Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 153(5): 1012-24, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23706739

ABSTRACT

Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes ("spermatoproteasomes") contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic ß subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.


Subject(s)
DNA Repair , Histones/metabolism , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Spermatogenesis , Testis/metabolism , Acetylation , Amino Acid Sequence , Animals , DNA Breaks, Double-Stranded , Humans , Male , Mice , Molecular Sequence Data , Nuclear Proteins/chemistry , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment
2.
J Biol Chem ; 299(1): 102791, 2023 01.
Article in English | MEDLINE | ID: mdl-36509142

ABSTRACT

Hypoxia-inducible factor 1α (HIF1α) is a transcription factor that regulates angiogenesis under hypoxic conditions. To investigate the posttranscriptional regulatory mechanism of HIF1α, we performed a cell-based screening to reveal potential cis-elements and the regulatory RNA-binding proteins that act as trans-factors. We found that LIN28A promoted HIF1α protein expression independently of the downregulation of microRNA let-7, which is also directly mediated by LIN28A. Transcriptome analysis and evaluation of RNA stability using RNA-seq and SLAM-seq analyses, respectively, revealed that LIN28A upregulates HIF1A expression via mRNA stabilization. To investigate the physical association of LIN28A with HIF1A mRNA, we performed enhanced crosslinking immunoprecipitation in 293FT cells and integrally analyzed the transcriptome. We observed that LIN28A associates with HIF1A mRNA via its cis-element motif "UGAU". The "UGAU" motifs are recognized by the cold shock domain of LIN28A, and the introduction of a loss-of-function mutation to the cold shock domain diminished the upregulatory activities performed by LIN28A. Finally, the microvessel density assay showed that the expression of LIN28A promoted angiogenesis in vivo. In conclusion, our study elucidated the role of LIN28A in enhancing the HIF1α axis at the posttranscription layer.


Subject(s)
Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit , RNA Stability , RNA-Binding Proteins , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Up-Regulation
3.
EMBO J ; 39(20): e104708, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32926445

ABSTRACT

Let-7 is an evolutionary conserved microRNA that mediates post-transcriptional gene silencing to regulate a wide range of biological processes, including development, differentiation, and tumor suppression. Let-7 biogenesis is tightly regulated by several RNA-binding proteins, including Lin28A/B, which represses let-7 maturation. To identify new regulators of let-7, we devised a cell-based functional screen of RNA-binding proteins using a let-7 sensor luciferase reporter and identified the tRNA pseudouridine synthase, TruB1. TruB1 enhanced maturation specifically of let-7 family members. Rather than inducing pseudouridylation of the miRNAs, high-throughput sequencing crosslinking immunoprecipitation (HITS-CLIP) and biochemical analyses revealed direct binding between endogenous TruB1 and the stem-loop structure of pri-let-7, which also binds Lin28A/B. TruB1 selectively enhanced the interaction between pri-let-7 and the microprocessor DGCR8, which mediates miRNA maturation. Finally, TruB1 suppressed cell proliferation, which was mediated in part by let-7. Altogether, we reveal an unexpected function for TruB1 in promoting let-7 maturation.


Subject(s)
Cell Proliferation/genetics , Intramolecular Transferases/metabolism , MicroRNAs/metabolism , RNA Processing, Post-Transcriptional/genetics , RNA-Binding Proteins/metabolism , Amino Acid Motifs , Cell Line, Tumor , Cell Survival , Gene Knockdown Techniques , Humans , Immunoprecipitation , Intramolecular Transferases/genetics , MicroRNAs/genetics , Protein Binding , Recombinant Proteins
4.
Biochem Biophys Res Commun ; 701: 149557, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38310689

ABSTRACT

The ubiquitin system plays pivotal roles in diverse cellular processes, including signal transduction, transcription and translation, organelle quality control, and protein degradation. Recent investigations have revealed the regulatory influence of ubiquitin systems on RNA metabolism. Previously, we reported that the deubiquitinating enzyme, ubiquitin specific peptidase 15 (USP15), promotes deubiquitination of terminal uridylyl transferase 1 (TUT1), a key regulator within the U4/U6 spliceosome, thereby instigating significant alterations in global RNA splicing [1]. In this study, we report that ubiquitin specific peptidase 4 (USP4), a homologous protein to USP15, also exerts control over the ubiquitination status of TUT1. Analogous to USP15, the expression of USP4 results in a reduction of TUT1 ubiquitination. Furthermore, squamous cell carcinoma antigen recognized by T-cells 3 (SART3) collaborates in enhancing the deubiquitinating activity of USP4 towards TUT1. A crucial revelation is that USP4 orchestrates the subnuclear relocation of TUT1 from the nucleolus to the nucleoplasm and facilitates the stability of U6 small nuclear RNA (snRNA). Notably, USP4 has a more profound effect on TUT1 redistribution compared to USP15. Our findings suggest that USP4 intricately modulates the ubiquitination status of TUT1, thereby exerting pronounced effects on the spliceosome functions.


Subject(s)
Nucleotidyltransferases , RNA-Binding Proteins , Spliceosomes , Ubiquitin-Specific Proteases , RNA-Binding Proteins/metabolism , Spliceosomes/metabolism , Ubiquitin/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Ubiquitination , Humans , Nucleotidyltransferases/metabolism
5.
RNA ; 26(3): 251-264, 2020 03.
Article in English | MEDLINE | ID: mdl-31822595

ABSTRACT

Neat1 is a long noncoding RNA (lncRNA) that serves as an architectural component of the nuclear bodies known as paraspeckles. Two isoforms of Neat1, the short isoform Neat1_1 and the long isoform Neat1_2, are generated from the same gene locus by alternative 3' processing. Neat1_1 is the most abundant and the best conserved isoform expressed in various cell types, whereas Neat1_2 is expressed in a small population of particular cell types, including the tip cells of the intestinal epithelium. To investigate the physiological significance of isoform switching, we created mutant mice that solely expressed Neat1_2 by deleting the upstream polyadenylation (poly-A) signal (PAS) required for the production of Neat1_1. We observed the loss of Neat1_1 and strong up-regulation of Neat1_2 in various tissues and cells and the subsequent hyperformation of paraspeckles, especially in cells that normally express Neat1_2. However, the mutant mice were born at the expected Mendelian ratios and did not exhibit obvious external and histological abnormalities. These observations suggested that the hyperformation of paraspeckles does not interfere with the development and growth of these animals under normal laboratory conditions.


Subject(s)
Cell Lineage/genetics , RNA Isoforms/genetics , RNA, Long Noncoding/genetics , 3T3 Cells , Animals , Gene Expression Regulation/genetics , Mice , Mutation/genetics , RNA 3' Polyadenylation Signals/genetics
6.
Int J Mol Sci ; 23(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35682994

ABSTRACT

Healthy limb joints are important for maintaining health and attaining longevity. Endochondral ossification (the replacement of cartilage with bone, occurring during skeletal development) is essential for bone formation, especially in long-axis bones. In contrast to endochondral ossification, chondrocyte populations in articular cartilage persist and maintain joint tissue into adulthood. Articular cartilage, a connective tissue consisting of chondrocytes and their surrounding extracellular matrices, plays an essential role in the mechanical cushioning of joints in postnatal locomotion. Osteoarthritis (OA) pathology relates to disruptions in the balance between anabolic and catabolic signals, that is, the loss of chondrocyte homeostasis due to aging or overuse of cartilages. The onset of OA increases with age, shortening a person's healthy life expectancy. Although many people with OA experience pain, the mainstay of treatment is symptomatic therapy, and no fundamental treatment has yet been established. To establish regenerative or preventative therapies for cartilage diseases, further understanding of the mechanisms of cartilage development, morphosis, and homeostasis is required. In this review, we describe the general development of cartilage and OA pathology, followed by a discussion on anabolic and catabolic signals in cartilage homeostasis, mainly microRNAs.


Subject(s)
Cartilage, Articular , Osteoarthritis , Adult , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Chondrogenesis , Homeostasis , Humans , Osteoarthritis/metabolism
7.
RNA ; 25(12): 1681-1695, 2019 12.
Article in English | MEDLINE | ID: mdl-31551298

ABSTRACT

NEAT1 is one of the most studied lncRNAs, in part because its silencing in mice causes defects in mammary gland development and corpus luteum formation and protects them from skin cancer development. Moreover, depleting NEAT1 in established cancer cell lines reduces growth and sensitizes cells to DNA damaging agents. However, NEAT1 produces two isoforms and because the short isoform, NEAT1_1, completely overlaps the 5' part of the long NEAT1_2 isoform; the respective contributions of each of the isoforms to these phenotypes has remained unclear. Whereas NEAT1_1 is highly expressed in most tissues, NEAT1_2 is the central architectural component of paraspeckles, which are nuclear bodies that assemble in specific tissues and cells exposed to various forms of stress. Using dual RNA-FISH to detect both NEAT1_1 outside of the paraspeckles and NEAT1_2/NEAT1 inside this nuclear body, we report herein that NEAT1_1 levels are dynamically regulated during the cell cycle and targeted for degradation by the nuclear RNA exosome. Unexpectedly, however, cancer cells engineered to lack NEAT1_1, but not NEAT1_2, do not exhibit cell cycle defects. Moreover, Neat1_1-specific knockout mice do not exhibit the phenotypes observed in Neat1-deficient mice. We propose that NEAT1 functions are mainly, if not exclusively, attributable to NEAT1_2 and, by extension, to paraspeckles.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/genetics , RNA, Long Noncoding/genetics , Alternative Splicing , Animals , Cell Cycle/drug effects , Cell Line , Cell Proliferation , Exosomes/metabolism , Gene Knockout Techniques , Homeostasis , Humans , In Situ Hybridization, Fluorescence , Mice , Neoplasms/metabolism , Neoplasms/pathology , RNA Stability , Stress, Physiological/genetics , Transcriptome
8.
Cell Tissue Res ; 385(1): 239-249, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33825962

ABSTRACT

Activating transcription factor 5 (ATF5) is a stress-responsive transcription factor that belongs to the cAMP response element-binding protein (CREB)/ATF family, and is essential for the differentiation and survival of sensory neurons in murine olfactory organs. However, the study of associated proteins and target genes for ATF5 has been hampered due to the limited availability of immunoprecipitation-grade ATF5 antibodies. To overcome this issue, we generated hemagglutinin (HA)-tag knock-in mice for ATF5 using CRISPR/Cas9-mediated genome editing with one-step electroporation in oviducts (i-GONAD). ATF5-HA fusion proteins were detected in the nuclei of immature and some mature olfactory and vomeronasal sensory neurons in the main olfactory epithelium and vomeronasal organ, respectively, as endogenous ATF5 proteins were expressed, and some ATF5-HA proteins were found to be phosphorylated. Chromatin immunoprecipitation (ChIP) experiments revealed that ATF5-HA bound to the CCAAT/enhancer-binding protein (C/EBP)-ATF response element site in the promotor region of receptor transporting protein 1 (Rtp1), a chaperone gene responsible for proper olfactory receptor expression. These knock-in mice may be used to examine the expression, localization, and protein-protein/-DNA interactions of endogenous ATF5 and, ultimately, the function of ATF5 in vivo.


Subject(s)
Gene Editing/methods , Gene Knock-In Techniques/methods , Nucleic Acids/metabolism , Oviducts/physiopathology , Animals , Female , Mice
9.
J Bone Miner Metab ; 39(5): 780-786, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33988755

ABSTRACT

INTRODUCTION: The periodontal ligament (PDL) plays an important role in orthodontic tooth movement; however, the underlying molecular mechanism remains unclear. We have previously reported that the Mohawk homeobox (Mkx), a tendon-specific transcription factor, is expressed in the PDL and regulates its homeostasis. MATERIALS AND METHODS: In the present study, we examined the role of Mkx in orthodontic tooth movement via bone remodeling induced by mechanical stimulation in Mkx-deficient rats, which are widely used as experimental animals for orthodontic force application. Orthodontic tooth movement of the maxillary first molar was performed in 7-week-old male Mkx-deficient rats (n = 4) and wild-type Wistar rats (n = 4) using coil springs for 14 days. Hematoxylin and eosin (H&E) staining and tartrate-resistant acid phosphatase (TRAP) staining were performed to evaluate morphological changes and osteoclasts. Furthermore, changes in the expression of receptor activator nuclear factor-kappa B ligand (RANKL) were demonstrated using immunostaining. RESULTS: The amount of tooth movement was significantly lower in Mkx-deficient rats than in wild-type rats. The number of TRAP-positive cells was suppressed in Mkx-deficient rats on the compression side. CONCLUSION: Orthodontic tooth movement experiments in Mkx-deficient rats suggested that Mkx is involved in osteoclast induction at the alveolar bone surface on the compression side. This study reveals the possibility that Mkx plays a mechanosensory role in orthodontic tooth movement by inducing RANKL expression and osteoclastogenesis.


Subject(s)
Osteoclasts , Tooth Movement Techniques , Animals , Bone Remodeling , Male , Periodontal Ligament , Rats , Rats, Wistar , Tartrate-Resistant Acid Phosphatase
10.
PLoS Genet ; 13(1): e1006578, 2017 01.
Article in English | MEDLINE | ID: mdl-28114340

ABSTRACT

The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene in the Y chromosome have not been completely elucidated, partly owing to difficulties in gene targeting analysis of the Y chromosome. Zfy was first proposed to be a sex determination factor, but its function in spermatogenesis has been recently elucidated. Nevertheless, Zfy gene targeting analysis has not been performed thus far. Here, we adopted the highly efficient CRISPR/Cas9 system to generate individual Zfy1 or Zfy2 knockout (KO) mice and Zfy1 and Zfy2 double knockout (Zfy1/2-DKO) mice. While individual Zfy1 or Zfy2-KO mice did not show any significant phenotypic alterations in fertility, Zfy1/2-DKO mice were infertile and displayed abnormal sperm morphology, fertilization failure, and early embryonic development failure. Mass spectrometric screening, followed by confirmation with western blot analysis, showed that PLCZ1, PLCD4, PRSS21, and HTT protein expression were significantly deceased in spermatozoa of Zfy1/2-DKO mice compared with those of wild-type mice. These results are consistent with the phenotypic changes seen in the double-mutant mice. Collectively, our strategy and findings revealed that Zfy1 and Zfy2 have redundant functions in spermatogenesis, facilitating a better understanding of fertilization failure and early embryonic development failure.


Subject(s)
DNA-Binding Proteins/metabolism , Fertilization/genetics , Spermatogenesis/genetics , Transcription Factors/metabolism , Animals , DNA-Binding Proteins/genetics , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Deletion , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Male , Mice , Phosphoinositide Phospholipase C/genetics , Phosphoinositide Phospholipase C/metabolism , Phospholipase C delta/genetics , Phospholipase C delta/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Transcription Factors/genetics , Y Chromosome/genetics
11.
Biochem Biophys Res Commun ; 494(1-2): 220-226, 2017 12 09.
Article in English | MEDLINE | ID: mdl-29032201

ABSTRACT

Kelch-like protein 7 (KLHL7) is a component of Cul3-based Cullin-RING ubiquitin ligase. Recent studies have revealed that mutations in klhl7 gene cause several disorders, such as retinitis pigmentosa (RP). Although KLHL7 is considered to be crucial for regulating the protein homeostasis, little is known about its biological functions. In this study, we report that KLHL7 increases terminal uridylyl transferase 1 (TUT1) ubiquitination involved in nucleolar integrity. TUT1 is normally localized in nucleolus; however, expression of KLHL7 facilitates a vulnerability of nucleolar integrity, followed by a decrease of TUT1 localization in nucleolus. On the other hand, pathogenic KLHL7 mutants, which causes an onset of RP, have little effect on both nucleolar integrity and TUT1 localization. Finally, KLHL7 increases TUT1 ubiquitination levels. Taken together, these results imply that KLHL7 is a novel regulator of nucleolus associated with TUT1 ubiquitination. Our study may provide a valuable information to elucidate a pathogenic mechanism of RP.


Subject(s)
Autoantigens/metabolism , Cell Nucleolus/metabolism , Nucleotidyltransferases/metabolism , Retinitis Pigmentosa/etiology , Amino Acid Substitution , Autoantigens/genetics , Cell Nucleolus/genetics , HeLa Cells , Humans , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation , Nuclear Proteins/metabolism , Nucleophosmin , Nucleotidyltransferases/genetics , RNA/genetics , RNA/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Stress, Physiological , Ubiquitination
12.
Biochem Biophys Res Commun ; 482(4): 863-869, 2017 Jan 22.
Article in English | MEDLINE | ID: mdl-27889610

ABSTRACT

Promyelocytic leukaemia (PML) is a tumor suppressor protein covalently conjugated with SUMO family proteins, leading to the formation of PML nuclear bodies (NBs). PML-NBs provide a platform for efficient posttranslational modification of targets and protein-protein interaction, contributing to the adjustment of gene expression and chromatin integrity. Although PML SUMOylation is thought to play important roles in diverse cellular functions, the control mechanisms of adequate modification levels have remained unsolved. Here, we report that Cullin-related protein CACUL1/CAC1 (CACUL1) inhibits PML posttranslational modification. CACUL1 interacts with PML and suppresses PML SUMOylation, leading to the regulation of PML-NB size in the nucleus. We also found that Ubc9, a SUMO-conjugating enzyme, binds to CACUL1 and antagonizes the interaction between CACUL1 and PML. Furthermore, CACUL1 attenuates p53 transcriptional activity. These data suggest that CACUL1 is a novel regulator that negatively controls p53 activity through the regulation of PML SUMOylation.


Subject(s)
Cullin Proteins/metabolism , Promyelocytic Leukemia Protein/metabolism , Protein Processing, Post-Translational , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Nucleus/metabolism , HEK293 Cells , Humans , Neoplasms/metabolism , Protein Interaction Maps , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitin-Conjugating Enzymes/metabolism
13.
Biochem Biophys Res Commun ; 478(1): 363-370, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27416755

ABSTRACT

The transcriptional factor Nrf1 (NF-E2-related factor 1) sustains protein homeostasis (proteostasis) by regulating the expression of proteasome genes. Under physiological conditions, the transcriptional activity of Nrf1 is repressed by its sequestration into the endoplasmic reticulum (ER) and furthermore by two independent ubiquitin-proteasome pathways, comprising Hrd1 and ß-TrCP in the cytoplasm and nucleus, respectively. However, the molecular mechanisms underlying Nrf1 activation remain unclear. Here, we report that USP15 (Ubiquitin-Specific Protease 15) activates Nrf1 in the nucleus by stabilizing it through deubiquitination. We first identified USP15 as an Nrf1-associated factor through proteome analysis. USP15 physically interacts with Nrf1, and it markedly stabilizes Nrf1 by removing its ubiquitin moieties. USP15 activates the Nrf1-mediated expression of a proteasome gene luciferase reporter and endogenous proteasome activity. The siRNA-mediated knockdown of USP15 diminishes the Nrf1-induced proteasome gene expression in response to proteasome inhibition. These results uncover a new regulatory mechanism that USP15 activates Nrf1 against the ß-TrCP inhibition to maintain proteostasis.


Subject(s)
Cell Nucleus/metabolism , Nuclear Respiratory Factor 1/metabolism , Proteasome Endopeptidase Complex/metabolism , Transcription Factors/metabolism , Ubiquitin-Specific Proteases/metabolism , Ubiquitination/physiology , Cells, Cultured , Gene Expression Regulation/physiology , HEK293 Cells , HeLa Cells , Humans
14.
J Immunol ; 189(9): 4426-36, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23018457

ABSTRACT

After receiving a TCR-mediated differentiation signal, CD4 and CD8 double-positive thymocytes diverge into CD4 or CD8 single-positive T cells, for which Th-POK and Runx3 have been identified as pivotal transcription factors, respectively. The cross-antagonistic regulation of Th-POK and Runx3 seems to be essential for CD4/8 thymocyte lineage commitment. However, the process for determining which pivotal factor acts dominantly has not been established. To explore the determining process, we used an in vitro culture system in which CD4 or CD8 single-positive cells are selectively induced from CD4/8 double-positive cells. Surprisingly, we found that control of G(1) cell cycle phase progression is critical for the determination. In the CD4 pathway, sustained TCR signal, as well as Th-POK, induces G(1)-phase extension and represses CD8 expression in a G(1) extension-dependent manner. In the CD8 pathway, after receiving a transient TCR signal, the IL-7R signal, as well as Runx3, antagonizes TCR signal-mediated G(1) extension and CD8 repression. Importantly, forced G(1) extension cancels the functions of Runx3 to repress Th-POK and CD4 and to reactivate CD8. In contrast, it is suggested that forced G(1) progression inhibits Th-POK function to repress CD8. Collectively, Th-POK and Runx3 are reciprocally involved in the control of G(1)-phase progression, on which they exert their functions dependently. These findings may provide novel insight into how CD4/CD8 cell lineages are determined by Th-POK and Runx3.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Lineage/immunology , Core Binding Factor Alpha 3 Subunit/physiology , G1 Phase/immunology , Transcription Factors/physiology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Organ Culture Techniques , Tumor Cells, Cultured
15.
Regen Ther ; 25: 186-193, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38230307

ABSTRACT

Introduction: The periodontium is a connective tissue which consists of periodontal ligament, alveolar bone, cementum and gingiva. Periodontal ligament (PDL) is a specialized connective tissue that connects the cementum - coating the surface of the tooth - to the alveolar bone. Mohawk homeobox (Mkx) is a transcription factor that is expressed in PDL, that is known to play a vital role in the development and homeostasis of PDL. A detailed functional analysis of Mkx in the periodontal ligament for alveolar bone and cementum metabolism has not yet been conducted. Materials and methods: Alveolar bone height, bone mineral density (BMD) and bone volume fractions (Bone volume/Total volume: BV/TV) were measured and analyzed using micro-computed tomography (Micro-CT) and 3DBon on 7-week-old male wild-type (WT) (Mkx+/+) (n = 10) and Mkx-knockout (Mkx-/-) (n = 6) rats. Hematoxylin and Eosin (H&E), tartrate-resistant acid phosphatase (TRAP), alkaline phosphatase (ALP) and Masson Trichrome staining were performed on 5, 6, and 7-week-old Mkx+/+ and Mkx-/- rats. Cementum surface area and the number of TRAP-positive osteoclasts/mm were quantified, measured, and compared for 5,6 and 7-week-old Mkx+/+ and Mkx-/- rats (n = 3 each). Results: The level of alveolar bone height was significantly higher in Mkx-/- rats than in Mkx+/+ rats. On the other hand, there was significantly less BMD in Mkx-/- alveolar bone. A significant increase in cellular cementum could be observed as early as 5 weeks in Mkx-/- rats when compared with Mkx+/+ rats of the same age. More TRAP-positive osteoclasts were observed in Mkx-/- rats. Conclusion: Our findings further reveal the essential roles of Mkx in the homeostasis of the periodontal tissue. Mkx was found to contribute to bone and cementum metabolism and may be essential to the prevention of diseases such as periodontitis, and could show potential in regenerative treatments.

16.
Crit Care Med ; 41(3): 810-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23328259

ABSTRACT

OBJECTIVE: To investigate the immunological changes caused by severe sepsis in elderly patients. DESIGN: One-year, prospective observational study. SETTING: Emergency department and intensive care unit of a single university hospital. PATIENTS: Seventy-three patients with severe sepsis and 72 healthy donors. MEASUREMENTS AND MAIN RESULTS: In elderly septic patients (aged 65 yr and over), 3-month survival was significantly reduced compared with that for adult patients (18-64 yr) (60% vs. 89%, p < 0.01). We found that lymphopenia was prolonged for at least 21 days in elderly nonsurvivors of sepsis, while the number of lymphocytes recovered in both adult and elderly survivors of sepsis. In order to examine the immunological status of septic patients, blood samples were collected within 48 hrs of diagnosis of severe sepsis, and peripheral blood mononuclear cells were purified for flow cytometric analysis. T cell levels were significantly reduced in both adult and elderly septic patients, compared with those in healthy donors (56% and 57% reduction, respectively). Interestingly, the immunocompetent CD28+ subset of CD4+ T cells decreased, whereas the immunosuppressive PD-1+ T cells and the percentage of regulatory T cells (CD4+ T cells that are both Foxp3+ and CD25+) increased in elderly patients, especially nonsurvivors, presumably reflecting the initial signs of immunosuppression. CONCLUSION: Reduction of immunocompetent T cells followed by prolonged lymphopenia may be associated with poor prognosis in elderly septic patients.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunocompetence , Lymphopenia/immunology , Sepsis/immunology , Adult , Aged , Aged, 80 and over , Cerebrovascular Disorders/immunology , Confidence Intervals , Female , Humans , Immunity, Cellular/immunology , Intensive Care Units , Japan , Lymphopenia/complications , Male , Middle Aged , Multivariate Analysis , Outcome Assessment, Health Care , Prospective Studies , Qualitative Research , Sepsis/complications , Survival Analysis
17.
Nat Cell Biol ; 8(12): 1424-31, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17086174

ABSTRACT

The p53 tumour suppressor has a key role in the control of cell growth and differentiation, and in the maintenance of genome integrity. p53 is kept labile under normal conditions, but in response to stresses, such as DNA damage, it accumulates in the nucleus for induction of cell-cycle arrest, DNA repair or apoptosis. Mdm2 is an ubiquitin ligase that promotes p53 ubiquitination and degradation. Mdm2 is also self-ubiquitinated and degraded. Here, we identified a novel cascade for the increase in p53 level in response to DNA damage. A new SUMO-specific protease, SUSP4, removed SUMO-1 from Mdm2 and this desumoylation led to promotion of Mdm2 self-ubiquitination, resulting in p53 stabilization. Moreover, SUSP4 competed with p53 for binding to Mdm2, also resulting in p53 stabilization. Overexpression of SUSP4 inhibited cell growth, whereas knockdown of susp4 by RNA interference (RNAi) promoted of cell growth. UV damage induced SUSP4 expression, leading to an increase in p53 levels in parallel with a decrease in Mdm2 levels. These findings establish a new mechanism for the elevation of cellular p53 levels in response to UV damage.


Subject(s)
Cysteine Endopeptidases/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin/metabolism , Animals , Cell Growth Processes/radiation effects , Cysteine Endopeptidases/genetics , Gene Expression Regulation/radiation effects , Humans , Mice , Models, Biological , Molecular Sequence Data , NIH 3T3 Cells , Protein Binding/radiation effects , Protein Transport/radiation effects , Proto-Oncogene Proteins c-mdm2/deficiency , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thermodynamics , Tumor Suppressor Protein p53/deficiency , Ultraviolet Rays
18.
Nature ; 446(7135): 562-6, 2007 Mar 29.
Article in English | MEDLINE | ID: mdl-17392787

ABSTRACT

Fat-soluble ligands, including sex steroid hormones and environmental toxins, activate ligand-dependent DNA-sequence-specific transcriptional factors that transduce signals through target-gene-selective transcriptional regulation. However, the mechanisms of cellular perception of fat-soluble ligand signals through other target-selective systems remain unclear. The ubiquitin-proteasome system regulates selective protein degradation, in which the E3 ubiquitin ligases determine target specificity. Here we characterize a fat-soluble ligand-dependent ubiquitin ligase complex in human cell lines, in which dioxin receptor (AhR) is integrated as a component of a novel cullin 4B ubiquitin ligase complex, CUL4B(AhR). Complex assembly and ubiquitin ligase activity of CUL4B(AhR) in vitro and in vivo are dependent on the AhR ligand. In the CUL4B(AhR) complex, ligand-activated AhR acts as a substrate-specific adaptor component that targets sex steroid receptors for degradation. Thus, our findings uncover a function for AhR as an atypical component of the ubiquitin ligase complex and demonstrate a non-genomic signalling pathway in which fat-soluble ligands regulate target-protein-selective degradation through a ubiquitin ligase complex.


Subject(s)
Cullin Proteins/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Cell Line , Cullin Proteins/chemistry , Cullin Proteins/genetics , Estrogen Receptor alpha/metabolism , Humans , Ligands , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Receptors, Aryl Hydrocarbon/genetics , Substrate Specificity , Transcriptional Activation
19.
Biomolecules ; 13(4)2023 03 24.
Article in English | MEDLINE | ID: mdl-37189334

ABSTRACT

Proteasomes are highly sophisticated protease complexes that degrade non-lysosomal proteins, and their proper regulation ensures various biological functions such as spermatogenesis. The proteasome-associated proteins, PA200 and ECPAS, are predicted to function during spermatogenesis; however, male mice lacking each of these genes sustain fertility, raising the possibility that these proteins complement each other. To address this issue, we explored these possible roles during spermatogenesis by producing mice lacking these genes (double-knockout mice; dKO mice). Expression patterns and quantities were similar throughout spermatogenesis in the testes. In epididymal sperm, PA200 and ECPAS were expressed but were differentially localized to the midpiece and acrosome, respectively. Proteasome activity was considerably reduced in both the testes and epididymides of dKO male mice, resulting in infertility. Mass spectrometric analysis revealed LPIN1 as a target protein for PA200 and ECPAS, which was confirmed via immunoblotting and immunostaining. Furthermore, ultrastructural and microscopic analyses demonstrated that the dKO sperm displayed disorganization of the mitochondrial sheath. Our results indicate that PA200 and ECPAS work cooperatively during spermatogenesis and are essential for male fertility.


Subject(s)
Proteasome Endopeptidase Complex , Semen , Male , Animals , Mice , Proteasome Endopeptidase Complex/metabolism , Semen/metabolism , Spermatogenesis , Spermatozoa/metabolism , Mice, Knockout , Phosphatidate Phosphatase/metabolism , Nuclear Proteins/metabolism
20.
FEBS Lett ; 597(7): 975-984, 2023 04.
Article in English | MEDLINE | ID: mdl-36876986

ABSTRACT

Conditional knockout mice are valuable tools for examining the functions of targeted genes in a time- and space-specific manner. Here, we generated gene-edited mice by using the Tol2 transposon to introduce guide RNA (gRNA) into fertilized eggs obtained by crossing LSL (loxP-stop-loxP)-CRISPR-associated 9 (Cas9) mice, which express Cas9 in a Cre-dependent manner, with CAG-CreER mice. Transposase mRNA and plasmid DNA, which contained a gRNA sequence for the gene encoding tyrosinase flanked by the transposase recognition sequence, were injected together into fertilized eggs. As a result, the transcribed gRNA cleaved the target genome in a Cas9-dependent manner. Using this method, it is possible to generate conditional genome-edited mice more easily in a shorter period of time.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mice , Animals , Plasmids , Mice, Knockout , Transposases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL