Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Mol Biol ; 245(4): 324-30, 1995 Jan 27.
Article in English | MEDLINE | ID: mdl-7837266

ABSTRACT

By using ultra-violet and visible absorbance in conjunction with high field 1H-nuclear magnetic resonance spectroscopy, the insulin hexamer has been shown to undergo two allosteric transitions in solution involving three allosteric states (T6<-->T3 R3<-->R6). A simple mathematical model consisting of four variables has been derived that quantitatively describes the complex homotropic and heterotropic interactions that modulate these allosteric transitions. The mutation of one residue, Glu-B13 to Gln, results in an unexpected change in the T3R3 to R6 equilibrium by a factor of 10(7).


Subject(s)
Insulin/metabolism , Allosteric Site , Glutamic Acid/metabolism , Glutamine/metabolism , Insulin/genetics , Ligands , Magnetic Resonance Spectroscopy , Models, Chemical , Mutation , Spectrophotometry, Ultraviolet
2.
Biochemistry ; 32(43): 11638-45, 1993 Nov 02.
Article in English | MEDLINE | ID: mdl-8218231

ABSTRACT

The allosteric behavior of the Co(II)-substituted insulin hexamer has been investigated using electronic spectroscopy to study the binding of different phenolic analogues and singly charged anions to effector sites on the protein. This work presents the first detailed, quantitative analysis of the ligand-induced T- to R-state allosteric transition of the insulin hexamer. Recent studies have established that there are two ligand binding processes which stabilize the R-state conformation of the Co(II)-substituted hexamer: the binding of cyclic organic molecules to the six protein pockets present in the Zn(II)-R6 insulin hexamer [Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D., Sparks, C., & Swensen, D. (1989) Nature 338, 594-596] and the coordination of singly charged anions to the His(B10) metal sites [Brader, M.L., Kaarsholm, N.C., Lee, W.K., & Dunn, M.F. (1991) Biochemistry 30, 6636-6645]. The R6 insulin hexamer is stabilized by heterotropic interactions between the hydrophobic protein pockets and the coordination sites of the His(B10)-bound metal ions. The binding studies with 4-hydroxybenzamide, m-cresol, resorcinol, and phenol presented herein show that, in the absence of inorganic anions, the 4-hydroxybenzamide-induced transition, with a Hill number of 2.8, is the most cooperative, followed by m-cresol, phenol, and resorcinol with Hill numbers of 1.8, 1.4, and 1.2, respectively. The relative effectiveness of these ligands in shifting the allosteric equilibrium in favor of the Co(II)-R6 hexamer was found to be resorcinol > phenol > 4-hydroxybenzamide > m-cresol.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Insulin/chemistry , Allosteric Regulation , Biopolymers , Cobalt , Humans , Insulin/metabolism , Ligands , Models, Chemical , Protein Conformation
3.
Biochemistry ; 33(44): 13057-69, 1994 Nov 08.
Article in English | MEDLINE | ID: mdl-7947711

ABSTRACT

The zinc-insulin hexamer, the storage form of insulin in the pancreas, is an allosteric protein capable of undergoing transitions between three distinct conformational states, designated T6, T3R3, and R6, on the basis of their ligand binding properties, allosteric behavior, and pseudo point symmetries [Kaarsholm, N. C., Ko, H.-C., & Dunn, M. F. (1989) Biochemistry 28, 4427-4435]. The transition from the T-state to the R-state involves a coil-to-helix transition in residues 1-8 of the B-chain wherein the ring of PheB1 is displaced by approximately 30 A. This motion also is accompanied by small changes in the positions of A-chain residues and other B-chain residues. In this paper, one- and two-dimensional (COSY and NOESY) 1H NMR are used to characterize the ligand-induced T to R transitions of wild-type and EB13Q mutant human zinc-insulin hexamers and to make sequence-specific assignments of all resonances in the aromatic region of the R6 complex with resorcinol. The changes in the 1H NMR spectrum (at 500 and 600 MHz) that occur during the T to R transition provide specific signatures of the conformation change. Analysis of the dependence of these spectral changes for the phenol-induced transition as a function of the concentration of phenol establish (1) that the interconversion of T6 and R6 occurs via a third species assigned as T3R3 and (2) that the system shows both negative and positive cooperative allosteric behavior. One- and two-dimensional COSY and NOESY studies show that, in the absence of phenolic compounds, anions act as heterotropic effectors that shift the distribution of hexamer conformations in favor of the R-state with the order of effectiveness, SCN- > N3- >> I- >> Cl-. Analysis of one- and two-dimensional spectra indicate that with wild-type insulin, SCN- and N3- give T3R3 species, whereas the EB13Q mutant gives an R6 species. An allosteric model for the insulin T to R transition based on the structural asymmetry model [Seydoux, F., Malhotra, O. P., & Bernhard, S. A. (1974) CRC Crit. Rev. Biochem. 2, 227-257] is proposed that explains the negative and positive allosteric properties of the system, including the role of T3R3 and the action of homotropic and heterotropic effectors.


Subject(s)
Insulin/chemistry , Protein Conformation , Protein Structure, Secondary , Zinc/metabolism , Allosteric Regulation/genetics , Anions/chemistry , Binding Sites , Humans , Insulin/genetics , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Mutation/genetics , Phenols/chemistry , Polymers , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
4.
Proteins ; 26(4): 377-90, 1996 Dec.
Article in English | MEDLINE | ID: mdl-8990494

ABSTRACT

The insulin hexamer is an allosteric protein exhibiting both positive and negative cooperative homotropic interactions and positive cooperative heterotropic interactions (C. R. Bloom et al., J. Mol. Biol. 245, 324-330, 1995). In this study, detailed spectroscopic analyses of the UV/Vis absorbance spectra of the Co(II)-substituted human insulin hexamer and the 1H NMR spectra of the Zn(II)-substituted hexamer have been carried out under a variety of ligation conditions to test the applicability of the sequential (KNF) and the half-site reactivity (SMB) models for allostery. Through spectral decomposition of the characteristic d-->d transitions of the octahedral Co(II)-T-state and tetrahedral Co(II)-R-state species, and analysis of the 1H NMR spectra of T- and R-state species, these studies establish the presence of preexisting T- and R-state protein conformations in the absence of ligands for the phenolic pockets. The demonstration of preexisting R-state species with unoccupied sites is incompatible with the principles upon which the KNF model is based. However, the SMB model requires preexisting T- and R-states. This feature, and the symmetry constraints of the SMB model make it appropriate for describing the allosteric properties of the insulin hexamer.


Subject(s)
Insulin/chemistry , Allosteric Regulation , Anions , Biopolymers , Cobalt/chemistry , Humans , Insulin/metabolism , Magnetic Resonance Spectroscopy , Protein Conformation , Spectrophotometry, Ultraviolet
5.
Biochemistry ; 36(32): 9878-88, 1997 Aug 12.
Article in English | MEDLINE | ID: mdl-9245420

ABSTRACT

The insulin hexamer is an allosteric protein which displays positive and negative cooperativity and half-site reactivity that is modulated by strong homotropic and heterotropic ligand binding interactions at two different loci. These loci consist of phenolic pockets situated on the dimer-dimer interfaces of T-R and R-R subunit pairs and of anion sites comprising the HisB10 metal ion sites of the R3 units of the T3R3 and R6 states. In this study, we show that suitably tailored organic carboxylates are strong allosteric effectors with relatively high affinities for the R-state HisB10 metal sites. Methods of quantifying the relative affinities of ligands for these sites in both Co(II)- and Zn(II)-substituted insulin hexamers are presented. These analyses show that, in addition to the electron density on the ion, the carboxylate affinity is influenced by polar, nonpolar, and hydrophobic interactions between substituents on the carboxylate and the amphipathic protein surface of the narrow tunnel which controls ligand access to the metal ion. Since the binding of anions to the HisB10 site makes a critically important contribution to the stability of the T3R3 and R6 forms of the insulin hexamer, the design of high-affinity ligands with a carboxylate donor for coordination to the metal ion provides an opportunity for constructing insulin formulations with improved pharmaceutical properties.


Subject(s)
Carboxylic Acids/metabolism , Histidine/metabolism , Insulin/metabolism , Allosteric Site , Carboxylic Acids/chemistry , Cobalt/chemistry , Cobalt/metabolism , Histidine/chemistry , Humans , Insulin/chemistry , Kinetics , Ligands , Protein Conformation , Zinc/chemistry , Zinc/metabolism
6.
J Biol Chem ; 270(31): 18205-8, 1995 Aug 04.
Article in English | MEDLINE | ID: mdl-7543098

ABSTRACT

Shc phosphorylation in cells following growth factor, insulin, cytokine, and lymphocyte receptor activation leads to its association with Grb2 and activation of Ras. In addition to being a cytoplasmic substrate of tyrosine kinases, Shc contains an SH2 domain and a non-SH2 phosphotyrosine binding (PTB) domain. Here we show that the Shc PTB domain, but not the SH2 domain, binds with high affinity (ID50 approximately equal to 1 microM) to phosphopeptides corresponding to the sequence surrounding Tyr250 of the polyoma virus middle T (mT) antigen (LLSNPTpYSVMRSK). Truncation studies show that five residues amino-terminal to tyrosine are required for high affinity binding, whereas all residues carboxyl-terminal to tyrosine can be deleted without loss of affinity. Substitution studies show that tyrosine phosphorylation is required and residues at -5, -3, -2, and -1 positions relative to pTyr are important for this interaction. 1H NMR studies demonstrate that the phosphorylated mT antigen-derived sequence forms a stable beta turn in solution, and correlations between structure and function indicate that the beta turn is important for PTB domain recognition. These results show that PTB domains are functionally distinct from SH2 domains. Whereas SH2 domain binding specificity derives from peptide sequences carboxyl-terminal to phosphotyrosine, the Shc PTB domain gains specificity by interacting with beta turn-forming sequences amino-terminal to phosphotyrosine.


Subject(s)
Antigens, Viral, Tumor/metabolism , Oligopeptides/metabolism , Peptide Fragments/metabolism , Proteins/metabolism , Proto-Oncogene Proteins pp60(c-src)/genetics , Amino Acid Sequence , Binding Sites , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Oligopeptides/chemistry , Peptide Fragments/chemistry , Phosphotyrosine , Polyomavirus/immunology , Protein Binding , Protein Structure, Secondary , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Structure-Activity Relationship , Tyrosine/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL