Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters

Affiliation country
Publication year range
1.
Microsc Microanal ; : 1-8, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35440356

ABSTRACT

In this study, binary as-cast Al­Cu alloys: Al25Cu (Al­25%Cu) and Al45Cu (Al­45%Cu) (in wt%) were severely plastically deformed by extrusion combined with a reversible torsion (KoBo) method to produce an ultrafine-grained structure (UFG). The binary Al­Cu alloys consist of α-Al and intermetallic Al2Cu phases. The morphology and volume fraction of α-Al and Al2Cu phases depend on the Cu content. The KoBo process was carried out using extrusion ratios of λ = 30 and λ = 98. The effect of phase refinement has been studied by means of scanning electron microscopy with electron backscattering diffraction and scanning transmission electron microscopy. The mechanical properties were assessed using compression tests. Detailed microstructural analysis shows that after the KoBo process, a large number fraction of high-angle boundaries (HABs) and a very fine grain structure (~2­4 µm) in both phases are created. An increase of λ ratio during the KoBo processing leads to a decrease in average grain size of α-Al and Al2Cu phases and an increase in fraction of HABs. UFG microstructure and high fraction of HABs provide the grain boundary sliding mechanism during KoBo deformation. UFG microstructure contributes to the enhanced mechanical properties. Compressive strength (Rc) of Al25Cu alloy increases from 172 to 340 MPa with an increase of λ. Compressive strain (Sc) for Al25Cu alloy increased from 35 to 67% with an increase of λ. High fraction of intermetallic phase in Al45Cu alloy was responsible for room temperature strengthening of alloy and low compressive strain. The deformed Al45Cu alloy with λ = 30 showed that Rc is 194 MPa and Sc is equal to 10%.

4.
Materials (Basel) ; 17(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930177

ABSTRACT

Calcium sulfoaluminate (CSA) cements are a promising alternative to Portland clinker, however, a thorough understanding of their properties is needed for their broader use in the industry. One of the topics that requires a good understanding is the effect of the w/c ratio on the properties of CSA cements. To this end, the aim of this paper was to provide research into the effects of a w/c ratio in the range of 0.45-0.6 on the properties of fresh and hardened CSA pastes and mortars. For fresh mortars, consistency and setting time, as well as plastic shrinkage tests, were conducted, and were complemented by hydration heat tests, carried out on pastes. For hardened mortars, tests of compressive and flexural strength and dry shrinkage, as well as SEM photography, were conducted. It was found that, regardless of a higher hydration rate, the increase in w/c ratio decreased flexural and compressive strength, as well as shrinkage, while increasing consistency, setting time, and hydration heat. Also observed was a significant decrease in strength between 3 and 7 days of curing in mortars with a high w/c ratio. It can be concluded that, regardless of the hydration rate, low w/c ratios in CSA mortars provide better properties than high w/c ratios.

5.
Materials (Basel) ; 16(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834570

ABSTRACT

The aim of this research is a systematic investigation of heat treatments of 60E1 profile rails made of steel R350HT, which would ensure the properties required by the standard EN 16273. Additionally, it presents a concept of cooling rails on a semi-industrial station, which will make it possible to obtain the desired properties. The dilatometric tests have demonstrated that the optimal cooling rate is within the scope of 3 °C/s to 6 °C/s, when both the EN 16273 standard's hardness distribution and microstructure requirements are fulfilled. The tests on the designed and built station showed that the optimal pressure with respect to the microstructure and properties of the rail equals 6.5 bar. For these parameters, measurements of the interlamellar distance were also performed-the cooling rate obtained at the surface was 3.68 °C/s, with an interlamellar distance of about 80 nm, whereas inside the rail the rate was 2.63 °C/s and the distance 110 nm. The achieved results confirm that the designed station can be used for controlled cooling of rail steels from R350HT steel.

6.
Materials (Basel) ; 16(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36837038

ABSTRACT

Surface charge and in vitro corrosion resistance are some of the key parameters characterizing biomaterials in the interaction of the implant with the biological environment. Hence, this work investigates the in vitro bioelectrochemical behavior of newly developed oxide nanotubes (ONTs) layers of second-generation (2G) on a Ti-13Zr-13Nb alloy. The 2G ONTs were produced by anodization in 1 M (NH4)2SO4 solution with 2 wt.% of NH4F. The physical and chemical properties of the obtained bamboo-inspired 2G ONTs were characterized using scanning electron microscopy with field emission and energy dispersive spectroscopy. Zeta potential measurements for the examined materials were carried out using an electrokinetic analyzer in aqueous electrolytes of potassium chloride, phosphate-buffered saline and artificial blood. It was found that the electrolyte type and the ionic strength affect the bioelectrochemical properties of 2G ONTs layers. Open circuit potential and anodic polarization curve results proved the influence of anodizing on the improvement of in vitro corrosion resistance of the Ti-13Zr-13Nb alloy in PBS solution. The anodizing conditions used can be proposed for the production of long-term implants, which are not susceptible to pitting corrosion up to 9.4 V.

7.
Materials (Basel) ; 15(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35407850

ABSTRACT

A hot pressing process was employed to produce titanium-based composites. Nanosized TiC particles were incorporated in order to improve mechanical properties of the base material. The amount of nanosized additions in the composites was 0.5, 1.0, and 2.0 wt %, respectively. Moreover, a TiB phase was produced by in situ method during sintering process. The microstructure of the Ti-TiB-TiC composites was characterized by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD) techniques. Due to the hot pressing process the morphology of primary TiC particles was changed. Observed changes in the size and shape of the reinforcing phase suggest the transformation of primary carbides into secondary carbides. Moreover, an in situ formation of TiB phase was observed in the material. Additionally, residual stress measurements were performed and revealed a mostly compressive nature with the fine contribution of shear. With an increase in TiC content, linear stress decreased, which was also related with the presence of the TiB phase.

8.
Polymers (Basel) ; 14(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35215693

ABSTRACT

Research related to the development of a dental infiltrant for minimally invasive treatment of initial caries of hard dental tissues is presented. The formulation of the developed infiltrant material includes typical methacrylate monomers used in dentistry, an author's adhesion monomer containing metronidazole, a photoinitiating system and yttrium trifluoride (YF3). The main objective of the study was to evaluate penetration into decalcified root cementum using scanning electron microscope of an experimental preparation with the characteristics of a dental infiltrant compared to a commercial preparation with the addition of YF3 as a contrast agent. Microscopic observations showed that YF3 particles virtually did not penetrate deep into the root cementum-this was mainly due to the particle size of YF3. Observations of cementum and root dentin tissue infiltration: resin tissue infiltration was visible to a depth of about 80 to 120 µm without the use of a tracer, which, due to agglomeration and particle size, remained on the cementum surface or in the resin used for inlaying. There were no differences between the degree of penetration of an experimental preparation with the characteristics of a dental infiltrant, as compared to a commercial preparation.

9.
Materials (Basel) ; 14(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34640046

ABSTRACT

Infiltration is a method of penetration with a low viscosity resin that penetrates deep into demineralised tooth tissue and fills the intergranular spaces, hence reducing porosity. Carious lesions initially located at the enamel-cement junction are usually found in elderly patients. Those spots are predisposed to bacterial adhesion originating both from biofilm and from gingival pocket bacteria. The aim of this study was to evaluate the penetration of an experimental preparation, which has the characteristics of a dental infiltrant, enriched with an antibacterial component, into the decalcified root cement tissues of extracted human teeth in elderly patients. An experimental preparation with the characteristics of a dental infiltrant was prepared, applied, and polymerised on the surface of extracted, previously decalcified human teeth. The control sample was Icon (DMG, Hamburg, Germany). The ability of the preparations to penetrate deep into the root cement was evaluated using scanning electron and light microscopy. The study showed that an experimental preparation could potentially be used for treatment of early carious lesions within the tooth root in elderly patients, among others, as it penetrates deep into demineralised tissues. More research is needed.

10.
Materials (Basel) ; 14(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443060

ABSTRACT

The oxidation behavior of the nickel superalloy Inconel 740H was studied at 750 °C for 100, 250, 500, 1000, and 2000 h in a steam atmosphere. Microstructure observations were performed using scanning electron microscopes and scanning-transmission electron microscope. The phase identification of existing oxidation products was conducted by electron diffraction in transmission electron microscope. The obtained results showed that the microstructure of Inconel 740H was stable during the oxidation process. The kinetic data showed that the superalloy has the ability to form protective oxide layers that are characterized by good adhesion and no tendency to spallation during the test. The oxidation products were mainly composed of external and internal oxides mainly at grain boundaries. The oxides in the external layer were Cr2O3, MnTiO3,, and α-Al2O3 after 2000 h of oxidation. Internal oxides were α-Al2O3 and TiO2. The occurrence of discontinuities in the internal oxidation zone was also observed after 500 h of test. It was found that the thickness of the internal oxidation zone was greater than the thickness of the external oxide layer, which proves the strong tendency of the superalloy to form internal oxides after oxidation in the steam atmosphere.

11.
Materials (Basel) ; 13(15)2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32722437

ABSTRACT

Corrosion-induced damage to concrete reinforced with bars is a serious problem regarding technical and economic aspects and strongly depends on used materials, corrosion environment, and service life. Tests described in this paper refer to a two-year evaluation of the effectiveness of protection provided by zinc-coated low-carbon reinforcing steel of grade B500SP in concrete against chloride corrosion. Performed tests were comparative and included measurements conducted on four groups of concrete test elements with dimensions of 40 mm × 40 mm × 140 mm reinforced with a bar having a diameter of ϕ8 mm. Particular groups were a combination of different types of concrete with or without chloride additives, with galvanized or black steel. Chlorides as CaCl2 were added to the concrete mix in the amount of 3% of cement weight in concrete. Reinforced concrete specimens were periodically monitored within two years using the following techniques: linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Polarization measurements were conducted in a three-electrode arrangement, in which a rebar in concrete served as a working electrode, stainless steel sheet was used as an auxiliary electrode, and Cl-/AgCl,Ag was a reference electrode. Comparative tests of changes in the density of corrosion current in concrete specimens without chloride additives basically demonstrated no development of corrosion, and possible passivation was expected in case of black steel. Higher densities of corrosion current were observed for galvanized steel during first days of testing. The reason was the dissolution of zinc after the contact with initially high pH of concrete pore solution. Six-month measurements demonstrated a higher density of corrosion current in concrete specimens with high concentration of chlorides, which unambiguously indicated corrosion in concrete reinforced with galvanized or black steel. Densities of corrosion current determined for selected specimens dramatically decreased after an 18-month interval in measurements. Corrosion was even inhibited on black steel as an insulating barrier of corrosion products was formed. The above observations were confirmed with structural studies using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. Results obtained from corrosion (LPR, EIS) and structural (SEM, EDS) tests on specimens of concrete reinforced with steel B500SP demonstrated a very favorable impact of zinc coating on steel by providing two-year protection against corrosion in the environment with very high chloride content.

12.
Materials (Basel) ; 13(8)2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32325722

ABSTRACT

The present paper is aimed at determining the less investigated effects of hydrogen uptake on the microstructure and the mechanical behavior of the oxidized Zircaloy-2 alloy. The specimens were oxidized and charged with hydrogen. The different oxidation temperatures and cathodic current densities were applied. The scanning electron microscopy, X-ray electron diffraction spectroscopy, hydrogen absorption assessment, tensile, and nanoindentation tests were performed. At low oxidation temperatures, an appearance of numerous hydrides and cracks, and a slight change of mechanical properties were noticed. At high-temperature oxidation, the oxide layer prevented the hydrogen deterioration of the alloy. For nonoxidized samples, charged at different current density, nanoindentation tests showed that both hardness and Young's modulus revealed the minims at specific current value and the stepwise decrease in hardness during hydrogen desorption. The obtained results are explained by the barrier effect of the oxide layer against hydrogen uptake, softening due to the interaction of hydrogen and dislocations nucleated by indentation test, and hardening caused by the decomposition of hydrides. The last phenomena may appear together and result in hydrogen embrittlement in forms of simultaneous hydrogen-enhanced localized plasticity and delayed hydride cracking.

13.
Materials (Basel) ; 13(9)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349439

ABSTRACT

The paper presents the results of tests on the corrosion resistance of Fe40Al5Cr0.2TiB alloy after casting, plastic working using extrusion and rolling methods. Examination of the microstructure of the Fe40Al5Cr0.2TiB alloy after casting and after plastic working was performed on an Olympus GX51 light microscope. The stereological relationships of the alloy microstructure in the state after crystallization and after plastic working were determined. The quantitative analysis of the structure was conducted after testing with the EBSD INCA HKL detector and the Nordlys II analysis system (Channel 5), which was equipped with the Hitachi S-3400N microscope. Structure tests and corrosion tests were performed on tests cut perpendicular to the ingot axis, extrusion direction, and rolling direction. As a result of the tests, it was found that the crystallized alloy has better corrosion resistance than plastically processed material. Plastic working increases the intensity of the electrochemical corrosion of the examined alloy. It was found that as-cast alloy is the most resistant to corrosion in a 5% NaCl compared with the alloys after hot extrusion and after hot rolling. The parameters in this study show the smallest value of the corrosion current density and corrosion rate as well as the more positive value of corrosion potential.

SELECTION OF CITATIONS
SEARCH DETAIL