Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Publication year range
1.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224541

ABSTRACT

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Subject(s)
DiGeorge Syndrome , Psychotic Disorders , Female , Humans , Adolescent , Male , DiGeorge Syndrome/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Psychotic Disorders/complications , Gray Matter/diagnostic imaging
2.
Mol Psychiatry ; 28(3): 1079-1089, 2023 03.
Article in English | MEDLINE | ID: mdl-36653677

ABSTRACT

There is limited convergence in neuroimaging investigations into volumes of subcortical brain regions in social anxiety disorder (SAD). The inconsistent findings may arise from variations in methodological approaches across studies, including sample selection based on age and clinical characteristics. The ENIGMA-Anxiety Working Group initiated a global mega-analysis to determine whether differences in subcortical volumes can be detected in adults and adolescents with SAD relative to healthy controls. Volumetric data from 37 international samples with 1115 SAD patients and 2775 controls were obtained from ENIGMA-standardized protocols for image segmentation and quality assurance. Linear mixed-effects analyses were adjusted for comparisons across seven subcortical regions in each hemisphere using family-wise error (FWE)-correction. Mixed-effects d effect sizes were calculated. In the full sample, SAD patients showed smaller bilateral putamen volume than controls (left: d = -0.077, pFWE = 0.037; right: d = -0.104, pFWE = 0.001), and a significant interaction between SAD and age was found for the left putamen (r = -0.034, pFWE = 0.045). Smaller bilateral putamen volumes (left: d = -0.141, pFWE < 0.001; right: d = -0.158, pFWE < 0.001) and larger bilateral pallidum volumes (left: d = 0.129, pFWE = 0.006; right: d = 0.099, pFWE = 0.046) were detected in adult SAD patients relative to controls, but no volumetric differences were apparent in adolescent SAD patients relative to controls. Comorbid anxiety disorders and age of SAD onset were additional determinants of SAD-related volumetric differences in subcortical regions. To conclude, subtle volumetric alterations in subcortical regions in SAD were detected. Heterogeneity in age and clinical characteristics may partly explain inconsistencies in previous findings. The association between alterations in subcortical volumes and SAD illness progression deserves further investigation, especially from adolescence into adulthood.


Subject(s)
Phobia, Social , Adult , Adolescent , Humans , Magnetic Resonance Imaging/methods , Brain , Anxiety , Neuroimaging/methods
3.
Mol Psychiatry ; 27(10): 4181-4190, 2022 10.
Article in English | MEDLINE | ID: mdl-35896619

ABSTRACT

Probing naturally-occurring, reciprocal genomic copy number variations (CNVs) may help us understand mechanisms that underlie deviations from typical brain development. Cross-sectional studies have identified prominent reductions in cortical surface area (SA) and increased cortical thickness (CT) in 22q11.2 deletion carriers (22qDel), with the opposite pattern in duplication carriers (22qDup), but the longitudinal trajectories of these anomalies-and their relationship to clinical symptomatology-are unknown. Here, we examined neuroanatomic changes within a longitudinal cohort of 261 22q11.2 CNV carriers and demographically-matched typically developing (TD) controls (84 22qDel, 34 22qDup, and 143 TD; mean age 18.35, ±10.67 years; 50.47% female). A total of 431 magnetic resonance imaging scans (164 22qDel, 59 22qDup, and 208 TD control scans; mean interscan interval = 20.27 months) were examined. Longitudinal FreeSurfer analysis pipelines were used to parcellate the cortex and calculate average CT and SA for each region. First, general additive mixed models (GAMMs) were used to identify regions with between-group differences in developmental trajectories. Secondly, we investigated whether these trajectories were associated with clinical outcomes. Developmental trajectories of CT were more protracted in 22qDel relative to TD and 22qDup. 22qDup failed to show normative age-related SA decreases. 22qDel individuals with psychosis spectrum symptoms showed two distinct periods of altered CT trajectories relative to 22qDel without psychotic symptoms. In contrast, 22q11.2 CNV carriers with autism spectrum diagnoses showed early alterations in SA trajectories. Collectively, these results provide new insights into altered neurodevelopment in 22q11.2 CNV carriers, which may shed light on neural mechanisms underlying distinct clinical outcomes.


Subject(s)
DNA Copy Number Variations , Psychotic Disorders , Humans , Female , Male , DNA Copy Number Variations/genetics , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Psychotic Disorders/pathology
4.
Neuroimage ; 261: 119509, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35917919

ABSTRACT

Results of neuroimaging datasets aggregated from multiple sites may be biased by site-specific profiles in participants' demographic and clinical characteristics, as well as MRI acquisition protocols and scanning platforms. We compared the impact of four different harmonization methods on results obtained from analyses of cortical thickness data: (1) linear mixed-effects model (LME) that models site-specific random intercepts (LMEINT), (2) LME that models both site-specific random intercepts and age-related random slopes (LMEINT+SLP), (3) ComBat, and (4) ComBat with a generalized additive model (ComBat-GAM). Our test case for comparing harmonization methods was cortical thickness data aggregated from 29 sites, which included 1,340 cases with posttraumatic stress disorder (PTSD) (6.2-81.8 years old) and 2,057 trauma-exposed controls without PTSD (6.3-85.2 years old). We found that, compared to the other data harmonization methods, data processed with ComBat-GAM was more sensitive to the detection of significant case-control differences (Χ2(3) = 63.704, p < 0.001) as well as case-control differences in age-related cortical thinning (Χ2(3) = 12.082, p = 0.007). Both ComBat and ComBat-GAM outperformed LME methods in detecting sex differences (Χ2(3) = 9.114, p = 0.028) in regional cortical thickness. ComBat-GAM also led to stronger estimates of age-related declines in cortical thickness (corrected p-values < 0.001), stronger estimates of case-related cortical thickness reduction (corrected p-values < 0.001), weaker estimates of age-related declines in cortical thickness in cases than controls (corrected p-values < 0.001), stronger estimates of cortical thickness reduction in females than males (corrected p-values < 0.001), and stronger estimates of cortical thickness reduction in females relative to males in cases than controls (corrected p-values < 0.001). Our results support the use of ComBat-GAM to minimize confounds and increase statistical power when harmonizing data with non-linear effects, and the use of either ComBat or ComBat-GAM for harmonizing data with linear effects.


Subject(s)
Magnetic Resonance Imaging , Stress Disorders, Post-Traumatic , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuroimaging , Young Adult
5.
Hum Brain Mapp ; 43(1): 341-351, 2022 01.
Article in English | MEDLINE | ID: mdl-32198905

ABSTRACT

Alterations in regional subcortical brain volumes have been investigated as part of the efforts of an international consortium, ENIGMA, to identify reliable neural correlates of major depressive disorder (MDD). Given that subcortical structures are comprised of distinct subfields, we sought to build significantly from prior work by precisely mapping localized MDD-related differences in subcortical regions using shape analysis. In this meta-analysis of subcortical shape from the ENIGMA-MDD working group, we compared 1,781 patients with MDD and 2,953 healthy controls (CTL) on individual measures of shape metrics (thickness and surface area) on the surface of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and statistical analyses were conducted locally at each site, and findings were aggregated by meta-analysis. Relative to CTL, patients with adolescent-onset MDD (≤ 21 years) had lower thickness and surface area of the subiculum, cornu ammonis (CA) 1 of the hippocampus and basolateral amygdala (Cohen's d = -0.164 to -0.180). Relative to first-episode MDD, recurrent MDD patients had lower thickness and surface area in the CA1 of the hippocampus and the basolateral amygdala (Cohen's d = -0.173 to -0.184). Our results suggest that previously reported MDD-associated volumetric differences may be localized to specific subfields of these structures that have been shown to be sensitive to the effects of stress, with important implications for mapping treatments to patients based on specific neural targets and key clinical features.


Subject(s)
Amygdala/pathology , Corpus Striatum/pathology , Depressive Disorder, Major/pathology , Hippocampus/pathology , Neuroimaging , Thalamus/pathology , Amygdala/diagnostic imaging , Corpus Striatum/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Multicenter Studies as Topic , Thalamus/diagnostic imaging
6.
Hum Brain Mapp ; 43(1): 194-206, 2022 01.
Article in English | MEDLINE | ID: mdl-32301246

ABSTRACT

The ENIGMA-DTI (diffusion tensor imaging) workgroup supports analyses that examine the effects of psychiatric, neurological, and developmental disorders on the white matter pathways of the human brain, as well as the effects of normal variation and its genetic associations. The seven ENIGMA disorder-oriented working groups used the ENIGMA-DTI workflow to derive patterns of deficits using coherent and coordinated analyses that model the disease effects across cohorts worldwide. This yielded the largest studies detailing patterns of white matter deficits in schizophrenia spectrum disorder (SSD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD), traumatic brain injury (TBI), and 22q11 deletion syndrome. These deficit patterns are informative of the underlying neurobiology and reproducible in independent cohorts. We reviewed these findings, demonstrated their reproducibility in independent cohorts, and compared the deficit patterns across illnesses. We discussed translating ENIGMA-defined deficit patterns on the level of individual subjects using a metric called the regional vulnerability index (RVI), a correlation of an individual's brain metrics with the expected pattern for a disorder. We discussed the similarity in white matter deficit patterns among SSD, BD, MDD, and OCD and provided a rationale for using this index in cross-diagnostic neuropsychiatric research. We also discussed the difference in deficit patterns between idiopathic schizophrenia and 22q11 deletion syndrome, which is used as a developmental and genetic model of schizophrenia. Together, these findings highlight the importance of collaborative large-scale research to provide robust and reproducible effects that offer insights into individual vulnerability and cross-diagnosis features.


Subject(s)
Diffusion Tensor Imaging , Mental Disorders , White Matter , Biomedical Research/methods , Biomedical Research/standards , Diffusion Tensor Imaging/methods , Diffusion Tensor Imaging/standards , Humans , Mental Disorders/diagnostic imaging , Mental Disorders/pathology , Multicenter Studies as Topic , Psychiatry/methods , Psychiatry/standards , White Matter/diagnostic imaging , White Matter/pathology
7.
Hum Brain Mapp ; 43(1): 352-372, 2022 01.
Article in English | MEDLINE | ID: mdl-34498337

ABSTRACT

Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.


Subject(s)
Amygdala/pathology , Corpus Striatum/pathology , Hippocampus/pathology , Neuroimaging , Schizophrenia/pathology , Thalamus/pathology , Amygdala/diagnostic imaging , Corpus Striatum/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Multicenter Studies as Topic , Schizophrenia/diagnostic imaging , Thalamus/diagnostic imaging
8.
Hum Brain Mapp ; 43(1): 431-451, 2022 01.
Article in English | MEDLINE | ID: mdl-33595143

ABSTRACT

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Human Development/physiology , Neuroimaging , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Young Adult
9.
Hum Brain Mapp ; 43(1): 56-82, 2022 01.
Article in English | MEDLINE | ID: mdl-32725849

ABSTRACT

MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.


Subject(s)
Bipolar Disorder , Cerebral Cortex , Magnetic Resonance Imaging , Neuroimaging , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Humans , Meta-Analysis as Topic , Multicenter Studies as Topic
10.
Hum Brain Mapp ; 43(1): 452-469, 2022 01.
Article in English | MEDLINE | ID: mdl-33570244

ABSTRACT

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.


Subject(s)
Amygdala/anatomy & histology , Corpus Striatum/anatomy & histology , Hippocampus/anatomy & histology , Human Development/physiology , Neuroimaging , Thalamus/anatomy & histology , Adolescent , Adult , Aged , Aged, 80 and over , Amygdala/diagnostic imaging , Child , Child, Preschool , Corpus Striatum/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Male , Middle Aged , Thalamus/diagnostic imaging , Young Adult
11.
Hum Brain Mapp ; 43(1): 300-328, 2022 01.
Article in English | MEDLINE | ID: mdl-33615640

ABSTRACT

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.


Subject(s)
Brain , DNA Copy Number Variations , Magnetic Resonance Imaging , Mental Disorders , Neurodevelopmental Disorders , Neuroimaging , Brain/diagnostic imaging , Brain/growth & development , Brain/pathology , Humans , Mental Disorders/diagnostic imaging , Mental Disorders/genetics , Mental Disorders/pathology , Multicenter Studies as Topic , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology
12.
Mol Psychiatry ; 26(6): 2101-2110, 2021 06.
Article in English | MEDLINE | ID: mdl-33456050

ABSTRACT

Genomewide association studies have found significant genetic correlations among many neuropsychiatric disorders. In contrast, we know much less about the degree to which structural brain alterations are similar among disorders and, if so, the degree to which such similarities have a genetic etiology. From the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium, we acquired standardized mean differences (SMDs) in regional brain volume and cortical thickness between cases and controls. We had data on 41 brain regions for: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), epilepsy, major depressive disorder (MDD), obsessive compulsive disorder (OCD), and schizophrenia (SCZ). These data had been derived from 24,360 patients and 37,425 controls. The SMDs were significantly correlated between SCZ and BD, OCD, MDD, and ASD. MDD was positively correlated with BD and OCD. BD was positively correlated with OCD and negatively correlated with ADHD. These pairwise correlations among disorders were correlated with the corresponding pairwise correlations among disorders derived from genomewide association studies (r = 0.494). Our results show substantial similarities in sMRI phenotypes among neuropsychiatric disorders and suggest that these similarities are accounted for, in part, by corresponding similarities in common genetic variant architectures.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Depressive Disorder, Major , Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , Brain/diagnostic imaging , Depressive Disorder, Major/genetics , Humans , Neuroimaging
13.
Mol Psychiatry ; 26(9): 5124-5139, 2021 09.
Article in English | MEDLINE | ID: mdl-32424236

ABSTRACT

Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in adult MDD patients, and whether this process is associated with clinical characteristics in a large multicenter international dataset. We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging was estimated by predicting chronological age (18-75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 952 male and 1236 female controls from the ENIGMA MDD working group. The learned model coefficients were applied to 927 male controls and 986 depressed males, and 1199 female controls and 1689 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted "brain age" and chronological age was calculated to indicate brain-predicted age difference (brain-PAD). On average, MDD patients showed a higher brain-PAD of +1.08 (SE 0.22) years (Cohen's d = 0.14, 95% CI: 0.08-0.20) compared with controls. However, this difference did not seem to be driven by specific clinical characteristics (recurrent status, remission status, antidepressant medication use, age of onset, or symptom severity). This highly powered collaborative effort showed subtle patterns of age-related structural brain abnormalities in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the clinical value of these brain-PAD estimates.


Subject(s)
Depressive Disorder, Major , Adolescent , Adult , Aged , Aging , Brain/diagnostic imaging , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
14.
Cereb Cortex ; 31(7): 3285-3298, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33638978

ABSTRACT

22q11.2 deletion syndrome (22q11DS) results from a hemizygous deletion that typically spans 46 protein-coding genes and is associated with widespread alterations in brain morphology. The specific genetic mechanisms underlying these alterations remain unclear. In the 22q11.2 ENIGMA Working Group, we characterized cortical alterations in individuals with 22q11DS (n = 232) versus healthy individuals (n = 290) and conducted spatial convergence analyses using gene expression data from the Allen Human Brain Atlas to prioritize individual genes that may contribute to altered surface area (SA) and cortical thickness (CT) in 22q11DS. Total SA was reduced in 22q11DS (Z-score deviance = -1.04), with prominent reductions in midline posterior and lateral association regions. Mean CT was thicker in 22q11DS (Z-score deviance = +0.64), with focal thinning in a subset of regions. Regional expression of DGCR8 was robustly associated with regional severity of SA deviance in 22q11DS; AIFM3 was also associated with SA deviance. Conversely, P2RX6 was associated with CT deviance. Exploratory analysis of gene targets of microRNAs previously identified as down-regulated due to DGCR8 deficiency suggested that DGCR8 haploinsufficiency may contribute to altered corticogenesis in 22q11DS by disrupting cell cycle modulation. These findings demonstrate the utility of combining neuroanatomic and transcriptomic datasets to derive molecular insights into complex, multigene copy number variants.


Subject(s)
22q11 Deletion Syndrome/diagnostic imaging , 22q11 Deletion Syndrome/genetics , Brain Cortical Thickness , Cerebral Cortex/diagnostic imaging , 22q11 Deletion Syndrome/pathology , Case-Control Studies , Cerebral Cortex/embryology , Cerebral Cortex/pathology , DNA Copy Number Variations , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Haploinsufficiency , Humans , Magnetic Resonance Imaging , MicroRNAs/genetics , Mitochondrial Proteins/genetics , RNA-Binding Proteins/genetics , Receptors, Purinergic P2/genetics
15.
Psychiatry Clin Neurosci ; 76(5): 140-161, 2022 May.
Article in English | MEDLINE | ID: mdl-35119167

ABSTRACT

This review compares the main brain abnormalities in schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and 22q11.2 Deletion Syndrome (22q11DS) determined by ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) consortium investigations. We obtained ranked effect sizes for subcortical volumes, regional cortical thickness, cortical surface area, and diffusion tensor imaging abnormalities, comparing each of these disorders relative to healthy controls. In addition, the studies report on significant associations between brain imaging metrics and disorder-related factors such as symptom severity and treatments. Visual comparison of effect size profiles shows that effect sizes are generally in the same direction and scale in severity with the disorders (in the order SZ > BD > MDD). The effect sizes for 22q11DS, a rare genetic syndrome that increases the risk for psychiatric disorders, appear to be much larger than for either of the complex psychiatric disorders. This is consistent with the idea of generally larger effects on the brain of rare compared to common genetic variants. Cortical thickness and surface area effect sizes for 22q11DS with psychosis compared to 22q11DS without psychosis are more similar to those of SZ and BD than those of MDD; a pattern not observed for subcortical brain structures and fractional anisotropy effect sizes. The observed similarities in effect size profiles for cortical measures across the psychiatric disorders mimic those observed for shared genetic variance between these disorders reported based on family and genetic studies and are consistent with shared genetic risk for SZ and BD and structural brain phenotypes.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , DiGeorge Syndrome , Schizophrenia , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/genetics , Brain/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , DiGeorge Syndrome/diagnostic imaging , DiGeorge Syndrome/genetics , Diffusion Tensor Imaging/methods , Humans , Magnetic Resonance Imaging/methods , Schizophrenia/diagnostic imaging , Schizophrenia/genetics
16.
Mol Psychiatry ; 25(11): 2818-2831, 2020 11.
Article in English | MEDLINE | ID: mdl-31358905

ABSTRACT

22q11.2 deletion syndrome (22q11DS)-a neurodevelopmental condition caused by a hemizygous deletion on chromosome 22-is associated with an elevated risk of psychosis and other developmental brain disorders. Prior single-site diffusion magnetic resonance imaging (dMRI) studies have reported altered white matter (WM) microstructure in 22q11DS, but small samples and variable methods have led to contradictory results. Here we present the largest study ever conducted of dMRI-derived measures of WM microstructure in 22q11DS (334 22q11.2 deletion carriers and 260 healthy age- and sex-matched controls; age range 6-52 years). Using harmonization protocols developed by the ENIGMA-DTI working group, we identified widespread reductions in mean, axial and radial diffusivities in 22q11DS, most pronounced in regions with major cortico-cortical and cortico-thalamic fibers: the corona radiata, corpus callosum, superior longitudinal fasciculus, posterior thalamic radiations, and sagittal stratum (Cohen's d's ranging from -0.9 to -1.3). Only the posterior limb of the internal capsule (IC), comprised primarily of corticofugal fibers, showed higher axial diffusivity in 22q11DS. 22q11DS patients showed higher mean fractional anisotropy (FA) in callosal and projection fibers (IC and corona radiata) relative to controls, but lower FA than controls in regions with predominantly association fibers. Psychotic illness in 22q11DS was associated with more substantial diffusivity reductions in multiple regions. Overall, these findings indicate large effects of the 22q11.2 deletion on WM microstructure, especially in major cortico-cortical connections. Taken together with findings from animal models, this pattern of abnormalities may reflect disrupted neurogenesis of projection neurons in outer cortical layers.


Subject(s)
DiGeorge Syndrome/diagnostic imaging , DiGeorge Syndrome/pathology , Diffusion Magnetic Resonance Imaging , White Matter/diagnostic imaging , White Matter/pathology , Adolescent , Adult , Anisotropy , Child , DiGeorge Syndrome/genetics , Female , Humans , Male , Middle Aged , Young Adult
17.
Mol Psychiatry ; 25(9): 2130-2143, 2020 09.
Article in English | MEDLINE | ID: mdl-30171211

ABSTRACT

Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47-67.00, ROC-AUC = 71.49%, 95% CI = 69.39-73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70-60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen's Kappa = 0.83, 95% CI = 0.829-0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data.


Subject(s)
Bipolar Disorder , Bipolar Disorder/diagnostic imaging , Brain/diagnostic imaging , Humans , Machine Learning , Magnetic Resonance Imaging , Neuroimaging
18.
Mol Psychiatry ; 25(8): 1822-1834, 2020 08.
Article in English | MEDLINE | ID: mdl-29895892

ABSTRACT

The 22q11.2 deletion (22q11DS) is a common chromosomal microdeletion and a potent risk factor for psychotic illness. Prior studies reported widespread cortical changes in 22q11DS, but were generally underpowered to characterize neuroanatomic abnormalities associated with psychosis in 22q11DS, and/or neuroanatomic effects of variability in deletion size. To address these issues, we developed the ENIGMA (Enhancing Neuro Imaging Genetics Through Meta-Analysis) 22q11.2 Working Group, representing the largest analysis of brain structural alterations in 22q11DS to date. The imaging data were collected from 10 centers worldwide, including 474 subjects with 22q11DS (age = 18.2 ± 8.6; 46.9% female) and 315 typically developing, matched controls (age = 18.0 ± 9.2; 45.9% female). Compared to controls, 22q11DS individuals showed thicker cortical gray matter overall (left/right hemispheres: Cohen's d = 0.61/0.65), but focal thickness reduction in temporal and cingulate cortex. Cortical surface area (SA), however, showed pervasive reductions in 22q11DS (left/right hemispheres: d = -1.01/-1.02). 22q11DS cases vs. controls were classified with 93.8% accuracy based on these neuroanatomic patterns. Comparison of 22q11DS-psychosis to idiopathic schizophrenia (ENIGMA-Schizophrenia Working Group) revealed significant convergence of affected brain regions, particularly in fronto-temporal cortex. Finally, cortical SA was significantly greater in 22q11DS cases with smaller 1.5 Mb deletions, relative to those with typical 3 Mb deletions. We found a robust neuroanatomic signature of 22q11DS, and the first evidence that deletion size impacts brain structure. Psychotic illness in this highly penetrant deletion was associated with similar neuroanatomic abnormalities to idiopathic schizophrenia. These consistent cross-site findings highlight the homogeneity of this single genetic etiology, and support the suitability of 22q11DS as a biological model of schizophrenia.


Subject(s)
Cerebral Cortex/pathology , Chromosome Deletion , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , Adolescent , Adult , Female , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Psychotic Disorders/genetics , Young Adult
19.
Nature ; 520(7546): 224-9, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25607358

ABSTRACT

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.


Subject(s)
Brain/anatomy & histology , Genetic Variation/genetics , Genome-Wide Association Study , Adolescent , Adult , Aged , Aged, 80 and over , Aging/genetics , Apoptosis/genetics , Caudate Nucleus/anatomy & histology , Child , Female , Gene Expression Regulation, Developmental/genetics , Genetic Loci/genetics , Hippocampus/anatomy & histology , Humans , Magnetic Resonance Imaging , Male , Membrane Proteins/genetics , Middle Aged , Organ Size/genetics , Putamen/anatomy & histology , Sex Characteristics , Skull/anatomy & histology , Young Adult
20.
Cereb Cortex ; 29(12): 5217-5233, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31271414

ABSTRACT

Secondhand smoke exposure is a major public health risk that is especially harmful to the developing brain, but it is unclear if early exposure affects brain structure during middle age and older adulthood. Here we analyzed brain MRI data from the UK Biobank in a population-based sample of individuals (ages 44-80) who were exposed (n = 2510) or unexposed (n = 6079) to smoking around birth. We used robust statistical models, including quantile regressions, to test the effect of perinatal smoke exposure (PSE) on cortical surface area (SA), thickness, and subcortical volumes. We hypothesized that PSE would be associated with cortical disruption in primary sensory areas compared to unexposed (PSE-) adults. After adjusting for multiple comparisons, SA was significantly lower in the pericalcarine (PCAL), inferior parietal (IPL), and regions of the temporal and frontal cortex of PSE+ adults; these abnormalities were associated with increased risk for several diseases, including circulatory and endocrine conditions. Sensitivity analyses conducted in a hold-out group of healthy participants (exposed, n = 109, unexposed, n = 315) replicated the effect of PSE on SA in the PCAL and IPL. Collectively our results show a negative, long term effect of PSE on sensory cortices that may increase risk for disease later in life.


Subject(s)
Cerebral Cortex/pathology , Tobacco Smoke Pollution/adverse effects , Adult , Aged , Aged, 80 and over , Biological Specimen Banks , Female , Humans , Infant, Newborn , Male , Middle Aged , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL