Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Publication year range
1.
J Transl Med ; 22(1): 292, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504345

ABSTRACT

BACKGROUND: Naturally occurring colorectal cancers (CRC) in rhesus macaques share many features with their human counterparts and are useful models for cancer immunotherapy; but mechanistic data are lacking regarding the comparative molecular pathogenesis of these cancers. METHODS: We conducted state-of-the-art imaging including CT and PET, clinical assessments, and pathological review of 24 rhesus macaques with naturally occurring CRC. Additionally, we molecularly characterized these tumors utilizing immunohistochemistry (IHC), microsatellite instability assays, DNAseq, transcriptomics, and developed a DNA methylation-specific qPCR assay for MLH1, CACNA1G, CDKN2A, CRABP1, and NEUROG1, human markers for CpG island methylator phenotype (CIMP). We furthermore employed Monte-Carlo simulations to in-silico model alterations in DNA topology in transcription-factor binding site-rich promoter regions upon experimentally demonstrated DNA methylation. RESULTS: Similar cancer histology, progression patterns, and co-morbidities could be observed in rhesus as reported for human CRC patients. IHC identified loss of MLH1 and PMS2 in all cases, with functional microsatellite instability. DNA sequencing revealed the close genetic relatedness to human CRCs, including a similar mutational signature, chromosomal instability, and functionally-relevant mutations affecting KRAS (G12D), TP53 (R175H, R273*), APC, AMER1, ALK, and ARID1A. Interestingly, MLH1 mutations were rarely identified on a somatic or germline level. Transcriptomics not only corroborated the similarities of rhesus and human CRCs, but also demonstrated the significant downregulation of MLH1 but not MSH2, MSH6, or PMS2 in rhesus CRCs. Methylation-specific qPCR suggested CIMP-positivity in 9/16 rhesus CRCs, but all 16/16 exhibited significant MLH1 promoter hypermethylation. DNA hypermethylation was modelled to affect DNA topology, particularly propeller twist and roll profiles. Modelling the DNA topology of a transcription factor binding motif (TFAP2A) in the MLH1 promoter that overlapped with a methylation-specific probe, we observed significant differences in DNA topology upon experimentally shown DNA methylation. This suggests a role of transcription factor binding interference in epigenetic silencing of MLH1 in rhesus CRCs. CONCLUSIONS: These data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. We consider this spontaneous, uninduced CRC in immunocompetent, treatment-naïve rhesus macaques to be a uniquely informative model for human CRC.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Microsatellite Instability , Neoplastic Syndromes, Hereditary , Humans , Animals , Macaca mulatta/genetics , Macaca mulatta/metabolism , MutL Protein Homolog 1/genetics , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , Colorectal Neoplasms/pathology , DNA Methylation/genetics , Epigenesis, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , DNA/metabolism , DNA Mismatch Repair/genetics
2.
Cancer ; 128(17): 3254-3264, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35767280

ABSTRACT

BACKGROUND: Cellular and intrinsic markers of sarcoma immunogenicity are poorly understood. To gain insight into whether tumor-immune interactions correlate with clinical aggressiveness, the authors examined the prognostic significance of immune gene signatures in combination with tumor mutational burden (TMB) and cancer-testis antigen (CTA) expression. METHODS: RNA sequencing and clinical data of 259 soft tissue sarcomas from The Cancer Genome Atlas project were used to investigate associations between published immune gene signatures and patient overall survival (OS) in the contexts of TMB, as computed from whole-exome sequencing data, and CTA gene expression. Multivariate Cox proportional hazards regression models and log-rank tests were used to assess survival associations. RESULTS: Immune signature scores that reflected in part the intratumoral abundance of cytotoxic T cells showed significant positive associations with OS. However, the prognostic power of the T-cell signatures was highly dependent on TMB-high status, consistent with protective effects of tumor-infiltrating T cells in tumors with elevated antigenicity. In TMB-low tumors, a signature of infiltrating plasma B cells was significantly and positively associated with OS, independent of T-cell signature status. Although tumor subtypes based on differential expression patterns of CTA genes showed different survival associations within leiomyosarcoma and myxofibrosarcoma histologies, neither CTA nor histologic subtype interacted with the T-cell-survival association. CONCLUSIONS: Signatures of T-cell and plasma B-cell infiltrates were associated with a survival benefit in soft tissue sarcomas. TMB, but not CTA expression, influenced the prognostic power of T-cell-associated, but not plasma B-cell-associated, survival. LAY SUMMARY: Clinical data and RNA analysis of 259 soft tissue sarcomas from The Cancer Genome Atlas project were used to investigate associations between five published gene immune cell expression signatures and survival in the context of tumor mutations. Activated T cells had a significant positive association with patient survival. Although high tumor mutation burden was associated with good survival, the prognostic power of T-cell signatures was highly dependent on tumor mutational status, consistent with protective effects of tumor-infiltrating T cells in tumors with high levels of antigens. In low tumor mutation-bearing tumors, plasma B cells were positively associated with survival.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Adult , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Mutation , Prognosis , Sarcoma/genetics , Soft Tissue Neoplasms/genetics , Exome Sequencing
3.
Int J Mol Sci ; 23(20)2022 10 21.
Article in English | MEDLINE | ID: mdl-36293536

ABSTRACT

Obesity impacts 650 million individuals globally, often co-occurring with metabolic syndrome. Though many obese individuals experience metabolic abnormalities (metabolically unhealthy obese [MUO]), ~30% do not (metabolically healthy obese [MHO]). Conversely, >10% of lean individuals are metabolically unhealthy (MUL). To evaluate the physiologic drivers of these phenotypes, a 44-animal African green monkey cohort was selected using metabolic syndrome risk criteria to represent these four clinically defined health groups. Body composition imaging and subcutaneous adipose tissue (SQ AT) biopsies were collected. Differences in adipocyte size, macrophage subtype distribution, gene expression, vascularity and fibrosis were analyzed using digital immunohistopathology, unbiased RNA-seq, endothelial CD31, and Masson's trichrome staining, respectively. MHO AT demonstrated significant increases in M2 macrophages (p = 0.02) and upregulation of fatty acid oxidation-related terms and transcripts, including FABP7 (p = 0.01). MUO AT demonstrated downregulation of these factors and co-occurring upregulation of immune responses. These changes occurred without differences in AT distributions, adipocyte size, AT endothelial cells, collagen I deposition, or circulating cytokine levels. Without unhealthy diet consumption, healthy obesity is defined by an increased SQ AT M2/M1 macrophage ratio and lipid handling gene expression. We highlight M2 macrophages and fatty acid oxidation as targets for improving metabolic health with obesity.


Subject(s)
Metabolic Syndrome , Obesity, Metabolically Benign , Animals , Chlorocebus aethiops , Metabolic Syndrome/genetics , Endothelial Cells/metabolism , Obesity/genetics , Obesity/metabolism , Phenotype , Macrophages/metabolism , Lipids , Cytokines/genetics , Gene Expression , Fatty Acids , Collagen/genetics , Risk Factors , Body Mass Index
4.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R226-R235, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33206559

ABSTRACT

Type 2 diabetes (T2D) development may be mediated by skeletal muscle (SkM) function, which is responsible for >80% of circulating glucose uptake. The goals of this study were to assess changes in global- and location-level gene expression, remodeling proteins, fibrosis, and vascularity of SkM with worsening glycemic control, through RNA sequencing, immunoblotting, and immunostaining. We evaluated SkM samples from health-diverse African green monkeys (Cholorcebus aethiops sabaeus) to investigate these relationships. We assessed SkM remodeling at the molecular level by evaluating unbiased transcriptomics in age-, sex-, weight-, and waist circumference-matched metabolically healthy, prediabetic (PreT2D) and T2D monkeys (n = 13). Our analysis applied novel location-specific gene differences and shows that extracellular facing and cell membrane-associated genes and proteins are highly upregulated in metabolic disease. We verified transcript patterns using immunohistochemical staining and protein analyses of matrix metalloproteinase 16 (MMP16), tissue inhibitor of metalloproteinase 2 (TIMP2), and VEGF. Extracellular matrix (ECM) functions to support intercellular communications, including the coupling of capillaries to muscle cells, which was worsened with increasing blood glucose. Multiple regression modeling from age- and health-diverse monkeys (n = 33) revealed that capillary density was negatively predicted by only fasting blood glucose. The loss of vascularity in SkM co-occurred with reduced expression of hypoxia-sensing genes, which is indicative of a disconnect between altered ECM and reduced endothelial cells, and known perfusion deficiencies present in PreT2D and T2D. This report supports that rising blood glucose values incite ECM remodeling and reduce SkM capillarization, and that targeting ECM would be a rational approach to improve health with metabolic disease.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Extracellular Matrix Proteins/metabolism , Extracellular Matrix/metabolism , Prediabetic State/blood , Quadriceps Muscle/blood supply , Quadriceps Muscle/metabolism , Animals , Biomarkers/blood , Chlorocebus aethiops , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Extracellular Matrix Proteins/genetics , Female , Fibrosis , Gene Expression Regulation , Gene Regulatory Networks , Microvascular Density , Prediabetic State/genetics , Prediabetic State/pathology , Protein Interaction Maps , Quadriceps Muscle/pathology , Signal Transduction , Transcriptome
5.
Cytogenet Genome Res ; 160(1): 2-10, 2020.
Article in English | MEDLINE | ID: mdl-31865307

ABSTRACT

Strumae ovarii are neoplasms composed of normal-appearing thyroid tissue that occur within the ovary and rarely spread to extraovarian sites. A unique case of struma ovarii with widespread dissemination detected 48 years after removal of a pelvic dermoid provided the opportunity to reexamine the molecular nature of this form of neoplasm. One tumor, from the heart, consisting of benign thyroid tissue was found to have whole-genome homozygosity. Another tumor from the right mandible composed of malignant-appearing thyroid tissue showed whole-genome homozygosity and a deletion of 7p, presumably the second hit that transformed it into a cancerous tumor. Specimens from 2 other cases of extraovarian struma confined to the abdomen and 8 of 9 cases of intraovarian struma showed genome-wide segmental homozygosity. These findings confirm errors in meiosis as the origin of struma ovarii. The histological and molecular findings further demonstrate that even when outside the ovary, strumae ovarii can behave nonaggressively until they receive a second hit, thereafter behaving like cancer.


Subject(s)
Carcinoma/genetics , Genome, Human , Meiosis , Ovarian Neoplasms/genetics , Struma Ovarii/genetics , Teratoma/genetics , Adult , Aged , Carcinoma/diagnosis , Female , Gene Deletion , Heart Neoplasms/genetics , Heart Neoplasms/secondary , Homozygote , Humans , Mandibular Neoplasms/genetics , Mandibular Neoplasms/secondary , Middle Aged , Neoplasm Recurrence, Local , Oligonucleotide Array Sequence Analysis , Ovarian Neoplasms/diagnosis , Sequence Analysis, RNA , Struma Ovarii/diagnosis , Teratoma/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology
6.
Ann Surg Oncol ; 27(5): 1439-1447, 2020 May.
Article in English | MEDLINE | ID: mdl-31980985

ABSTRACT

BACKGROUND: Appendiceal mucinous neoplasm (AMN) with peritoneal metastasis is a rare but deadly disease with few prognostic or therapy-predictive biomarkers to guide treatment decisions. Here, we investigated the prognostic and biological attributes of gene expression-based AMN molecular subtypes. METHODS: AMN specimens (n = 138) derived from a population-based subseries of patients treated at our institution with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) between 05/2000 and 05/2013 were analyzed for gene expression using a custom-designed NanoString 148-gene panel. Signed non-negative matrix factorization (sNMF) was used to define a gene signature capable of delineating robustly-classified AMN molecular subtypes. The sNMF class assignments were evaluated by topology learning, reverse-graph embedding and cross-cohort performance analysis. RESULTS: Three molecular subtypes of AMN were discerned by the expression patterns of 17 genes with roles in cancer progression or anti-tumor immunity. Tumor subtype assignments were confirmed by topology learning. AMN subtypes were termed immune-enriched (IE), oncogene-enriched (OE) and mixed (M) as evidenced by their gene expression patterns, and exhibited significantly different post-treatment survival outcomes. Genes with specialized immune functions, including markers of T-cells, natural killer cells, B-cells, and cytolytic activity showed increased expression in the low-risk IE subtype, while genes implicated in the promotion of cancer growth and progression were more highly expressed in the high-risk OE subtype. In multivariate analysis, the subtypes demonstrated independent prediction power for post-treatment survival. CONCLUSIONS: Our findings suggest a greater role for the immune system in AMN than previously recognized. AMN subtypes may have clinical utility for predicting CRS/HIPEC treatment outcomes.


Subject(s)
Adenocarcinoma, Mucinous/genetics , Appendiceal Neoplasms/genetics , Cytoreduction Surgical Procedures , Hyperthermic Intraperitoneal Chemotherapy , Peritoneal Neoplasms/genetics , Transcriptome , Adenocarcinoma, Mucinous/secondary , Adenocarcinoma, Mucinous/therapy , Adult , Aged , Appendiceal Neoplasms/pathology , Appendiceal Neoplasms/therapy , Female , Gene Expression Profiling , Humans , Immune System Phenomena/genetics , Male , Margins of Excision , Middle Aged , Neoplasm Grading , Oncogenes/genetics , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/therapy , Prognosis , Progression-Free Survival , Proportional Hazards Models , Survival Rate
7.
J Am Soc Nephrol ; 28(4): 1093-1105, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27821631

ABSTRACT

APOL1 G1 and G2 variants facilitate kidney disease in blacks. To elucidate the pathways whereby these variants contribute to disease pathogenesis, we established HEK293 cell lines stably expressing doxycycline-inducible (Tet-on) reference APOL1 G0 or the G1 and G2 renal-risk variants, and used Illumina human HT-12 v4 arrays and Affymetrix HTA 2.0 arrays to generate global gene expression data with doxycycline induction. Significantly altered pathways identified through bioinformatics analyses involved mitochondrial function; results from immunoblotting, immunofluorescence, and functional assays validated these findings. Overexpression of APOL1 by doxycycline induction in HEK293 Tet-on G1 and G2 cells led to impaired mitochondrial function, with markedly reduced maximum respiration rate, reserve respiration capacity, and mitochondrial membrane potential. Impaired mitochondrial function occurred before intracellular potassium depletion or reduced cell viability occurred. Analysis of global gene expression profiles in nondiseased primary proximal tubule cells from black patients revealed that the nicotinate phosphoribosyltransferase gene, responsible for NAD biosynthesis, was among the top downregulated transcripts in cells with two APOL1 renal-risk variants compared with those without renal-risk variants; nicotinate phosphoribosyltransferase also displayed gene expression patterns linked to mitochondrial dysfunction in HEK293 Tet-on APOL1 cell pathway analyses. These results suggest a pivotal role for mitochondrial dysfunction in APOL1-associated kidney disease.


Subject(s)
Apolipoproteins/genetics , Kidney Diseases/genetics , Lipoproteins, HDL/genetics , Mitochondrial Diseases/genetics , Apolipoprotein L1 , Black People , Cells, Cultured , Female , Gene Expression Regulation , HEK293 Cells , Humans , Male , Middle Aged , Risk Factors
8.
Int J Mol Sci ; 19(5)2018 May 14.
Article in English | MEDLINE | ID: mdl-29757932

ABSTRACT

SOX7 is a transcription factor and acts as a tumor suppressor, but its target genes in cancers are poorly explored. We revealed SOX7-mediated gene expression profile in breast cancer cells using microarray chips and discovered multiple altered signaling pathways. When combinatorially analyzing the microarray data with a gene array dataset from 759 breast cancer patients, we identified four genes as potential targets of SOX7 and validated them by quantitative PCR and chromatin immunoprecipitation assays. Among these four genes, we determined that SOX7-activated SPRY1 and SLIT2, and SOX7-repressed TRIB3 and MTHFD2 could all differentially contribute to SOX7-mediated tumor suppression. Overall, we identified multiple cancer-related pathways mediated by SOX7 and for the first time revealed SOX7-regulated target genes in a cancer-relevant context.


Subject(s)
Gene Expression Regulation, Neoplastic , SOXF Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Gene Expression , Gene Expression Profiling , Genes, Reporter , Humans , Protein Binding , Reproducibility of Results , Transcriptome
9.
Biochim Biophys Acta Mol Basis Dis ; 1863(8): 1870-1882, 2017 08.
Article in English | MEDLINE | ID: mdl-27725247

ABSTRACT

Activation of G protein-coupled estrogen receptor (GPER) by its agonist, G1, protects the heart from stressors such as pressure-overload, ischemia, a high-salt diet, estrogen loss, and aging, in various male and female animal models. Due to nonspecific effects of G1, the exact functions of cardiac GPER cannot be concluded from studies using systemic G1 administration. Moreover, global knockdown of GPER affects glucose homeostasis, blood pressure, and many other cardiovascular-related systems, thereby confounding interpretation of its direct cardiac actions. We generated a cardiomyocyte-specific GPER knockout (KO) mouse model to specifically investigate the functions of GPER in cardiomyocytes. Compared to wild type mice, cardiomyocyte-specific GPER KO mice exhibited adverse alterations in cardiac structure and impaired systolic and diastolic function, as measured by echocardiography. Gene deletion effects on left ventricular dimensions were more profound in male KO mice compared to female KO mice. Analysis of DNA microarray data from isolated cardiomyocytes of wild type and KO mice revealed sex-based differences in gene expression profiles affecting multiple transcriptional networks. Gene Set Enrichment Analysis (GSEA) revealed that mitochondrial genes are enriched in GPER KO females, whereas inflammatory response genes are enriched in GPER KO males, compared to their wild type counterparts of the same sex. The cardiomyocyte-specific GPER KO mouse model provides us with a powerful tool to study the functions of GPER in cardiomyocytes. The gene expression profiles of the GPER KO mice provide foundational information for further study of the mechanisms underlying sex-specific cardioprotection by GPER.


Subject(s)
Gene Deletion , Gene Expression Profiling , Gene Expression Regulation , Myocytes, Cardiac/metabolism , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Ventricular Dysfunction, Left , Ventricular Remodeling/genetics , Animals , Female , Male , Mice , Mice, Knockout , Myocytes, Cardiac/pathology , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Sex Characteristics , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
10.
Hum Genet ; 135(8): 869-80, 2016 08.
Article in English | MEDLINE | ID: mdl-27193597

ABSTRACT

Relative to European Americans, type 2 diabetes (T2D) is more prevalent in African Americans (AAs). Genetic variation may modulate transcript abundance in insulin-responsive tissues and contribute to risk; yet, published studies identifying expression quantitative trait loci (eQTLs) in African ancestry populations are restricted to blood cells. This study aims to develop a map of genetically regulated transcripts expressed in tissues important for glucose homeostasis in AAs, critical for identifying the genetic etiology of T2D and related traits. Quantitative measures of adipose and muscle gene expression, and genotypic data were integrated in 260 non-diabetic AAs to identify expression regulatory variants. Their roles in genetic susceptibility to T2D, and related metabolic phenotypes, were evaluated by mining GWAS datasets. eQTL analysis identified 1971 and 2078 cis-eGenes in adipose and muscle, respectively. Cis-eQTLs for 885 transcripts including top cis-eGenes CHURC1, USMG5, and ERAP2 were identified in both tissues. 62.1 % of top cis-eSNPs were within ±50 kb of transcription start sites and cis-eGenes were enriched for mitochondrial transcripts. Mining GWAS databases revealed association of cis-eSNPs for more than 50 genes with T2D (e.g. PIK3C2A, RBMS1, UFSP1), gluco-metabolic phenotypes (e.g. INPP5E, SNX17, ERAP2, FN3KRP), and obesity (e.g. POMC, CPEB4). Integration of GWAS meta-analysis data from AA cohorts revealed the most significant association for cis-eSNPs of ATP5SL and MCCC1 genes, with T2D and BMI, respectively. This study developed the first comprehensive map of adipose and muscle tissue eQTLs in AAs (publically accessible at https://mdsetaa.phs.wakehealth.edu ) and identified genetically regulated transcripts for delineating genetic causes of T2D, and related metabolic phenotypes.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/genetics , Muscles/metabolism , Obesity/genetics , Quantitative Trait Loci/genetics , Adipose Tissue/pathology , Adolescent , Adult , Black or African American/genetics , Chromosome Mapping , Diabetes Mellitus, Type 2/pathology , Female , Gene Expression Regulation , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Middle Aged , Muscles/pathology , Obesity/pathology
11.
BMC Cancer ; 16(1): 911, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27871313

ABSTRACT

BACKGROUND: Tumor-infiltrating leukocytes can either limit cancer growth or facilitate its spread. Diagnostic strategies that comprehensively assess the functional complexity of tumor immune infiltrates could have wide-reaching clinical value. In previous work we identified distinct immune gene signatures in breast tumors that reflect the relative abundance of infiltrating immune cells and exhibited significant associations with patient outcomes. Here we hypothesized that immune gene signatures agnostic to tumor type can be identified by de novo discovery of gene clusters enriched for immunological functions and possessing internal correlation structure conserved across solid tumors from different anatomic sites. METHODS: We assembled microarray expression datasets encompassing 5,295 tumors of the breast, colon, lung, ovarian and prostate. Unsupervised clustering methods were used to determine number and composition of gene clusters within each dataset. Immune-enriched gene clusters (signatures) identified by gene ontology enrichment were analyzed for internal correlation structure and conservation across tumors then compared against expression profiles of: 1) flow-sorted leukocytes from peripheral blood and 2) >300 cancer cell lines from solid and hematologic cancers. Cox regression analysis was used to identify signatures with significant associations with clinical outcome. RESULTS: We identified nine distinct immune-enriched gene signatures conserved across all five tumor types. The signatures differentiated specific leukocyte lineages with moderate discernment overall, and naturally organized into six discrete groups indicative of admixed lineages. Moreover, seven of the signatures exhibit minimal and uncorrelated expression in cancer cell lines, suggesting that these signatures derive predominantly from infiltrating immune cells. All nine immune signatures achieved statistically significant associations with patient prognosis (p<0.05) in one or more tumor types with greatest significance observed in breast and skin cancers. Several signatures indicative of myeloid lineages exhibited poor outcome associations that were most apparent in brain and colon cancers. CONCLUSIONS: These findings suggest that tumor infiltrating immune cells can be differentiated by immune-specific gene expression patterns that quantify the relative abundance of multiple immune infiltrates across a range of solid tumor types. That these markers of immune involvement are significantly associated with patient prognosis in diverse cancers suggests their clinical utility as pan-cancer markers of tumor behavior and immune responsiveness.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Neoplastic , Immunity/genetics , Neoplasms/genetics , Neoplasms/mortality , Transcriptome , Biomarkers , Cluster Analysis , Computational Biology/methods , Datasets as Topic , Gene Expression Profiling , Humans , Leukocytes/metabolism , Molecular Sequence Annotation , Neoplasms/immunology , Prognosis
12.
Am J Nephrol ; 42(2): 99-106, 2015.
Article in English | MEDLINE | ID: mdl-26343748

ABSTRACT

BACKGROUND: In African Americans (AAs), APOL1 G1 and G2 nephropathy risk variants are associated with non-diabetic end-stage kidney disease (ESKD) in an autosomal recessive pattern. Additional risk and protective genetic variants may be present near the APOL1 loci, since earlier age ESKD is observed in some AAs with one APOL1 renal-risk variant, and because the adjacent gene MYH9 is associated with nephropathy in populations lacking G1 and G2 variants. METHODS: Re-sequencing was performed across a ∼275 kb region encompassing the APOL1-APOL4 and MYH9 genes in 154 AA cases with non-diabetic ESKD and 38 controls without nephropathy who were heterozygous for a single APOL1 G1 or G2 risk variant. RESULTS: Sequencing identified 3,246 non-coding single nucleotide polymorphisms (SNPs), 55 coding SNPs, and 246 insertion/deletions. No new coding variations were identified. Eleven variants, including a rare APOL3 Gln58Ter null variant (rs11089781), were genotyped in a replication panel of 1,571 AA ESKD cases and 1,334 controls. After adjusting for APOL1 G1 and G2 risk effects, these variations were not significantly associated with ESKD. In subjects with <2 APOL1 G1 and/or G2 alleles (849 cases; 1,139 controls), the APOL3 null variant was nominally associated with ESKD (recessive model, OR 1.81; p = 0.026); however, analysis in 807 AA cases and 634 controls from the Family Investigation of Nephropathy and Diabetes did not replicate this association. CONCLUSION: Additional common variants in the APOL1-APOL4-MYH9 region do not contribute significantly to ESKD risk beyond the APOL1 G1 and G2 alleles.


Subject(s)
Apolipoproteins/genetics , Black or African American/genetics , Kidney Failure, Chronic/genetics , Lipoproteins, HDL/genetics , Lupus Nephritis/genetics , Molecular Motor Proteins/genetics , Myosin Heavy Chains/genetics , Renal Insufficiency, Chronic/genetics , AIDS-Associated Nephropathy/genetics , Adult , Aged , Anemia, Sickle Cell/complications , Apolipoprotein L1 , Apolipoproteins L , Disease Progression , Female , Genetic Predisposition to Disease , Glomerulosclerosis, Focal Segmental/genetics , High-Throughput Nucleotide Sequencing , Humans , Hypertension, Renal/genetics , Male , Middle Aged , Nephritis/genetics , Polymorphism, Single Nucleotide , Renal Insufficiency, Chronic/etiology , Sequence Analysis, DNA
13.
PLoS Pathog ; 8(9): e1002929, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23028327

ABSTRACT

Vesicular stomatitis virus (VSV) suppresses antiviral responses in infected cells by inhibiting host gene expression at multiple levels, including transcription, nuclear cytoplasmic transport, and translation. The inhibition of host gene expression is due to the activity of the viral matrix (M) protein. Previous studies have shown that M protein interacts with host proteins Rae1 and Nup98 that have been implicated in regulating nuclear-cytoplasmic transport. However, Rae1 function is not essential for host mRNA transport, raising the question of how interaction of a viral protein with a host protein that is not essential for gene expression causes a global inhibition at multiple levels. We tested the hypothesis that there may be multiple M protein-Rae1 complexes involved in inhibiting host gene expression at multiple levels. Using size exclusion chromatography and sedimentation velocity analysis, it was determined that Rae1 exists in high, intermediate, and low molecular weight complexes. The intermediate molecular weight complexes containing Nup98 interacted most efficiently with M protein. The low molecular weight form also interacted with M protein in cells that overexpress Rae1 or cells in which Nup98 expression was silenced. Silencing Rae1 expression had little if any effect on nuclear accumulation of host mRNA in VSV-infected cells, nor did it affect VSV's ability to inhibit host translation. Instead, silencing Rae1 expression reduced the ability of VSV to inhibit host transcription. M protein interacted efficiently with Rae1-Nup98 complexes associated with the chromatin fraction of host nuclei, consistent with an effect on host transcription. These results support the idea that M protein-Rae1 complexes serve as platforms to promote the interaction of M protein with other factors involved in host transcription. They also support the idea that Rae1-Nup98 complexes play a previously under-appreciated role in regulation of transcription.


Subject(s)
Nuclear Matrix-Associated Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Transcription, Genetic , Vesicular stomatitis Indiana virus/metabolism , Viral Matrix Proteins/metabolism , Active Transport, Cell Nucleus , Cell Line , Gene Expression , HEK293 Cells , Humans , Nuclear Matrix-Associated Proteins/genetics , Nuclear Pore Complex Proteins/genetics , Nucleocytoplasmic Transport Proteins/genetics , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering , Vesicular stomatitis Indiana virus/genetics
14.
Physiol Genomics ; 45(19): 907-16, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23943852

ABSTRACT

Ataxia telangiectasia (AT) is a rare autosomal recessive disease caused by mutations in the ataxia telangiectasia-mutated gene (ATM). AT carriers with one mutant ATM allele are usually not severely affected although they carry an increased risk of developing cancer. There has not been an easy and reliable diagnostic method to identify AT carriers. Cell cycle checkpoint functions upon ionizing radiation (IR)-induced DNA damage and gene expression signatures were analyzed in the current study to test for differential responses in human lymphoblastoid cell lines with different ATM genotypes. While both dose- and time-dependent G1 and G2 checkpoint functions were highly attenuated in ATM-/- cell lines, these functions were preserved in ATM+/- cell lines equivalent to ATM+/+ cell lines. However, gene expression signatures at both baseline (consisting of 203 probes) and post-IR treatment (consisting of 126 probes) were able to distinguish ATM+/- cell lines from ATM+/+ and ATM-/- cell lines. Gene ontology (GO) and pathway analysis of the genes in the baseline signature indicate that ATM function-related categories, DNA metabolism, cell cycle, cell death control, and the p53 signaling pathway, were overrepresented. The same analyses of the genes in the IR-responsive signature revealed that biological categories including response to DNA damage stimulus, p53 signaling, and cell cycle pathways were overrepresented, which again confirmed involvement of ATM functions. The results indicate that AT carriers who have unaffected G1 and G2 checkpoint functions can be distinguished from normal individuals and AT patients by expression signatures of genes related to ATM functions.


Subject(s)
Ataxia Telangiectasia/genetics , Cell Cycle Checkpoints/genetics , Gene Expression Profiling , Cell Cycle Checkpoints/radiation effects , DNA Damage/genetics , DNA Damage/radiation effects , Gene Expression Regulation/radiation effects , Gene Ontology , Heterozygote , Humans , Radiation, Ionizing , Signal Transduction/genetics , Signal Transduction/radiation effects
15.
BMC Genomics ; 14: 698, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24118919

ABSTRACT

BACKGROUND: Mercury is a ubiquitous environmental toxicant that exists in multiple chemical forms. A paucity of information exists regarding the differences or similarities by which different mercurials act at the molecular level. RESULTS: Transcriptomes of mixed-stage C. elegans following equitoxic sub-, low- and high-toxicity exposures to inorganic mercuric chloride (HgCl2) and organic methylmercury chloride (MeHgCl) were analyzed. In C. elegans, the mercurials had highly different effects on transcription, with MeHgCl affecting the expression of significantly more genes than HgCl2. Bioinformatics analysis indicated that inorganic and organic mercurials affected different biological processes. RNAi identified 18 genes that were important in C. elegans response to mercurial exposure, although only two of these genes responded to both mercurials. To determine if the responses observed in C. elegans were evolutionarily conserved, the two mercurials were investigated in human neuroblastoma (SK-N-SH), hepatocellular carcinoma (HepG2) and embryonic kidney (HEK293) cells. The human homologs of the affected C. elegans genes were then used to test the effects on gene expression and cell viability after using siRNA during HgCl2 and MeHgCl exposure. As was observed with C. elegans, exposure to the HgCl2 and MeHgCl had different effects on gene expression, and different genes were important in the cellular response to the two mercurials. CONCLUSIONS: These results suggest that, contrary to previous reports, inorganic and organic mercurials have different mechanisms of toxicity. The two mercurials induced disparate effects on gene expression, and different genes were important in protecting the organism from mercurial toxicity.


Subject(s)
Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Mercury/toxicity , Methylmercury Compounds/toxicity , Animals , Cell Line, Tumor , Cluster Analysis , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression Profiling , Genes, Helminth/genetics , Humans , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , Principal Component Analysis , Sequence Homology, Amino Acid , Toxicogenetics , Up-Regulation/drug effects , Up-Regulation/genetics
16.
Arthritis Rheum ; 64(3): 705-17, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21972019

ABSTRACT

OBJECTIVE: To better understand the contribution of age to the development of osteoarthritis (OA). METHODS: Surgical destabilization of the medial meniscus (DMM) was used to model OA in 12-week-old and 12-month-old male C57BL/6 mice. OA severity was evaluated histologically. RNA used for microarray and real-time polymerase chain reaction analysis was isolated from joint tissue collected from the medial side of the joint, including cartilage, meniscus, subchondral bone, and the joint capsule with synovium. Computational analysis was used to identify patterns of gene expression, and immunohistochemistry was used to evaluate tissue distribution of selected proteins. RESULTS: OA was more severe in older mice than in young mice. Only 55 genes showed a similar expression with DMM-induced OA in the 2 age groups, while 493 genes showed differential expression, the majority having increased expression in older mice. Functional categories for similarly expressed genes included extracellular matrix- and cell adhesion-related genes; differentially expressed genes included those related to muscle structure and development and immune response genes. Comparison of expression in sham-operated control joints revealed an age-related decrease in matrix gene expression and an increase in immune and defense response gene expression. Interleukin-33 was present in multiple joint tissue cells, while CCL21 was more localized to chondrocytes and meniscal cells. Periostin was found in the extracellular matrix of cartilage and meniscus. CONCLUSION: Age affects both the basal pattern of gene expression in joint tissues and the response to surgically induced OA. Examining tissue from the joint beyond only cartilage revealed novel genes and proteins that would be important to consider in OA.


Subject(s)
Age Factors , Arthritis, Experimental/genetics , Gene Expression Regulation , Osteoarthritis/genetics , Animals , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Chemokine CCL21/genetics , Chemokine CCL21/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Hindlimb , Interleukin-33 , Interleukins/genetics , Interleukins/metabolism , Male , Mice , Mice, Inbred C57BL , Microarray Analysis , Osteoarthritis/metabolism , Osteoarthritis/pathology , Stifle/metabolism , Stifle/pathology , Stifle/surgery , Tibia/surgery
17.
PLoS Genet ; 6(1): e1000812, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20090835

ABSTRACT

The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials.


Subject(s)
DNA Damage , Friedreich Ataxia/genetics , Friedreich Ataxia/pathology , Gene Expression , RNA/blood , Adolescent , Adult , Cells, Cultured , Child , Cohort Studies , Female , Humans , Iron-Binding Proteins/genetics , Male , Middle Aged , RNA/genetics , Young Adult , Frataxin
18.
Otolaryngol Head Neck Surg ; 169(6): 1533-1541, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37418217

ABSTRACT

OBJECTIVE: To define novel gene biomarkers for prognosis of head and neck squamous cell carcinoma (HNSCC) patients' survival. STUDY DESIGN: Retrospective study. SETTING: The Cancer Genome Atlas (TCGA) HNSCC RNA-Seq dataset. METHODS: Coexpressed gene clusters were extracted from TCGA RNA-seq data using our previously published method (EPIG). Kaplan-Meier estimator was then used for overall survival-relevant analysis, with patients partitioned into 3 groups based on gene expression levels: female, male_low, and male_high. RESULTS: Male had better overall survival than female and male with higher expression level of Y-chromosome-linked (Y-linked) genes had significantly better survival than those with lower expression levels. In addition, male with a higher expression level of Y-linked genes showed even better survival when they have a higher level of coexpressed cluster of genes related to B or T cell immune response. Other clinical conditions related to immune responses also consistently showed favorable effects on the Y-linked genes for survival estimation. Male patients with higher expression level of Y-linked genes also have significantly higher tumor/normal tissue (T/N) ratio of those genes and higher level of several immune responses related clinical measurements (eg, lymphocyte and TCR related). Male patients with lower expression level of Y-linked genes benefited from radiation-only treatment. CONCLUSIONS: The favorable role of a cluster of coexpressed Y-linked genes in HNSCC patients' survival is potentially associated with elevated level of immune responses. These Y-linked genes could serve as useful prognostic biomarkers for HNSCC patients' survival estimation and treatment.


Subject(s)
Head and Neck Neoplasms , Humans , Male , Female , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/genetics , Genes, Y-Linked , Retrospective Studies , Prognosis , Chromosomes , Biomarkers , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic
19.
Obesity (Silver Spring) ; 31(10): 2543-2556, 2023 10.
Article in English | MEDLINE | ID: mdl-37614163

ABSTRACT

OBJECTIVE: Obesity is a key risk factor for metabolic syndrome (MetS); however, >10% of lean individuals meet MetS criteria. Visceral adipose tissue (VAT) disproportionately contributes to inflammation and insulin resistance compared with subcutaneous fat depots. The primary aim of this study was to profile tissue microbiome components in VAT over a wide range of metabolic statuses in a highly clinically relevant model. METHODS: VAT was profiled from nonhuman primates that naturally demonstrate four distinct health phenotypes despite consuming a healthy diet, namely metabolically healthy lean and obese and metabolically unhealthy lean and obese. RESULTS: VAT biopsied from unhealthy lean and obese nonhuman primates demonstrated upregulation of immune signaling pathways, a tissue microbiome enriched in gram-negative bacteria including Pseudomonas, and deficiencies in anti-inflammatory adipose tissue M2 macrophages. VAT microbiomes were distinct from fecal microbiomes, and fecal microbiomes did not differ by metabolic health group, which was in contrast to the VAT bacterial communities. CONCLUSIONS: Immune activation with gram-negative VAT microbial communities is a consistent feature in elevated MetS risk in both lean and obesity states.


Subject(s)
Metabolic Syndrome , Obesity , Animals , Adipose Tissue , Biopsy , Primates
20.
Head Neck ; 44(2): 443-452, 2022 02.
Article in English | MEDLINE | ID: mdl-34841601

ABSTRACT

BACKGROUND: The authors aimed to define novel gene expression signatures that are associated with patients' survival with head and neck squamous cell carcinoma (HNSCC). METHODS: TCGA RNA-seq data were used for gene expression clusters extraction from 499 tumor samples by the "EPIG" method. Tumor samples were then partitioned into lower and higher than median level groups for survival relevant analysis by Kaplan-Meier estimator. RESULTS: We found that two gene clusters (_1, _2) are favorably, while two (_3, _4) are unfavorably, associated with patients' survival with HNSCC. Notably, most genes on the top lists of cluster_2 are associated with B cells. A gene expression signature with combined genes from cluster_2 and _4 was further determined to be associated with HNSCC survival rate. CONCLUSION: Our work strongly supported a favorable role of B cells in patients' survival with HNSCC and identified a novel coexpressed gene signature as prognostic biomarker for patients' survival with HNSCC estimation.


Subject(s)
Head and Neck Neoplasms , Biomarkers, Tumor/genetics , Cluster Analysis , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Humans , Multigene Family , Prognosis , RNA-Seq , Squamous Cell Carcinoma of Head and Neck/genetics
SELECTION OF CITATIONS
SEARCH DETAIL