Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Cancer Immunol Immunother ; 73(5): 92, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564022

ABSTRACT

Current immune checkpoint inhibiters (ICIs) have contrasting clinical results in poorly immunogenic cancers such as microsatellite-stable colorectal cancer (MSS-CRC). Therefore, understanding and developing the combinational therapeutics for ICI-unresponsive cancers is critical. Here, we demonstrated that the novel topoisomerase I inhibitor TLC388 can reshape the tumor immune landscape, corroborating their antitumor effects combined with radiotherapy as well as immunotherapy. We found that TLC388 significantly triggered cytosolic single-stranded DNA (ssDNA) accumulation for STING activation, leading to type I interferons (IFN-Is) production for increased cancer immunogenicity to enhance antitumor immunity. TLC388-treated tumors were infiltrated by a vast number of dendritic cells, immune cells, and costimulatory molecules, contributing to the favorable antitumor immune response within the tumor microenvironment. The infiltration of cytotoxic T and NK cells were more profoundly existed within tumors in combination with radiotherapy and ICIs, leading to superior therapeutic efficacy in poorly immunogenic MSS-CRC. Taken together, these results showed that the novel topoisomerase I inhibitor TLC388 increased cancer immunogenicity by ssDNA/STING-mediated IFN-I production, enhancing antitumor immunity for better therapeutic efficacy in combination with radiotherapy and ICIs for poorly immunogenic cancer.


Subject(s)
Camptothecin/analogs & derivatives , Colorectal Neoplasms , Topoisomerase I Inhibitors , Humans , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use , Colorectal Neoplasms/therapy , Cytosol , Tumor Microenvironment
2.
Cancer Immunol Immunother ; 72(7): 2283-2297, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36881132

ABSTRACT

The CD39-CD73-adenosinergic pathway converts adenosine triphosphate (ATP) to adenosine for inhibiting anti-tumor immune responses. Therefore, targeting CD73 to reinvigorate anti-tumor immunity is considered the novel cancer immunotherapy to eradicate tumor cells. To fully understand the critical role of CD39/CD73 in colon adenocarcinoma (COAD), this study aims to comprehensive investigate the prognostic significance of CD39 and CD73 in stage I-IV COAD. Our data demonstrated that CD73 staining strongly marked malignant epithelial cells and CD39 was highly expressed in stromal cells. Attractively, tumor CD73 expression was significantly associated with tumor stage and the risk of distant metastasis, which suggested CD73 was as an independent factor for colon adenocarcinoma patients in univariate COX analysis [HR = 1.465, 95%CI = 1.084-1.978, p = 0.013]; however, high stromal CD39 in COAD patients was more likely to have favorable survival outcome [HR = 1.458, p = 1.103-1.927, p = 0.008]. Notably, high CD73 expression in COAD patients showed poor response to adjuvant chemotherapy and high risk of distant metastasis. High CD73 expression was inversely associated with less infiltration of CD45+ and CD8+ immune cells. However, administration with anti-CD73 antibodies significantly increased the response to oxaliplatin (OXP). Blockade of CD73 signaling synergistically enhanced OXP-induced ATP release, which is a marker of immunogenic cell death (ICD), promotes dendritic cell maturation and immune cell infiltration. Moreover, the risk of colorectal cancer lung metastasis was also decreased. Taken together, the present study revealed tumor CD73 expression inhibited the recruitment of immune cells and correlated with a poor prognosis in COAD patients, especially patients received adjuvant chemotherapy. Targeting CD73 to markedly increased the therapeutic response to chemotherapy and inhibited lung metastasis. Therefore, tumor CD73 may be an independent prognostic factor as well as the potential of therapeutic target for immunotherapy to benefit colon adenocarcinoma patients.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Lung Neoplasms , Humans , Adenocarcinoma/pathology , Colonic Neoplasms/drug therapy , Adenosine Triphosphate/metabolism , Lung Neoplasms/drug therapy , Oxaliplatin/therapeutic use , Dendritic Cells/metabolism
3.
J Cell Physiol ; 236(9): 6481-6495, 2021 09.
Article in English | MEDLINE | ID: mdl-33580514

ABSTRACT

AAA domain containing 3A (ATAD3A) is a nucleus-encoded mitochondrial protein with vital function in communication between endoplasmic reticulum (ER) and mitochondria which is participated in cancer metastasis. Here we show that elevated ATAD3A expression is clinically associated with poor 5-year disease-free survival in patients with colorectal cancer (CRC), especially high-risk CRC patients who received adjuvant chemotherapy. Our results indicated ATAD3A is significantly upregulated to reduce chemotherapy-induced cancer cell death. We found that knockdown of ATAD3A leads to dysregulation in protein processing for inducing ER stress by RNA sequencing (RNA-seq). In response to chemotherapy-induced ER stress, ATAD3A interacts with elevated GRP78 protein to assist protein folding and alleviate ER stress for cancer cell survival. This reduction of ER stress leads to reduce the surface exposure of calreticulin, which is the initiator of immunogenic cell death and antitumor immunity. However, silencing of ATAD3A enhances cell death, triggers the feasibility of chemotherapy-induced ER stress for antitumor immunity, increases infiltration of T lymphocytes and delays tumor regrowth in vitro and in vivo. Clinically, CRC patients with less ATAD3A have high density of CD45+ intratumoral infiltrating lymphocytes (TILs) and memory CD45RO+ TILs. Taken together, our results suggest that pharmacologic targeting to ATAD3A might be a potential therapeutic strategy to enhance antitumor immunity for CRC patients who received adjuvant chemotherapy.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm , Endoplasmic Reticulum Stress , Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Aged , Animals , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/immunology , Disease-Free Survival , Drug Resistance, Neoplasm/drug effects , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Female , Homeostasis/drug effects , Humans , Immunogenic Cell Death/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice, Inbred BALB C , Models, Biological , Multivariate Analysis , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Protein Binding/drug effects , Protein Stability/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
4.
Cancer Immunol Immunother ; 70(10): 2937-2950, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33713152

ABSTRACT

Immunosurveillance and immunoscavenging prompted by preoperative chemoradiotherapy (CCRT) may contribute to improve local control and increase survival outcomes for patients with locally advanced rectal cancer (LARC). In this study, we investigated several genotypes of pattern recognition receptors (PRRs) and their impact on therapeutic efficacy in LARC patients treated with CCRT. We found that homozygosis of formyl peptide receptor 1 (FPR1) (E346A/rs867228) was associated with reduced 5-year overall survival (OS) by Kaplan-Meier analysis (62% vs. 81%, p = 0.014) and multivariate analysis [hazard ratio (HR) = 3.383, 95% CI = 1.374-10.239, p = 0.007]. Moreover, in an animal model, we discovered that the FPR1 antagonist, Boc-MLF (Boc-1), reduced CCRT therapeutic efficacy and decreased cytotoxic T cells and T effector memory cells after chemoradiotherapy treatment. Pharmacologic inhibition of FPR1 by Boc-1 decreased T lymphocyte migration to irradiated tumor cells. Therefore, these results revealed that the FPR1 genotype participates in CCRT-elicited anticancer immunity by reducing T lymphocytes migration and infiltration, and that the FPR1-E346A CC genotype can be considered an independent biomarker for chemo- and radiotherapy outcomes.


Subject(s)
Receptors, Formyl Peptide/metabolism , Animals , Chemoradiotherapy , Female , Humans , Mice , Neoadjuvant Therapy , Prognosis , Rectal Neoplasms
5.
Biochem Biophys Res Commun ; 510(1): 42-47, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30683316

ABSTRACT

Epidermal growth factor receptor (EGFR) plays a significant role in promoting breast cancer progression. However, targeting EGFR as a single treatment only resulted in moderate efficacy to the disease. The underlying mechanism of low responsiveness to EGFR inhibition remains largely unclear. Tumor-secreted extracellular vesicles (EVs) play a crucial role in mediating intercellular communication between tumor and stromal cells in local microenvironment and distant metastatic niche. Extracellular vesicles mediate cell-to-cell transfer of lipids, nucleic acids, and proteins. Although numerous recent studies have demonstrated exchanges of extracellular vesicles between cancer cells and the recipient cells contribute to tumor proliferation, invasion, and metastasis, yet little is known how the exosomal compartment responds to targeted therapies and their role in promoting drug resistance. In the current study we used a triple-negative breast cancer model to show that EV-encapsulated EGFR is protected from targeted inhibitors of EGFR and can trigger signaling pathway in recipient cancer cells, promoting proliferation and migration ability in vitro. Taken together, our study suggested a novel mechanism of drug resistance entailing the EV compartment, such as exosomes, as a target shelter which when released can signal for tumor promotion in the recipient cancer cells.


Subject(s)
ErbB Receptors/metabolism , Exosomes/physiology , Cell Communication , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Progression , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/pharmacology , Humans , Protein Kinase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/pathology
6.
Cancer Immunol Immunother ; 68(2): 283-296, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30448924

ABSTRACT

The expression of programmed cell death 1 ligand 1 (PD-L1) and interferon-γ (IFN-γ) is of great interest for the development of chemoradiotherapy and immune checkpoint inhibitor treatments. Patients with nodal metastasis (pN+) tend to have a poor prognosis, even after neoadjuvant chemoradiotherapy (neoCRT) and surgical treatment. In this study, we examined the roles of tumor PD-L1 and IFN-γ before and after neoCRT in locally advanced rectal cancer (LARC) patients. Our results demonstrate that patients with high PD-L1 expression in post-neoCRT tissues exhibit improved 5-year disease-free survival (DFS) and overall survival (OS) compared with those with low PD-L1 expression (p < 0.001). Furthermore, in the pN+ population, patients with high PD-L1 expression in post-neoCRT tissues exhibit improved 5-year DFS and OS. PD-L1 and IFN-γ upregulation increased in tumor tissues after neoCRT, and patients with high PD-L1 and high IFN-γ exhibit improved 5-year DFS and OS (p = 0.04 and p = 0.001, respectively). To the best of our knowledge, this study is the first to demonstrate that PD-L1 upregulation in a pN+ cohort correlates with improved prognosis, which is similar to that in patients without nodal metastasis. Moreover, this study verified that PD-L1 and IFN-γ were upregulated by neoCRT treatment in LARC patients and demonstrated that neoCRT may be useful not only for immune checkpoint inhibitor treatment but also for reinvigorating preexisting anti-cancer immunity.


Subject(s)
B7-H1 Antigen/biosynthesis , Rectal Neoplasms/therapy , Up-Regulation/drug effects , Up-Regulation/radiation effects , Adult , Aged , Aged, 80 and over , Chemoradiotherapy , Female , Humans , Kaplan-Meier Estimate , Lymphatic Metastasis , Male , Middle Aged , Neoadjuvant Therapy , Prognosis , Rectal Neoplasms/metabolism , Rectal Neoplasms/pathology
7.
J Mol Cell Cardiol ; 122: 58-68, 2018 09.
Article in English | MEDLINE | ID: mdl-30098987

ABSTRACT

Mitochondrial dysfunction is a major contributor to myocyte loss and the development of heart failure. Myocytes have quality control mechanisms to retain functional mitochondria by removing damaged mitochondria via specialized autophagy, i.e., mitophagy. The underlying mechanisms of fission affect the survival of cardiomyocytes, and left ventricular function in the heart is poorly understood. Here, we demonstrated the direct effect and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial dynamics in heart failure. We observed that IGF-IIR signaling produced significant changes in mitochondrial morphology and function; such changes were associated with the altered expression and distribution of dynamin-related protein (Drp1) and mitofusin (Mfn2). IGF-IIR signaled extracellular signal-regulated kinase (ERK) activation to promote Drp1 phosphorylation and translocation to mitochondria for mitochondrial fission and mitochondrial dysfunction. Moreover, IGF-IIR signaling triggered Rab9-dependent autophagosome formation by the JNK-mediated phosphorylation of Bcl-2 at serine 87 and promoted ULK1/Beclin 1-dependent autophagic membrane formation. Excessive mitochondrial fission by Drp1 enhanced the Rab9-dependent autophagosome recognition and engulfing of damaged mitochondria and eventually decreased cardiomyocyte viability. Therefore, these results demonstrated the connection between Rab9-dependent autophagosomes and mitochondrial fission in cardiac myocytes, which provides a potential therapeutic strategy for treating heart disease.


Subject(s)
Dynamins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Heart Failure/metabolism , Mitochondria, Heart/metabolism , Receptor, IGF Type 2/metabolism , Analysis of Variance , Animals , Autophagosomes/metabolism , Autophagy , Cell Line , Female , MAP Kinase Signaling System , Mitochondrial Dynamics , Mitophagy , Myocytes, Cardiac/metabolism , Phosphorylation , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , rab GTP-Binding Proteins/metabolism
8.
J Cell Physiol ; 233(9): 7080-7091, 2018 09.
Article in English | MEDLINE | ID: mdl-29574782

ABSTRACT

Mitochondria dysfunction is the major characteristic of mitophagy, which is essential in mitochondrial quality control. However, excessive mitophagy contributes to cell death in a number of diseases, including ischemic stroke and hepatotoxicity. Insulin-like growth factor II (IGF-II) and its receptor (IGF-IIR) play vital roles in the development of heart failure during hypertension. We found that IGF-II triggers IGF-IIR receptor activation, causing mitochondria dysfunction, resulting in mitophagy, and cardiomyocyte cell death. These results indicated that IGF-IIR activation triggers mitochondria fragmentation, leading to autophagosome formation, and loss of mitochondria content. These results are associated with Parkin-dependent mitophagy. Additionally, autophagic proteins Atg5, and Atg7 deficiency did not suppress IGF-IIR-induced mitophagy. However, Rab9 knockdown reduced mitophagy and maintained mitochondrial function. These constitutive mitophagies through IGF-IIR activation trigger mitochondria loss and mitochondrial ROS accumulation for cardiomyocyte viability decrease. Together, our results indicate that IGF-IIR predominantly induces mitophagy through the Rab9-dependent alternative autophagy.


Subject(s)
Autophagy , Mitochondria/metabolism , Mitophagy , Receptor, IGF Type 2/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Animals, Newborn , Autocrine Communication , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Dependovirus/metabolism , Female , Heart/physiopathology , Humans , Insulin-Like Growth Factor II/metabolism , Mitochondria/ultrastructure , Models, Biological , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Organ Specificity , Paracrine Communication , Rats, Sprague-Dawley , Ubiquitin-Protein Ligases/metabolism
9.
Cancer Immunol Immunother ; 67(4): 551-562, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29270668

ABSTRACT

Rectal cancer, which comprises 30% of all colorectal cancer cases, is one of the most common forms of cancer in the world. Patients with locally advanced rectal cancer (LARC) are often treated with neoadjuvant chemoradiotherapy (neoCRT) followed by surgery. However, after neoCRT treatment, approximately one-third of the patients progress to local recurrence or distant metastasis. In these studies, we found that patients with tumors that exhibited cytosolic HMGB1(Cyto-HMGB1) translocation and/or the presence of PD-1+ tumor-infiltrating lymphocytes (TILs) before treatment had a better clinical outcome. The better outcome is likely due to the release of HMGB1, which triggers the maturation of dendritic cells (DCs) via TLR4 activation, and the subsequent recruitment of PD-1+ tumor-infiltrating lymphocytes to the tumor site, where they participate in immune-scavenging. In conclusion, our results provide evidence that cyto-HMGB1 and/or PD-1+TIL are not only predictive biomarkers before treatment, but they can also potentially designate patients for personalized oncological management including immunotherapy.


Subject(s)
Biomarkers, Tumor/metabolism , Cytosol/metabolism , HMGB1 Protein/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Neoadjuvant Therapy/mortality , Programmed Cell Death 1 Receptor/metabolism , Rectal Neoplasms/pathology , Tumor Microenvironment/immunology , Aged , Chemoradiotherapy, Adjuvant , Female , Humans , Male , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy , Prognosis , Rectal Neoplasms/immunology , Rectal Neoplasms/metabolism , Rectal Neoplasms/therapy , Survival Rate
10.
Ann Hematol ; 94(1): 13-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25118993

ABSTRACT

The mechanisms of idiopathic severe aplastic anemia (SAA) in children are not completely understood. Insufficiency of the bone marrow microenvironment, in which mesenchymal stem cells (MSCs) are an important element, can be a potential factor associated with hematopoietic impairment. In the current study, we studied whether aberrant gene expression could be found in MSCs from children with SAA. Using microarray analysis, two different patterns of global gene expression were detected in the SAA MSCs. Fourteen genes (POLE2, HGF, KIF20A, TK1, IL18R1, KITLG, FGF18, RRM2, TTK, CXCL12, DLG7, TOP2A, NUF2, and TYMS), which are related to DNA synthesis, cytokines, or growth factors, were significantly downregulated. Further, knockdown of gene expression was performed using the small hairpin RNA (shRNA)-containing lentivirus method. We found that knockdown of CXCL12, HGF, IL-18R1, FGF18, or RRM2 expression compelled MSCs from the controls to behave like those from the SAA children, with decreased survival and differentiation potential. Among them, inhibition of CXCL12 gene expression had the most profound effects on the behavior of MSCs. Further experiments regarding re-introduction of the CXCL12 gene could largely recover the survival and differentiation potential in MSCs with inhibition of CXCL12 expression. Our findings suggest that MSCs from children with SAA exhibit aberrant gene expression profiles and downregulation of CXCL12 gene may be associated with alterations in the bone marrow microenvironment.


Subject(s)
Anemia, Aplastic/metabolism , Chemokine CXCL12/biosynthesis , Down-Regulation/physiology , Gene Expression Profiling , Mesenchymal Stem Cells/metabolism , Severity of Illness Index , Adolescent , Anemia, Aplastic/diagnosis , Child , Child, Preschool , Female , Gene Expression Profiling/methods , Gene Expression Regulation , Humans , Male
11.
Anticancer Res ; 44(2): 787-796, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38307574

ABSTRACT

BACKGROUND/AIM: One-third of newly diagnosed colorectal cancer cases are rectal cancers. Multimodal treatment regimens including surgery, radiotherapy, and chemotherapy improve local control and survival outcome and decrease tumor relapse for patients with rectal adenocarcinoma (READ). However, stratification of patients to predict their responses is urgently needed to improve therapeutic responses. PATIENTS AND METHODS: Immunostainings of CD3+, CD8+, and CD45RO+ immune cell subsets within the tumor microenvironment were evaluated using immunohistochemistry in two hundred seventy-nine READ patients. RESULTS: In this study, we found that examination of the adaptive immune response by quantifying CD3+, CD8+, and CD45RO+ immune cell subsets, provides improved and independent prognostic value for patients with READ. Regardless of conventional clinical and pathologic parameters, the densities of T cell subsets were strongly related to a better prognosis in patients with READ. High density of intratumoral immune cells is associated with absence of nodal metastasis, lymphovascular invasion, and perineural invasion. Moreover, high tumor-infiltrating lymphocyte (TIL) subsets were associated with favorable survival outcome in patients with READ, especially high-risk patients with advanced READ. CONCLUSION: Immune cell subsets including CD3, CD8, and CD45RO within the tumor microenvironment were independent prognostic factors for patients with READ.


Subject(s)
Adenocarcinoma , Rectal Neoplasms , Humans , Prognosis , Tumor Microenvironment , Neoplasm Recurrence, Local/pathology , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Leukocyte Common Antigens , Adenocarcinoma/therapy , Adenocarcinoma/pathology , Lymphocytes, Tumor-Infiltrating , CD8-Positive T-Lymphocytes
12.
Cell Death Dis ; 15(1): 24, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195677

ABSTRACT

ATP and its receptor P2RX7 exert a pivotal effect on antitumor immunity during chemotherapy-induced immunogenic cell death (ICD). Here, we demonstrated that TNFα-mediated PANX1 cleavage was essential for ATP release in response to chemotherapy in colorectal cancer (CRC). TNFα promoted PANX1 cleavage via a caspase 8/3-dependent pathway to enhance cancer cell immunogenicity, leading to dendritic cell maturation and T-cell activation. Blockade of the ATP receptor P2RX7 by the systemic administration of small molecules significantly attenuated the therapeutic efficacy of chemotherapy and decreased the infiltration of immune cells. In contrast, administration of an ATP mimic markedly increased the therapeutic efficacy of chemotherapy and enhanced the infiltration of immune cells in vivo. High PANX1 expression was positively correlated with the recruitment of DCs and T cells within the tumor microenvironment and was associated with favorable survival outcomes in CRC patients who received adjuvant chemotherapy. Furthermore, a loss-of-function P2RX7 mutation was associated with reduced infiltration of CD8+ immune cells and poor survival outcomes in patients. Taken together, these results reveal that TNFα-mediated PANX1 cleavage promotes ATP-P2RX7 signaling and is a key determinant of chemotherapy-induced antitumor immunity.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Tumor Necrosis Factor-alpha , Lymphocyte Activation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Adenosine Triphosphate , Tumor Microenvironment , Nerve Tissue Proteins , Connexins/genetics , Receptors, Purinergic P2X7/genetics
13.
J Cancer ; 15(6): 1750-1761, 2024.
Article in English | MEDLINE | ID: mdl-38370387

ABSTRACT

Despite advances in therapeutic strategies for colorectal cancer (CRC), CRC has a high disease incidence with significant morbidity and mortality worldwide. Notably, immunotherapy has shown limited efficacy in treating metastatic CRC, underscoring the need for alternative immunotherapeutic targets for the management of metastatic colorectal cancer (mCRC). In the present study, we evaluated the levels of the immune checkpoint proteins PD-L1, PD-L2 and B7-H3 in a large cohort retrospective study. We found that tumor B7-H3 (52.7%) was highly expressed in primary tumors compared to that in PD-L1 (33.6%) or PD-L2 (34.0%). Elevated B7-H3 expression was associated with advanced stage and the risk of distant metastasis and correlated with poor disease-free survival (DFS), suggesting that tumor B7-H3 was an independent prognostic factor associated with worse DFS in colon adenocarcinoma patients (COAD), especially high-risk COAD patients who received adjuvant chemotherapy. Furthermore, we found that B7-H3 significantly promoted cell proliferation and tumor growth in CRC. B7-H3 may stabilize EGFR to activate its downstream pathway for cancer cell proliferation and resistance to oxaliplatin (OXP). Dual targeting of B7-H3 and EGFR markedly rescued the susceptibility to chemotherapy in colorectal cancer cells in vitro and in vivo. Overall, these results showed that B7-H3 exhibited a high prevalence in COAD patients and was significantly associated with worse prognosis in COAD patients. Dual targeting of B7-H3 and EGFR signaling might be a potential therapeutic strategy for high-risk COAD patients.

14.
Biomed Pharmacother ; 177: 116958, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917760

ABSTRACT

The therapeutic efficacy of immunotherapy is limited in the majority of colorectal cancer patients due to the low mutational and neoantigen burdens in this immunogenically "cold" microsatellite stability-colorectal cancer (MSS-CRC) cohort. Here, we showed that DNA methyltransferase (DNMT) inhibition upregulated neoantigen-bearing gene expression in MSS-CRC, resulting in increased neoantigen presentation by MHC class I in tumor cells and leading to increased neoantigen-specific T-cell activation in combination with radiotherapy. The cytotoxicity of neoantigen-reactive T cells (NRTs) to DNMTi-treated cancer cells was highly cytotoxic, and these cells secreted high IFNγ levels targeting MSS-CRC cells after ex vivo expansion of NRTs with DNMTi-treated tumor antigens. Moreover, the therapeutic efficacy of NRTs further increased when NRTs were combined with radiotherapy in vivo. Administration of DNMTi-augmented NRTs and radiotherapy achieved an ∼50 % complete response and extended survival time in an immunocompetent MSS-CRC animal model. Moreover, remarkably, splenocytes from these mice exhibited neoantigen-specific T-cell responses, indicating that radiotherapy in combination with DNMTi-augmented NRTs prolonged and increased neoantigen-specific T-cell toxicity in MSS-CRC patients. In addition, these DNMTi-augmented NRTs markedly increase the therapeutic efficacy of cancer vaccines and immune checkpoint inhibitors (ICIs). These data suggest that a combination of radiotherapy and epi-immunotherapeutic agents improves the function of ex vivo-expanded neoantigen-reactive T cells and increases the tumor-specific cytotoxic effector population to enhance therapeutic efficacy in MSS-CRC.


Subject(s)
Antigens, Neoplasm , Colorectal Neoplasms , Microsatellite Instability , Animals , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/radiotherapy , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Humans , Mice , Female , Cell Line, Tumor , T-Lymphocytes/immunology , Male
15.
J Immunother Cancer ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38749537

ABSTRACT

BACKGROUND: Cancer-intrinsic type I interferon (IFN-I) production triggered by radiotherapy (RT) is mainly dependent on cytosolic double-stranded DNA (dsDNA)-mediated cGAS/STING signaling and increases cancer immunogenicity and enhances the antitumor immune response to increase therapeutic efficacy. However, cGAS/STING deficiency in colorectal cancer (CRC) may suppress the RT-induced antitumor immunity. Therefore, we aimed to evaluate the importance of the dsRNA-mediated antitumor immune response induced by RT in patients with CRC. METHODS: Cytosolic dsRNA level and its sensors were evaluated via cell-based assays (co-culture assay, confocal microscopy, pharmacological inhibition and immunofluorescent staining) and in vivo experiments. Biopsies and surgical tissues from patients with CRC who received preoperative chemoradiotherapy (neoCRT) were collected for multiplex cytokine assays, immunohistochemical analysis and SNP genotyping. We also generated a cancer-specific adenovirus-associated virus (AAV)-IFNß1 construct to evaluate its therapeutic efficacy in combination with RT, and the immune profiles were analyzed by flow cytometry and RNA-seq. RESULTS: Our studies revealed that RT stimulates the autonomous release of dsRNA from cancer cells to activate TLR3-mediated IFN-I signatures to facilitate antitumor immune responses. Patients harboring a dysfunctional TLR3 variant had reduced serum levels of IFN-I-related cytokines and intratumoral CD8+ immune cells and shorter disease-free survival following neoCRT treatment. The engineered cancer-targeted construct AAV-IFNß1 significantly improved the response to RT, leading to systematic eradication of distant tumors and prolonged survival in defective TLR3 preclinical models. CONCLUSION: Our results support that increasing cancer-intrinsic IFNß1 expression is an immunotherapeutic strategy that enhances the RT-induced antitumor immune response in locally patients with advanced CRC with dysfunctional TLR3.


Subject(s)
Colorectal Neoplasms , Interferon Type I , Interferon-beta , RNA, Double-Stranded , Humans , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/immunology , Interferon-beta/metabolism , Mice , Animals , Interferon Type I/metabolism , Signal Transduction , Female , Male
16.
In Vivo ; 37(4): 1552-1561, 2023.
Article in English | MEDLINE | ID: mdl-37369459

ABSTRACT

BACKGROUND/AIM: Chemotherapeutic drugs or radiation can cause immunogenic cell death (ICD) and damage-associated molecular pattern (DAMP) release to activate pattern recognition receptor (PRR) in immune cells. Several PRRs bridge innate immunity and adaptive immunity and are implicated in the anticancer immune response. However, single nucleotide polymorphisms (SNPs) in PRRs are associated with chemotherapeutic drugs or radiation response in cancer treatment. PATIENTS AND METHODS: We enrolled 117 patients with rectal cancer who received surgery with or without postoperative chemotherapy and examined the SNPs in PRRs from formalin-fixed, paraffin embedded tissues. The genotypes of RAGE (G82S/rs2070600), P2RX7 (E496A/rs3751143), and FPR1 (E346A/rs867228) were determined and analyzed using the MassARRAY platform. RESULTS: We integrated the status of PRR polymorphism into the PRR score and found that the PRR score was significantly associated with 10-year disease-free survival (DFS) (p=0.025) in patients with rectal cancer. Moreover, the PRR score was an independent risk factor for 10-year DFS (HR=4.400, 95%CI=1.607-12.212, p=0.004) and 10-year overall survival (OS) (HR=4.674, 95%CI=1.423-16.038, p=0.011) in patients with rectal cancer treated postoperatively with adjuvant chemotherapy. CONCLUSION: The PRR score is an independent prognostic factor for the survival outcome of patients with rectal cancer, especially those treated postoperatively with adjuvant chemotherapy. PRR score evaluation may be used as a biomarker in the clinic.


Subject(s)
Rectal Neoplasms , Humans , Rectal Neoplasms/drug therapy , Rectal Neoplasms/genetics , Prognosis , Rectum , Chemotherapy, Adjuvant , Polymorphism, Single Nucleotide , Disease-Free Survival , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/therapeutic use
17.
Sci Rep ; 13(1): 19440, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945630

ABSTRACT

Regional lymph node metastasis is an important predictor for survival outcome and an indicator for postoperative adjuvant chemotherapy in patients with colorectal cancer. Even with advances in adjuvant chemotherapeutic regimens, 5-year distant metastasis and survival rates are still unsatisfactory. Here, we evaluate the clinical significance of polymorphisms in receptors for HMGB1, which is the hallmark of chemotherapy-induced immunogenic cell death, in patients with stage II-III colon carcinoma (COAD). We found that high cytosolic HMGB1 is elicited in stage III COAD patients who received adjuvant chemotherapy. Patients with the TLR1-N248S polymorphism (rs4833095), which causes loss-of-function in HMGB1-mediated TLR1-TLR2 signaling, may influence the therapeutic efficacy of adjuvant chemotherapy, leading to a high risk of distant metastasis within 5 years [HR = 1.694, 95% CI = 1.063-2.698, p = 0.027], suggesting that TLR1-N248S is an independent prognostic factor for locally advanced colon carcinoma patients. We found that defective TLR1 impaired TLR1/2 signaling during dendritic cell (DC) maturation for the antitumor immune response under immunogenic chemotherapy oxaliplatin (OXP) treatment. Defective TLR1 on DCs impaired their maturation ability by HMGB1 and reduced the secretion of IFNγ from T cells to eradicate tumor cells in vitro. Moreover, systemic inhibition of TLR1/2 dramatically reduced the tumor-infiltrating immune cells by OXP treatment, leading to poor therapeutic response to OXP. In contrast, administration of a TLR1/2 agonist synergistically increased the benefit of OXP treatment and triggered a high density of tumor-infiltrating immune cells. We also observed that fewer tumor-infiltrating cytotoxic T lymphocytes were located within the tumor microenvironment in patients bearing the TLR1-N248S polymorphism. Overall, our results suggest that dysfunctional TLR1 may reduce the therapeutic response to adjuvant chemotherapy by impairing HMGB1-mediated DC maturation and attenuating the antitumor immune response in locally advanced colon carcinoma patients.


Subject(s)
Carcinoma , Colonic Neoplasms , HMGB1 Protein , Humans , Toll-Like Receptor 1/genetics , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Oxaliplatin/therapeutic use , Colonic Neoplasms/pathology , Tumor Microenvironment
18.
Cancer Immunol Res ; 11(1): 123-136, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36315960

ABSTRACT

The potency of tumor-specific antigen (TSA) vaccines, such as neoantigen (neoAg)-based cancer vaccines, can be compromised by host immune checkpoint inhibitory mechanisms, such as programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1), that attenuate neoAg presentation on dendritic cells (DC) and hinder T cell-mediated cytotoxicity. To overcome PD-1/PD-L1 inhibition in DCs, we developed a novel adeno-associated virus (meAAV) neoAg vaccine, modified with TLR9 inhibitory fragments, PD-1 trap, and PD-L1 miRNA, which extend the persistence of meAAV and activate neoAg-specific T-cell responses in immune-competent colorectal and breast cancer murine models. Moreover, we found that in combination with radiotherapy, the meAAV-based neoAg cancer vaccine not only elicited higher antigen presentation ability, but also maintained neoAg-specific cytotoxic T lymphocyte (CTL) responses. These functional PD-1 traps and PD-L1 miRNAs overcome host PD-1/PD-L1 inhibitory mechanisms and boost the therapeutic efficacy of radiotherapy. More importantly, combined radiotherapy and meAAV neoAg cancer vaccines significantly enhanced neoAg-specific CTL responses, increased CTL infiltration in tumor microenvironment, and decreased tumor-associated immunosuppression. This process led to the complete elimination of colorectal cancer and delayed tumor growth of breast cancer in tumor-bearing mice. Taken together, our results demonstrated a novel strategy that combines neoAg cancer vaccine and radiotherapy to increase the therapeutic efficacy against colorectal and breast cancers.


Subject(s)
Cancer Vaccines , Colorectal Neoplasms , MicroRNAs , Mice , Animals , B7-H1 Antigen , Programmed Cell Death 1 Receptor , T-Lymphocytes, Cytotoxic , MicroRNAs/genetics , Colorectal Neoplasms/therapy , Tumor Microenvironment
19.
J Cell Sci ; 123(Pt 7): 1171-80, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20332122

ABSTRACT

AAA domain-containing 3A (ATAD3A) is a member of the AAA-ATPase family. Three forms of ATAD3 have been identified: ATAD3A, ATAD3B and ATAD3C. In this study, we examined the type and expression of ATAD3 in lung adenocarcinoma (LADC). Expression of ATAD3A was detected by reverse transcription-polymerase chain reaction, immunoblotting, immunohistochemistry and confocal immunofluorescent microscopy. Our results show that ATAD3A is the major form expressed in LADC. Silencing of ATAD3A expression increased mitochondrial fragmentation and cisplatin sensitivity. Serum deprivation increased ATAD3A expression and drug resistance. These results suggest that ATAD3A could be an anti-apoptotic marker in LADC.


Subject(s)
Adenocarcinoma/metabolism , Adenosine Triphosphatases/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis , Lung Neoplasms/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , ATPases Associated with Diverse Cellular Activities , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenosine Triphosphatases/genetics , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Cisplatin/pharmacology , Disease Progression , Drug Resistance/genetics , Female , HeLa Cells , Humans , Immunohistochemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Membrane Proteins/genetics , Microscopy, Fluorescence , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Neoplasm Staging , RNA, Small Interfering/genetics , Sequence Analysis, DNA
20.
Oncol Lett ; 24(1): 238, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35720473

ABSTRACT

Rectal adenocarcinoma (READ) constitutes one-third of newly diagnosed colorectal cancer cases. Surgery, chemotherapy and concurrent chemoradiotherapy are the main treatments to improve patient outcomes for READ. However, patients with READ receiving these treatments eventually relapse, leading to a poor survival outcome. The present study collected surgical specimens from patients with READ and determined that cytoplasmic cell division cycle 27 (CDC27) expression was associated with the risk of lymph node metastasis and distant metastasis. Nuclear CDC27 expression was negatively associated with 5-year disease-free survival (DFS) and 5-year overall survival (OS) rates. Multivariate Cox proportional regression analysis showed that nuclear CDC27 was an independent prognostic factor in the patients with READ, especially in those treated with adjuvant chemotherapy. High nuclear CDC27 expression was significantly associated with poorer 5-year DFS (HR, 2.106; 95% CI, 1.275-3.570; P=0.003) and 5-year OS (HR, 2.369; 95% CI, 1.270-4.6810; P=0.005) rates. The data indicated that cytoplasmic CDC27 expression could affect tumor progression and that it plays an important role in metastasis. Nuclear CDC27 expression was markedly associated with poorer survival outcomes and was an independent prognostic factor in patients with postoperative adjuvant chemotherapy-treated READ. Thus, CDC27 expression serves as a potential prognostic marker for rectal tumor progression and chemotherapy treatment.

SELECTION OF CITATIONS
SEARCH DETAIL