ABSTRACT
Early atherosclerosis depends upon responses by immune cells resident in the intimal aortic wall. Specifically, the healthy intima is thought to be populated by vascular dendritic cells (DCs) that, during hypercholesterolemia, initiate atherosclerosis by being the first to accumulate cholesterol. Whether these cells remain key players in later stages of disease is unknown. Using murine lineage-tracing models and gene expression profiling, we reveal that myeloid cells present in the intima of the aortic arch are not DCs but instead specialized aortic intima resident macrophages (MacAIR) that depend upon colony-stimulating factor 1 and are sustained by local proliferation. Although MacAIR comprise the earliest foam cells in plaques, their proliferation during plaque progression is limited. After months of hypercholesterolemia, their presence in plaques is overtaken by recruited monocytes, which induce MacAIR-defining genes. These data redefine the lineage of intimal phagocytes and suggest that proliferation is insufficient to sustain generations of macrophages during plaque progression.
Subject(s)
Aorta/immunology , Macrophages/immunology , Monocytes/immunology , Plaque, Atherosclerotic/immunology , Tunica Intima/immunology , Animals , Cell Differentiation , Cell Lineage , Cell Movement , Cell Proliferation , Cells, Cultured , Cholesterol/metabolism , Disease Progression , Humans , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parabiosis , PhagocytosisABSTRACT
BACKGROUND: The osteochondrogenic switch of vascular smooth muscle cells (VSMCs) is a pivotal cellular process in atherosclerotic calcification. However, the exact molecular mechanism of the osteochondrogenic transition of VSMCs remains to be elucidated. Here, we explore the regulatory role of TXNIP (thioredoxin-interacting protein) in the phenotypical transitioning of VSMCs toward osteochondrogenic cells responsible for atherosclerotic calcification. METHODS: The atherosclerotic phenotypes of Txnip-/- mice were analyzed in combination with single-cell RNA-sequencing. The atherosclerotic phenotypes of Tagln-Cre; Txnipflox/flox mice (smooth muscle cell-specific Txnip ablation model), and the mice transplanted with the bone marrow of Txnip-/- mice were analyzed. Public single-cell RNA-sequencing dataset (GSE159677) was reanalyzed to define the gene expression of TXNIP in human calcified atherosclerotic plaques. The effect of TXNIP suppression on the osteochondrogenic phenotypic changes in primary aortic VSMCs was analyzed. RESULTS: Atherosclerotic lesions of Txnip-/- mice presented significantly increased calcification and deposition of collagen content. Subsequent single-cell RNA-sequencing analysis identified the modulated VSMC and osteochondrogenic clusters, which were VSMC-derived populations. The osteochondrogenic cluster was markedly expanded in Txnip-/- mice. The pathway analysis of the VSMC-derived cells revealed enrichment of bone- and cartilage-formation-related pathways and bone morphogenetic protein signaling in Txnip-/- mice. Reanalyzing public single-cell RNA-sequencing dataset revealed that TXNIP was downregulated in the modulated VSMC and osteochondrogenic clusters of human calcified atherosclerotic lesions. Tagln-Cre; Txnipflox/flox mice recapitulated the calcification and collagen-rich atherosclerotic phenotypes of Txnip-/- mice, whereas the hematopoietic deficiency of TXNIP did not affect the lesion phenotype. Suppression of TXNIP in cultured VSMCs accelerates osteodifferentiation and upregulates bone morphogenetic protein signaling. Treatment with the bone morphogenetic protein signaling inhibitor K02288 abrogated the effect of TXNIP suppression on osteodifferentiation. CONCLUSIONS: Our results suggest that TXNIP is a novel regulator of atherosclerotic calcification by suppressing bone morphogenetic protein signaling to inhibit the transition of VSMCs toward an osteochondrogenic phenotype.
Subject(s)
Atherosclerosis , Calcinosis , Plaque, Atherosclerotic , Vascular Calcification , Mice , Humans , Animals , Muscle, Smooth, Vascular/metabolism , Cells, Cultured , Atherosclerosis/metabolism , Plaque, Atherosclerotic/pathology , Calcinosis/metabolism , Bone Morphogenetic Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , RNA/metabolism , Vascular Calcification/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Thioredoxins/metabolismABSTRACT
Dendritic cells (DCs), critical antigen-presenting cells for immune control, normally derive from bone marrow precursors distinct from monocytes. It is not yet established if the large reservoir of monocytes can develop into cells with critical features of DCs in vivo. We now show that fully differentiated monocyte-derived DCs (Mo-DCs) develop in mice and DC-SIGN/CD209a marks the cells. Mo-DCs are recruited from blood monocytes into lymph nodes by lipopolysaccharide and live or dead gram-negative bacteria. Mobilization requires TLR4 and its CD14 coreceptor and Trif. When tested for antigen-presenting function, Mo-DCs are as active as classical DCs, including cross-presentation of proteins and live gram-negative bacteria on MHC I in vivo. Fully differentiated Mo-DCs acquire DC morphology and localize to T cell areas via L-selectin and CCR7. Thus the blood monocyte reservoir becomes the dominant presenting cell in response to select microbes, yielding DC-SIGN(+) cells with critical functions of DCs.
Subject(s)
Cell Adhesion Molecules/metabolism , Cell Differentiation , Dendritic Cells/cytology , Escherichia coli/immunology , Lectins, C-Type/metabolism , Monocytes/cytology , Receptors, Cell Surface/metabolism , Animals , Antigen Presentation , Cell Adhesion Molecules/immunology , Dendritic Cells/immunology , L-Selectin/immunology , Lectins, C-Type/immunology , Lipopolysaccharide Receptors/immunology , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Monocytes/immunology , Receptors, CCR7/immunology , Receptors, Cell Surface/immunology , T-Lymphocytes/immunology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/immunologyABSTRACT
Reference ranges provide a powerful tool for diagnostic decision-making in clinical medicine and are enormously valuable for understanding normality in pre-clinical scientific research that uses in vivo models. As yet, there are no published reference ranges for electrocardiography (ECG) in the laboratory mouse. The first mouse-specific reference ranges for the assessment of electrical conduction are reported herein generated from an ECG dataset of unprecedented scale. International Mouse Phenotyping Consortium data from over 26,000 conscious or anesthetized C57BL/6N wildtype control mice were stratified by sex and age to develop robust ECG reference ranges. Interesting findings include that heart rate and key elements from the ECG waveform (RR-, PR-, ST-, QT-interval, QT corrected, and QRS complex) demonstrate minimal sexual dimorphism. As expected, anesthesia induces a decrease in heart rate and was shown for both inhalation (isoflurane) and injectable (tribromoethanol) anesthesia. In the absence of pharmacological, environmental, or genetic challenges, we did not observe major age-related ECG changes in C57BL/6N-inbred mice as the differences in the reference ranges of 12-week-old compared to 62-week-old mice were negligible. The generalizability of the C57BL/6N substrain reference ranges was demonstrated by comparison with ECG data from a wide range of non-IMPC studies. The close overlap in data from a wide range of mouse strains suggests that the C57BL/6N-based reference ranges can be used as a robust and comprehensive indicator of normality. We report a unique ECG reference resource of fundamental importance for any experimental study of cardiac function in mice.
Subject(s)
Electrocardiography , Electrophysiologic Techniques, Cardiac , Mice , Animals , Mice, Inbred C57BL , Mice, Inbred StrainsABSTRACT
Fairy chemicals (FCs), 2-azahypoxanthine (AHX), imidazole-4-carboxamide (ICA), and 2-aza-8-oxohypoxanthine (AOH), are molecules with many diverse functions in plants. The defined biosynthetic pathway for FCs is a novel purine metabolism in which they are biosynthesized from 5-aminoimidazole-4-carboxamide. Here, we show that one of the purine salvage enzymes, hypoxanthine-guanine phosphoribosyltransferase (HGPRT), recognizes AHX and AOH as substrates. Two novel compounds, AOH ribonucleotide and its ribonucleoside which are the derivatives of AOH, were enzymatically synthesized. The structures were determined by mass spectrometry, 1D and 2D NMR spectroscopy, and X-ray single-crystal diffraction analysis. This report demonstrates the function of HGPRT and the existence of novel purine metabolism associated with the biosynthesis of FCs in rice.
Subject(s)
Hypoxanthine Phosphoribosyltransferase , Oryza , Hypoxanthine Phosphoribosyltransferase/metabolism , Biosynthetic Pathways , Plants/metabolismABSTRACT
2-Azahypoxanthine was isolated from the fairy ring-forming fungus Lepista sordida as a fairy ring-inducing compound. 2-Azahypoxanthine has an unprecedented 1,2,3-triazine moiety, and its biosynthetic pathway is unknown. The biosynthetic genes for 2-azahypoxanthine formation in L. sordida were predicted by a differential gene expression analysis using MiSeq. The results revealed that several genes in the purine and histidine metabolic pathways and the arginine biosynthetic pathway are involved in the biosynthesis of 2-azahypoxanthine. Furthermore, nitric oxide (NO) was produced by recombinant NO synthase 5 (rNOS5), suggesting that NOS5 can be the enzyme involved in the formation of 1,2,3-triazine. The gene encoding hypoxanthine-guanine phosphoribosyltransferase (HGPRT), one of the major phosphoribosyltransferases of purine metabolism, increased when 2-azahypoxanthine content was the highest. Therefore, we hypothesized that HGPRT might catalyze a reversible reaction between 2-azahypoxanthine and 2-azahypoxanthine-ribonucleotide. We proved the endogenous existence of 2-azahypoxanthine-ribonucleotide in L. sordida mycelia by LC-MS/MS for the first time. Furthermore, it was shown that recombinant HGPRT catalyzed reversible interconversion between 2-azahypoxanthine and 2-azahypoxanthine-ribonucleotide. These findings demonstrate that HGPRT can be involved in the biosynthesis of 2-azahypoxanthine via 2-azahypoxanthine-ribonucleotide generated by NOS5.
Subject(s)
Agaricales , Hypoxanthine Phosphoribosyltransferase , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Chromatography, Liquid , Transcriptome , Tandem Mass Spectrometry , Agaricales/metabolism , Hypoxanthines/metabolism , Ribonucleotides/metabolismABSTRACT
2-Azahypoxanthine (AHX) and 2-aza-8-oxohypoxanthine (AOH), discovered as causal substances of fairy rings are known to be endogenous in the fairy ring-forming Lepista sordida. In this study, we showed that xanthine dioxygenase, an a-ketoglutarate-dependent dioxygenase, might catalyze the conversion of AHX to AOH in the fungus. Furthermore, this enzyme is the first reported molybdopterin-independent protein of hypoxanthine metabolism.
Subject(s)
Agaricales , Dioxygenases , Biosynthetic Pathways , Xanthine/metabolism , Dioxygenases/metabolism , Agaricales/metabolism , Hypoxanthines/metabolismABSTRACT
PURPOSE OF REVIEW: Recent findings from single-cell transcriptomic studies prompted us to revisit the role of plaque foamy macrophages in the pathogenesis of atherosclerosis. In this review, we compared the gene expression profile of plaque foamy macrophages with those of other disease-associated macrophages and discussed their functions in the pathogenesis of atherosclerosis. RECENT FINDINGS: To understand the phenotypes of macrophages in atherosclerotic aorta, many research groups performed single-cell RNA sequencing analysis and found that there are distinct phenotypic differences among intimal foamy, nonfoamy and adventitial macrophages. Especially, the plaque foamy macrophages express triggering receptor expressed on myeloid cells 2 (TREM2), a key common feature of disease-associated macrophages in Alzheimer's disease, obesity, cirrhosis and nonalcoholic steatohepatitis. These TREM2 + macrophages seem to be protective against chronic inflammation. SUMMARY: As the gene expression profile of plaque foamy macrophages is highly comparable to that of lipid-associated macrophages from obesity, we named the plaque foamy macrophages as plaque lipid-associated macrophages (PLAMs). PLAMs have a high level of gene expression related to phago/endocytosis, lysosome, lipid metabolism and oxidative phosphorylation. Considering the protective function of lipid-associated macrophages against adipose tissue inflammation, PLAMs may suppress atherosclerotic inflammation by removing modified lipids and cell debris in the plaque.
Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Atherosclerosis/metabolism , Humans , Inflammation/metabolism , Lipids , Macrophages/metabolism , Obesity/metabolism , Plaque, Atherosclerotic/pathologyABSTRACT
2-Azahypoxanthine (AHX) was first isolated from the culture broth of the fungus Lepista sordida as a fairy ring-inducing compound. It has since been found that a large number of plants and mushrooms produce AHX endogenously and that AHX has beneficial effects on plant growth. The AHX molecule has an unusual, nitrogen-rich 1,2,3-triazine moiety of unknown biosynthetic origin. Here, we establish the biosynthetic pathway for AHX formation in L. sordida. Our results reveal that the key nitrogen sources that are responsible for the 1,2,3-triazine formation are reactive nitrogen species (RNS), which are derived from nitric oxide (NO) produced by NO synthase (NOS). Furthermore, RNS are also involved in the biochemical conversion of 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranosyl 5'-monophosphate (AICAR) to AHX-ribotide (AHXR), suggesting that a novel biosynthetic route that produces AHX exists in the fungus. These findings demonstrate a physiological role for NOS in AHX biosynthesis as well as in biosynthesis of other natural products containing a nitrogen-nitrogen bond.
Subject(s)
Agaricales , Triazines , Agaricales/metabolism , Hypoxanthines , Marasmius , Nitrogen , Triazines/metabolismABSTRACT
Five compounds including a new compound (1) were isolated from mycelia of a mushroom-forming fungus Agaricus blazei. Compound 2 was isolated from nature for the first time. Their structures were determined by the interpretation of spectroscopic data. In the bioassay examining growth inhibitory activity against phytopathogenic bacteria Clavibacter michiganensis, Burkholderia glumae, and Peptobacterium carotovorum, all the compounds showed inhibition effects on C. michiganensis. Compounds 3 and 4 also showed weak inhibitory activity against growth of B. glumae.
Subject(s)
Agaricus , Fatty Acids , Agaricus/chemistry , Bacteria , Fatty Acids/analysis , Mycelium/chemistryABSTRACT
A novel compound (1) and 3 known compounds (2-4) were isolated from the fruiting bodies of Hypholoma fasciculare. The structure of 1 was determined by the interpretation of spectroscopic data. Compounds 2-4 were identified by comparing the spectra data of known compounds. In the bioassay examining growth inhibitory activity against phytopathogenic bacteria Clavibacter michiganensis, Burkholderia glumae, and Peptobacterium carotovorum, compounds 1, 2, and 4 showed inhibition effects on C. michiganensis only.
Subject(s)
Agaricales , Triterpenes , Agaricales/chemistry , Fruiting Bodies, Fungal/chemistry , Molecular Structure , SteroidsABSTRACT
Because cyanobacteriochrome photoreceptors need only a single compact domain for chromophore incorporation and for absorption of visible spectra including the long-wavelength far-red region, these molecules have been paid much attention for application to bioimaging and optogenetics. Most cyanobacteriochromes, however, have a drawback to incorporate phycocyanobilin that is not available in the mammalian cells. In this study, we focused on biliverdin (BV) that is a mammalian intrinsic chromophore and absorbs the far-red region and revealed that replacement of only four residues was enough for conversion from BV-rejective cyanobacteriochromes into BV-acceptable molecules. We succeeded in determining the crystal structure of one of such engineered molecules, AnPixJg2_BV4, at 1.6 Å resolution. This structure identified unusual covalent bond linkage, which resulted in deep BV insertion into the protein pocket. The four mutated residues contributed to reducing steric hindrances derived from the deeper insertion. We introduced these residues into other domains, and one of them, NpF2164g5_BV4, produced bright near-infrared fluorescence from mammalian liver in vivo. Collectively, this study provides not only molecular basis to incorporate BV by the cyanobacteriochromes but also rational strategy to open the door for application of cyanobacteriochromes to visualization and regulation of deep mammalian tissues.
Subject(s)
Biliverdine , Photoreceptors, Microbial , Protein Engineering/methods , Animals , Biliverdine/chemistry , Biliverdine/metabolism , COS Cells , Chlorocebus aethiops , Cyanobacteria/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Liver/chemistry , Liver/diagnostic imaging , Liver/metabolism , Mice , Models, Molecular , Optical Imaging , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/genetics , Photoreceptors, Microbial/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , TransfectionABSTRACT
Two compounds 1 and 2 were isolated from the culture broth of Lepista luscina. This is the first time that compound 1 was isolated from a natural source. The structure of compound 1 was identified via 1D and 2D NMR and HRESIMS data. Compounds 1 and 2 along with 8-nitrotryptanthrin (4) were evaluated for their biological activities using the A549 lung cancer cell line. As a result, 1 and 2 inhibited the expression of Axl and immune checkpoint molecules. In addition, compounds 1, 2 and 4 were tested for HIF inhibitory activity. Compound 2 demonstrated statistically significant HIF inhibitory effects on NIH3T3 cells and 1 and 2 against ARPE19 cells.
Subject(s)
Immune Checkpoint Proteins , Lung Neoplasms , Animals , Mice , Humans , NIH 3T3 Cells , Lung Neoplasms/metabolism , A549 Cells , Hypoxia-Inducible Factor 1, alpha Subunit , Cell Line, TumorABSTRACT
BACKGROUND: Macrophages produce many inflammation-associated molecules, released by matrix metalloproteinases, such as adhesion molecules, and cytokines, as well, which play a crucial role in atherosclerosis. In this context, we investigated the relationship between Ninjurin-1 (Ninj1 [nerve injury-induced protein]), a novel matrix metalloproteinase 9 substrate, expression, and atherosclerosis progression. METHODS: Ninj1 expression and atherosclerosis progression were assessed in atherosclerotic aortic tissue and serum samples from patients with coronary artery disease and healthy controls, and atheroprone apolipoprotein e-deficient (Apoe-/-) and wild-type mice, as well. Apoe-/- mice lacking systemic Ninj1 expression (Ninj1-/-Apoe-/-) were generated to assess the functional effects of Ninj1. Bone marrow transplantation was also used to generate low-density lipoprotein receptor-deficient (Ldlr-/-) mice that lack Ninj1 specifically in bone marrow-derived cells. Mice were fed a Western diet for 5 to 23 weeks, and atherosclerotic lesions were investigated. The anti-inflammatory role of Ninj1 was verified by treating macrophages and mice with the peptides Ninj11-56 (ML56) and Ninj126-37 (PN12), which mimic the soluble form of Ninj1 (sNinj1). RESULTS: Our in vivo results conclusively showed a correlation between Ninj1 expression in aortic macrophages and the extent of human and mouse atherosclerotic lesions. Ninj1-deficient macrophages promoted proinflammatory gene expression by activating mitogen-activated protein kinase and inhibiting the phosphoinositide 3-kinase/Akt signaling pathway. Whole-body and bone marrow-specific Ninj1 deficiencies significantly increased monocyte recruitment and macrophage accumulation in atherosclerotic lesions through elevated macrophage-mediated inflammation. Macrophage Ninj1 was directly cleaved by matrix metalloproteinase 9 to generate a soluble form that exhibited antiatherosclerotic effects, as assessed in vitro and in vivo. Treatment with the sNinj1-mimetic peptides, ML56 and PN12, reduced proinflammatory gene expression in human and mouse classically activated macrophages, thereby attenuating monocyte transendothelial migration. Moreover, continuous administration of mPN12 alleviated atherosclerosis by inhibiting the enhanced monocyte recruitment and inflammation characteristics of this disorder in mice, regardless of the presence of Ninj1. CONCLUSIONS: Ninj1 is a novel matrix metalloproteinase 9 substrate in macrophages, and sNinj1 is a secreted atheroprotective protein that regulates macrophage inflammation and monocyte recruitment in atherosclerosis. Moreover, sNinj1-mediated anti-inflammatory effects are conserved in human macrophages and likely contribute to human atherosclerosis.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Atherosclerosis , Cell Adhesion Molecules, Neuronal , Macrophages/metabolism , Nerve Growth Factors , Peptidomimetics/pharmacology , Signal Transduction/drug effects , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/pharmacology , Female , Male , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout, ApoE , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/geneticsABSTRACT
During the course of our investigations of fairy chemicals (FCs), we found S-ICAr-H (8a), as a metabolite of imidazole-4-carboxamide (ICA) in rice and yeast (Saccharomyces cerevisiae). In order to determine its absolute configuration, an efficient synthetic method of 8a was developed. This synthetic strategy was applicable to the preparation of analogues of 8a that might be biologically very important, such as S-ICAr-M (9), S-AICAr-H (10), and S-AICAr-M (11).
Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Oryza/metabolism , S-Adenosylhomocysteine/analogs & derivatives , Saccharomyces cerevisiae/metabolism , Aminoimidazole Carboxamide/chemistry , Aminoimidazole Carboxamide/metabolism , Molecular StructureABSTRACT
In this study, we report a more efficient heterologous expression of lectin from Pleurocybella porrigens (PPL) using an Escherichia coli-based expression system. The yield (9.3 mg/L culture broth) of recombinant PPL (rPPL) using this expression system was increased approximately 9-fold compared to our previous study. The rPPL obtained in this study exhibited the same biochemical properties as the native PPL.
Subject(s)
Agaricales/metabolism , Escherichia coli/genetics , Lectins/biosynthesis , Culture Media , Recombinant Proteins/biosynthesisABSTRACT
Rationale: Diagnosis and monitoring of patients with pulmonary artery hypertension (PAH) is currently difficult.Objectives: We aimed to develop a noninvasive imaging modality for PAH that tracks the infiltration of macrophages into the pulmonary vasculature, using a positron emission tomography (PET) agent, 68Ga-2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) mannosylated human serum albumin (MSA), that targets the mannose receptor (MR).Methods: We induced PAH in rats by monocrotaline injection. Tissue analysis, echocardiography, and 68Ga-NOTA-MSA PET were performed weekly in rats after monocrotaline injection and in those treated with either sildenafil or macitentan. The translational potential of 68Ga-NOTA-MSA PET was explored in patients with PAH.Measurements and Main Results: Gene sets related to macrophages were significantly enriched on whole transcriptome sequencing of the lung tissue in PAH rats. Serial PET images of PAH rats demonstrated increasing uptake of 68Ga-NOTA-MSA in the lung by time that corresponded with the MR-positive macrophage recruitment observed in immunohistochemistry. In sildenafil- or macitentan-treated PAH rats, the infiltration of MR-positive macrophages by histology and the uptake of 68Ga-NOTA-MSA on PET was significantly lower than that of the PAH-only group. The pulmonary uptake of 68Ga-NOTA-MSA was significantly higher in patients with PAH than normal subjects (P = 0.009) or than those with pulmonary hypertension by left heart disease (P = 0.019) (n = 5 per group).Conclusions:68Ga-NOTA-MSA PET can help diagnose PAH and monitor the inflammatory status by imaging the degree of macrophage infiltration into the lung. These observations suggest that 68Ga-NOTA-MSA PET has the potential to be used as a novel noninvasive diagnostic and monitoring tool of PAH.
Subject(s)
Hypertension, Pulmonary/blood , Hypertension, Pulmonary/physiopathology , Inflammation/blood , Inflammation/physiopathology , Pulmonary Artery/physiopathology , Serum Albumin, Human/analysis , Animals , Humans , Hypertension, Pulmonary/diagnosis , Inflammation/diagnosis , Male , Models, Animal , Positron-Emission Tomography/methods , RatsABSTRACT
Early events in atherosclerosis occur in the aortic intima and involve monocytes that become macrophages. We looked for these cells in the steady state adult mouse aorta, and surprisingly, we found a dominance of dendritic cells (DCs) in the intima. In contrast to aortic adventitial macrophages, CD11c(+)MHC II(hi) DCs were poorly phagocytic but were immune stimulatory. DCs were of two types primarily: classical Flt3-Flt3L signaling-dependent, CD103(+)CD11b(-) DCs and macrophage-colony stimulating factor (M-CSF)-dependent, CD14(+)CD11b(+)DC-SIGN(+) monocyte-derived DCs. Both types expanded during atherosclerosis. By crossing Flt3(-/-) to Ldlr(-/-) atherosclerosis-prone mice, we developed a selective and marked deficiency of classical CD103(+) aortic DCs, and they were associated with exacerbated atherosclerosis without alterations in blood lipids. Concomitantly, the Flt3(-/-)Ldlr(-/-) mice had fewer Foxp3(+) Treg cells and increased inflammatory cytokine mRNAs in the aorta. Therefore, functional DCs are dominant in normal aortic intima and, in contrast to macrophages, CD103(+) classical DCs are associated with atherosclerosis protection.
Subject(s)
Atherosclerosis/immunology , Dendritic Cells/immunology , Signal Transduction , fms-Like Tyrosine Kinase 3/metabolism , Animals , Antigens, CD/metabolism , Aorta/drug effects , Aorta/immunology , Atherosclerosis/genetics , Atherosclerosis/pathology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Gene Expression Regulation/immunology , Leukocyte Reduction Procedures , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/immunology , Membrane Proteins/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , fms-Like Tyrosine Kinase 3/geneticsABSTRACT
RATIONALE: Monocyte infiltration into the subintimal space and its intracellular lipid accumulation are the most prominent features of atherosclerosis. To understand the pathophysiology of atherosclerotic disease, we need to understand the characteristics of lipid-laden foamy macrophages in the subintimal space during atherosclerosis. OBJECTIVE: We sought to examine the transcriptomic profiles of foamy and nonfoamy macrophages isolated from atherosclerotic intima. METHODS AND RESULTS: Single-cell RNA sequencing analysis of CD45+ leukocytes from murine atherosclerotic aorta revealed that there are macrophage subpopulations with distinct differentially expressed genes involved in various functional pathways. To specifically characterize the intimal foamy macrophages of plaque, we developed a lipid staining-based flow cytometric method for analyzing the lipid-laden foam cells of atherosclerotic aortas. We used the fluorescent lipid probe BODIPY493/503 and assessed side-scattered light as an indication of cellular granularity. BODIPYhiSSChi foamy macrophages were found residing in intima and expressing CD11c. Foamy macrophage accumulation determined by flow cytometry was positively correlated with the severity of atherosclerosis. Bulk RNA sequencing analysis showed that compared with nonfoamy macrophages, foamy macrophages expressed few inflammatory genes but many lipid-processing genes. Intimal nonfoamy macrophages formed the major population expressing IL (interleukin)-1ß and many other inflammatory transcripts in atherosclerotic aorta. CONCLUSIONS: RNA sequencing analysis of intimal macrophages from atherosclerotic aorta revealed that lipid-loaded plaque macrophages are not likely the plaque macrophages that drive lesional inflammation.
Subject(s)
Macrophages/metabolism , Plaque, Atherosclerotic/metabolism , Transcriptome , Animals , Aorta/metabolism , Aorta/pathology , Cells, Cultured , Humans , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/pathologyABSTRACT
Ischemic myocardial injury results in sterile cardiac inflammation that leads to tissue repair, two processes controlled by mononuclear phagocytes. Despite global burden of cardiovascular diseases, we do not understand the functional contribution to pathogenesis of specific cardiac mononuclear phagocyte lineages, in particular dendritic cells. To address this limitation, we used detailed lineage tracing and genetic studies to identify bona fide murine and human CD103+ conventional dendritic cell (cDC)1s, CD11b+ cDC2s, and plasmacytoid DCs (pDCs) in the heart of normal mice and immunocompromised NSG mice reconstituted with human CD34+ cells, respectively. After myocardial infarction (MI), the specific depletion of cDCs, but not pDCs, improved cardiac function and prevented adverse cardiac remodeling. Our results showed that fractional shortening measured after MI was not influenced by the absence of pDCs. Interestingly, however, depletion of cDCs significantly improved reduction in fractional shortening. Moreover, fibrosis and cell areas were reduced in infarcted zones. This correlated with reduced numbers of cardiac macrophages, neutrophils, and T cells, indicating a blunted inflammatory response. Accordingly, mRNA levels of proinflammatory cytokines IL-1ß and IFN-γ were reduced. Collectively, our results demonstrate the unequivocal pathological role of cDCs following MI.