many human neoplasias including B lymphoma and nasopharyngeal carcinoma. EBV latent membrane protein 1 (LMP1) is essential to virus-induced B cell immortalization and the downregulation of cell adhesion molecules that increases cell motility. Therefore, identifying LMP1 activity modulation methods may lead to the development of new therapies for LMP1-positive tumors. METHODS: This study uses a phage display single-chain variable fragments (scFvs) library to screen recombinant antibodies specific to the LMP1 C terminal region. A total of 45 individual clones were obtained, and these scFvs were cloned as intrabodies and transfected into LMP1-positive cells. RESULTS: One of the scFv clones, designated H3, was capable of reducing LMP1-mediated NF-kappaB activation in HEK293 cells. Immunofluorescence and co-immunoprecipitation studies show that scFv H3 could interact with LMP1 in vivo. In addition, expression of scFv H3 intrabody could reduce cell motility in MDCK-LMP1 cells in the transwell migration assay. CONCLUSION: These data indicate that scFv H3 intrabody can inhibit LMP1 functions in epithelial cells and may be useful for attenuating the LMP1 function in LMP1-positive tumors.


Subject(s)
Antibodies, Viral/immunology , Antibody Specificity , Herpesvirus 4, Human/pathogenicity , Immunoglobulin Variable Region/immunology , Viral Matrix Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Cell Line , Cell Line, Tumor , Cell Movement/immunology , Dogs , Epithelial Cells , Humans , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Molecular Sequence Data , Peptide Library , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Analysis, DNA , Transfection , Viral Matrix Proteins/chemistry
15.
Vaccine ; 34(8): 1054-61, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26776472

ABSTRACT

The linkage of an immunogen with a toll-like receptor ligand has great potential to induce highly potent immune responses with the initial features of antigen-presenting cell activation. In the current study, we expressed recombinant dengue-3 envelope protein domain III (D3ED III) in lipidated form using an Escherichia coli-based system. The recombinant lipidated dengue-3 envelope protein domain III (LD3ED III) augments the expression levels of IL-12 family cytokines. LD3ED III-immunized mice enhance wide ranges of T cell responses as indicated by IFN-γ, IL-17, IL-21 production. Additionally, LD3ED III-immunized mice increase the frequencies of anti-D3ED III antibody producing cells. The boosted antibody titers cover various IgG isotypes, including IgG1, IgG2a, IgG2b, and IgG3. Importantly, LD3ED III-immunized mice induce neutralizing antibody capacity associated with a reduction of viremia levels after challenges. In contrast, mice that are immunized with D3ED III formulated with aluminum phosphate (D3ED III/Alum) only enhance Th2 responses and boost IgG1 antibody titers. Neither neutralizing antibody responses nor the inhibition of viremia levels after challenge is observed in mice that are immunized with D3ED III/Alum. These results suggest that LD3ED III can induce broad profiles of cellular and humoral immune responses.


Subject(s)
Dengue Vaccines/immunology , Dengue/prevention & control , Viral Envelope Proteins/immunology , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cytokines/immunology , Dendritic Cells/immunology , Dengue Virus , Female , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G/blood , Lipids/chemistry , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology , T-Lymphocytes/immunology , Viremia/prevention & control
16.
Sci Rep ; 6: 30648, 2016 07 29.
Article in English | MEDLINE | ID: mdl-27470096

ABSTRACT

We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates.


Subject(s)
Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Lipoproteins/immunology , Recombinant Proteins/immunology , Viral Envelope Proteins/immunology , Animals , Dengue Vaccines/administration & dosage , Dengue Vaccines/genetics , Disease Models, Animal , Enzyme-Linked Immunospot Assay , Female , Immunity, Cellular , Immunity, Humoral , Lipoproteins/genetics , Mice, Inbred BALB C , Neutralization Tests , Protein Domains , Recombinant Proteins/genetics , Serogroup , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Envelope Proteins/genetics
17.
Virus Res ; 108(1-2): 139-48, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15681064

ABSTRACT

The porcine endogenous retrovirus (PERV) has drawn extensive attention recently, due to the widespread use of biomaterials of porcine origin in organ transplantation. This virus is present in all pig strains and has been demonstrated to be capable of infecting human cells in vitro. Therefore, it is imperative to develop a highly sensitive and specific immunoassay for clinical surveillance in patients receiving xenotransplantation. We describe here the generation of a monoclonal antibody (mAb) named A-11 specifically against the Gag protein of PERV. The mAb was found to be able to detect PERV produced from cultured cells. No cross-reaction with Gag proteins of murine leukemia virus (MuLV) and human immunodeficiency virus-1/2 was observed indicating that it is highly specific to PERV. The mAb was characterized as IgG2b subtype and kappa light chain. The region recognized by the mAb A-11 was localized to amino acid 293-336 on the Gag protein, and a synthetic peptide corresponding to amino acid 313-322 effectively competed the binding of the mAb with recombinant Gag proteins. Both immunocytochemistry and flow cytometry showed that the antibody is suitable for detection of PERV infection. By using the assays, we found that PERV-infected cells primarily of epithelial origin, with the highest infection rate in 293 followed by HEp-2 cells. In summary, the A-11 mAb will be useful for the development of quantitative and qualitative immunoassays for monitoring PERV infection in xenotransplantation patients and individuals who have close contact with pigs.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Endogenous Retroviruses/immunology , Endogenous Retroviruses/isolation & purification , Gene Products, gag/immunology , Retroviridae Infections/diagnosis , Animals , Cell Line , Epitope Mapping , Flow Cytometry , HIV-1/immunology , HIV-2/immunology , Humans , Immunochemistry , Immunoglobulin G , Leukemia Virus, Murine/immunology , Retroviridae Infections/virology , Sensitivity and Specificity , Swine/virology
18.
PLoS One ; 10(12): e0145717, 2015.
Article in English | MEDLINE | ID: mdl-26714037

ABSTRACT

Dengue is the leading cause of mosquito-borne viral infections and no vaccine is available now. Envelope protein domain III (ED3) is the major target for the binding of dengue virus neutralizing antibodies; however, the ED3-specifc T-cell response is less well understood. To investigate the T-cell responses to four serotypes of dengue virus (DENV-1 to 4), we immunized mice using either a tetravalent ED3-based DNA or protein vaccine, or combined both as a DNA prime-protein boost strategy (prime-boost). A significant serotype-dependent IFN-γ or IL-4 response was observed in mice immunized with either the DNA or protein vaccine. The IFN-γ response was dominant to DENV-1 to 3, whereas the IL-4 response was dominant to DENV-4. Although the similar IgG titers for the four serotypes were observed in mice immunized with the tetravalent vaccines, the neutralizing antibody titers varied and followed the order of 2 = 3>1>4. Interestingly, the lower IFN-γ response to DENV-4 is attributable to the immunodominance change between two CD4+ T-cell epitopes; one T-cell epitope located at E349-363 of DENV-1 to 3 was more immunogenic than the DENV-4 epitope E313-327. Despite DENV-4 specific IFN-γ responses were suppressed by immunodominance change, either DENV-4-specific IFN-γ or neutralizing antibody responses were still recalled after DENV-4 challenge and contributed to virus clearance. Immunization with the prime-boost elicited both IFN-γ and neutralizing antibody responses and provided better protection than either DNA or protein immunization. Our findings shed light on how ED3-based tetravalent dengue vaccines sharpen host CD4 T-cell responses and contribute to protection against dengue virus.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dengue Vaccines/chemistry , Dengue Vaccines/immunology , Immunodominant Epitopes/immunology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Amino Acid Sequence , Animals , Female , Immunization , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Protein Structure, Tertiary
19.
Vaccine ; 32(12): 1346-53, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24486311

ABSTRACT

The combination of recombinant protein antigens with an immunostimulator has the potential to greatly increase the immunogenicity of recombinant protein antigens. In the present study, we selected the dengue-4 envelope protein domain III as a dengue vaccine candidate and expressed the protein in lipidated form using an Escherichia coli-based system. The recombinant lipidated dengue-4 envelope protein domain III folded into the proper conformation and competed with the dengue-4 virus for cellular binding sites. Mice immunized with lipidated dengue-4 envelope protein domain III without exogenous adjuvant had higher frequencies of dengue-4 envelope protein domain III-specific B cells secreting antibodies than mice immunized with the nonlipidated form. Importantly, lipidated dengue-4 envelope protein domain III-immunized mice demonstrated a durable neutralizing antibody response and had reduced viremia levels after challenge. The study demonstrates that lipidated dengue-4 envelope protein domain III is immunogenic and may be a potential dengue vaccine candidate. Furthermore, the lipidation strategy can be applied to other serotypes of dengue virus.


Subject(s)
Dengue Vaccines/immunology , Dengue/prevention & control , Lipids/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cell Line , Cricetinae , Female , Immunity, Humoral , Mice , Mice, Inbred BALB C , Neutralization Tests , Protein Folding , Protein Structure, Tertiary , Recombinant Proteins/immunology , Viremia/prevention & control
20.
PLoS Negl Trop Dis ; 7(9): e2432, 2013.
Article in English | MEDLINE | ID: mdl-24069487

ABSTRACT

BACKGROUND: Dengue virus is a mosquito-transmitted virus that can cause self-limiting dengue fever, severe life-threatening dengue hemorrhagic fever and dengue shock syndrome. The existence of four serotypes of dengue virus has complicated the development of an effective and safe dengue vaccine. Recently, a clinical phase 2b trial of Sanofi Pasteur's CYD tetravalent dengue vaccine revealed that the vaccine did not confer full protection against dengue-2 virus. New approaches to dengue vaccine development are urgently needed. Our approach represents a promising method of dengue vaccine development and may even complement the deficiencies of the CYD tetravalent dengue vaccine. METHODOLOGY/PRINCIPAL FINDINGS: Two important components of a vaccine, the immunogen and immunopotentiator, were combined into a single construct to generate a new generation of vaccines. We selected dengue-2 envelope protein domain III (D2ED III) as the immunogen and expressed this protein in lipidated form in Escherichia coli, yielding an immunogen with intrinsic immunopotentiation activity. The formulation containing lipidated D2ED III (LD2ED III) in the absence of exogenous adjuvant elicited higher D2ED III-specific antibody responses than those obtained from its nonlipidated counterpart, D2ED III, and dengue-2 virus. In addition, the avidity and neutralizing capacity of the antibodies induced by LD2ED III were higher than those elicited by D2ED III and dengue-2 virus. Importantly, we showed that after lipidation, the subunit candidate LD2ED III exhibited increased immunogenicity while reducing the potential risk of antibody-dependent enhancement of infection in mice. CONCLUSIONS/SIGNIFICANCE: Our study suggests that the lipidated subunit vaccine approach could be applied to other serotypes of dengue virus and other pathogens.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody-Dependent Enhancement , Dengue Vaccines/immunology , Dengue/prevention & control , Viral Envelope Proteins/immunology , Animals , Dengue/immunology , Dengue Vaccines/administration & dosage , Escherichia coli/genetics , Mice , Mice, Inbred BALB C , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL