Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Geophys Res Lett ; 49(14): e2022GL097974, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36249283

ABSTRACT

The lack of evidence for large-scale glacial landscapes on Mars has led to the belief that ancient glaciations had to be frozen to the ground. Here we propose that the fingerprints of Martian wet-based glaciation should be the remnants of the ice sheet drainage system instead of landforms generally associated with terrestrial ice sheets. We use the terrestrial glacial hydrology framework to interrogate how the Martian surface gravity affects glacial hydrology, ice sliding, and glacial erosion. Taking as reference the ancient southern circumpolar ice sheet that deposited the Dorsa Argentea formation, we compare the theoretical behavior of identical ice sheets on Mars and Earth and show that, whereas on Earth glacial drainage is predominantly inefficient, enhancing ice sliding and erosion, on Mars the lower gravity favors the formation of efficient subglacial drainage. The apparent lack of large-scale glacial fingerprints on Mars, such as drumlins or lineations, is to be expected.

2.
Phys Rev Lett ; 114(10): 101301, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25815919

ABSTRACT

We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400 deg^{2} patch of sky centered on RA 0 h, Dec. -57.5°. The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2 µK deg in Q and U at 143 GHz). We detect 150×353 cross-correlation in B modes at high significance. We fit the single- and cross-frequency power spectra at frequencies ≥150 GHz to a lensed-ΛCDM model that includes dust and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r), using a prior on the frequency spectral behavior of polarized dust emission from previous Planck analysis of other regions of the sky. We find strong evidence for dust and no statistically significant evidence for tensor modes. We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally, we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit r_{0.05}<0.12 at 95% confidence. Marginalizing over dust and r, lensing B modes are detected at 7.0σ significance.

3.
Space Sci Rev ; 220(1): 1, 2024.
Article in English | MEDLINE | ID: mdl-38130909

ABSTRACT

The Lucy Thermal Emission Spectrometer (L'TES) will provide remote measurements of the thermophysical properties of the Trojan asteroids studied by the Lucy mission. L'TES is build-to-print hardware copy of the OTES instrument flown on OSIRIS-REx. It is a Fourier Transform spectrometer covering the spectral range 5.71-100 µm (1750-100 cm-1) with spectral sampling intervals of 8.64, 17.3, and 34.6 cm-1 and a 7.3-mrad field of view. The L'TES telescope is a 15.2-cm diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a linear voice-coil motor assembly to a single uncooled deuterated l-alanine doped triglycine sulfate (DLATGS) pyroelectric detector. A significant firmware change from OTES is the ability to acquire interferograms of different length and spectral resolution with acquisition times of 0.5, 1, and 2 seconds. A single ∼0.851 µm laser diode is used in a metrology interferometer to provide precise moving mirror control and IR sampling at 772 Hz. The beamsplitter is a 38-mm diameter, 1-mm thick chemical vapor deposited diamond with an antireflection microstructure to minimize surface reflection. An internal calibration cone blackbody target, together with observations of space, provides radiometric calibration. The radiometric precision in a single spectrum is ≤2.2 × 10-8 W cm-2 sr-1 /cm-1 between 300 and 1350 cm-1. The absolute temperature error is <2 K for scene temperatures >75 K. The overall L'TES envelope size is 37.6 × 29.0 × 30.4 cm, and the mass is 6.47 kg. The power consumption is 12.6 W average. L'TES was developed by Arizona State University with AZ Space Technologies developing the electronics. L'TES was integrated, tested, and radiometrically calibrated on the Arizona State University campus in Tempe, AZ. Initial data from space have verified the instrument's radiometric and spatial performance.

4.
Appl Opt ; 52(11): 2200-17, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23670748

ABSTRACT

The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft payload. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often >5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically <2 to 3). Since this style of instrument is based on a long heritage of thermal infrared emission spectrometers sent to orbit (the thermal emission spectrometer), sent to planetary surfaces [the mini-thermal emission spectrometers (mini-TES)], and evaluated in laboratory environments (e.g., the Arizona State University emission spectrometer laboratory), direct comparisons to existing data are uniquely possible with this style of instrument. The ability to obtain bulk mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars. Miniaturization of this instrument has also been demonstrated, as the same microscope objective has been mounted to a flight-spare mini-TES. Further miniaturization of this instrument is straightforward with modern electronics, and the development of this instrument as an arm-mounted device is the end goal.

5.
Nature ; 443(7107): E1-2; discussion E2, 2006 Sep 07.
Article in English | MEDLINE | ID: mdl-16957684

ABSTRACT

The Mars Exploration Rover Opportunity discovered sulphate-rich sedimentary rocks at Meridiani Planum on Mars, which are interpreted by McCollom and Hynek as altered volcanic rocks. However, their conclusions are derived from an incorrect representation of our depositional model, which is upheld by more recent Rover data. We contend that all the available data still support an aeolian and aqueous sedimentary origin for Meridiani bedrock.

6.
Science ; 377(6603): 285-291, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857591

ABSTRACT

Carbonaceous asteroids, such as (101955) Bennu, preserve material from the early Solar System, including volatile compounds and organic molecules. We report spacecraft imaging and spectral data collected during and after retrieval of a sample from Bennu's surface. The sampling event mobilized rocks and dust into a debris plume, excavating a 9-meter-long elliptical crater. This exposed material is darker, spectrally redder, and more abundant in fine particulates than the original surface. The bulk density of the displaced subsurface material was 500 to 700 kilograms per cubic meter, which is about half that of the whole asteroid. Particulates that landed on instrument optics spectrally resemble aqueously altered carbonaceous meteorites. The spacecraft stored 250 ± 101 grams of material, which will be delivered to Earth in 2023.

7.
Nature ; 436(7050): 504-9, 2005 Jul 28.
Article in English | MEDLINE | ID: mdl-16007077

ABSTRACT

Compositional mapping of Mars at the 100-metre scale with the Mars Odyssey Thermal Emission Imaging System (THEMIS) has revealed a wide diversity of igneous materials. Volcanic evolution produced compositions from low-silica basalts to high-silica dacite in the Syrtis Major caldera. The existence of dacite demonstrates that highly evolved lavas have been produced, at least locally, by magma evolution through fractional crystallization. Olivine basalts are observed on crater floors and in layers exposed in canyon walls up to 4.5 km beneath the surface. This vertical distribution suggests that olivine-rich lavas were emplaced at various times throughout the formation of the upper crust, with their growing inventory suggesting that such ultramafic (picritic) basalts may be relatively common. Quartz-bearing granitoid rocks have also been discovered, demonstrating that extreme differentiation has occurred. These observations show that the martian crust, while dominated by basalt, contains a diversity of igneous materials whose range in composition from picritic basalts to granitoids rivals that found on the Earth.

8.
Nature ; 436(7047): 44-8, 2005 Jul 07.
Article in English | MEDLINE | ID: mdl-16001058

ABSTRACT

Comprehensive analyses of remote sensing data during the three-year effort to select the Mars Exploration Rover landing sites at Gusev crater and at Meridiani Planum correctly predicted the atmospheric density profile during entry and descent and the safe and trafficable surfaces explored by the two rovers. The Gusev crater site was correctly predicted to be a low-relief surface that was less rocky than the Viking landing sites but comparably dusty. A dark, low-albedo, flat plain composed of basaltic sand and haematite with very few rocks was expected and found at Meridiani Planum. These results argue that future efforts to select safe landing sites based on existing and acquired remote sensing data will be successful. In contrast, geological interpretations of the sites based on remote sensing data were less certain and less successful, which emphasizes the inherent ambiguities in understanding surface geology from remotely sensed data and the uncertainty in predicting exactly what materials will be available for study at a landing site.

9.
Sci Adv ; 6(41)2020 Oct.
Article in English | MEDLINE | ID: mdl-33033037

ABSTRACT

Thermal inertia and surface roughness are proxies for the physical characteristics of planetary surfaces. Global maps of these two properties distinguish the boulder population on near-Earth asteroid (NEA) (101955) Bennu into two types that differ in strength, and both have lower thermal inertia than expected for boulders and meteorites. Neither has strongly temperature-dependent thermal properties. The weaker boulder type probably would not survive atmospheric entry and thus may not be represented in the meteorite collection. The maps also show a high-thermal inertia band at Bennu's equator, which might be explained by processes such as compaction or strength sorting during mass movement, but these explanations are not wholly consistent with other data. Our findings imply that other C-complex NEAs likely have boulders similar to those on Bennu rather than finer-particulate regoliths. A tentative correlation between albedo and thermal inertia of C-complex NEAs may be due to relative abundances of boulder types.

10.
Science ; 194(4271): 1346-51, 1976 Dec 11.
Article in English | MEDLINE | ID: mdl-17797099

ABSTRACT

Selected observations made with the Viking infrared thermal mapper after the first landing are reported. Atmospheric temperatures measured at the latitude of the Viking 2 landing site (48 degrees N) over most of a martian day reveal a diurnal variation of at least 15 K, with peak temperatures occurring near 2.2 hours after noon, implying significant absorption of sunlight in the lower 30 km of the atmosphere by entrained dust. The summit temperature of Arsia Mons varies by a factor of nearly two each day; large diurnal temperature variation is characteristic of the south Tharsis upland and implies the presence of low thermal inertia material. The thermal inertia of material on the floors of several typical large craters is found to be higher than for the surrounding terrain; this suggests that craters are somehow effective in sorting aeolian material. Brightness temperatures of the Viking 1 landing area decrease at large emission angles; the intensity of reflected sunlight shows a more complex dependence on geometry than expected, implying atmospheric as well as surface scattering.

11.
Science ; 279(5357): 1692-8, 1998 Mar 13.
Article in English | MEDLINE | ID: mdl-9497282

ABSTRACT

The Thermal Emission Spectrometer spectra of low albedo surface materials suggests that a four to one mixture of pyroxene to plagioclase, together with about a 35 percent dust component provides the best fit to the spectrum. Qualitative upper limits can be placed on the concentration of carbonates (<10 percent), olivine (<10 percent), clay minerals (<20 percent), and quartz (<5 percent) in the limited regions observed. Limb observations in the northern hemisphere reveal low-lying dust hazes and detached water-ice clouds at altitudes up to 55 kilometers. At an aerocentric longitude of 224 degrees a major dust storm developed in the Noachis Terra region. The south polar cap retreat was similar to that observed by Viking.


Subject(s)
Extraterrestrial Environment , Mars , Atmosphere , Carbon Dioxide , Carbonates , Ice , Iron Compounds , Magnesium Compounds , Minerals , Silicates , Spacecraft , Spectrum Analysis , Temperature , Water
12.
Appl Spectrosc ; 63(6): 678-88, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19531295

ABSTRACT

Laboratory emission spectra are measured at Arizona State University's Mars Space Flight Facility for comparison to remotely sensed data from Earth and Mars. Such emission spectroscopy using an interferometric spectrometer measures the energy of the sample, including reflected and emitted background sources. The detector is uncooled at ambient temperature, which produces a very low signal when measuring the energy from a sample that has a temperature close to its own. In order to increase the energy difference between the sample and the detector, thereby increasing the signal received by the detector, samples are typically heated to between 60 and 80 degrees C for several hours prior to measurement. While this method is acceptable for most rock and mineral samples, some hydrous minerals dehydrate quickly at low relative humidity and temperatures above room temperature. This change is evident in both the physical appearance of the mineral and in the position and shape of its spectral absorptions. One solution to this problem is to heat samples to lower temperatures (e.g., 40 degrees C) for only a short time period. However, this approach results in a low signal from the sample and does not always avoid dehydration. For this reason, we have developed a technique for measuring and calibrating emission spectra of hydrated minerals that involves cooling samples to well below the temperature of the detector, which avoids dehydration, while creating a large delta temperature and a strong signal from the sample. Our method allows for accurate library spectra, with discrete, pronounced spectral features (high spectral contrast), of hydrated minerals that can be used for comparison to planetary surfaces.

13.
Nat Astron ; 3(4): 332-340, 2019.
Article in English | MEDLINE | ID: mdl-31360777

ABSTRACT

Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of meters observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu's spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth.

16.
Science ; 324(5930): 1058-61, 2009 May 22.
Article in English | MEDLINE | ID: mdl-19461001

ABSTRACT

The Mars rover Opportunity has explored Victoria crater, an approximately 750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those approximately 6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.


Subject(s)
Mars , Extraterrestrial Environment , Ferric Compounds , Spacecraft , Water
17.
Science ; 319(5870): 1651-4, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18356522

ABSTRACT

Chlorides commonly precipitate during the evaporation of surface water or groundwater and during volcanic outgassing. Spectrally distinct surface deposits consistent with chloride-bearing materials have been identified and mapped using data from the 2001 Mars Odyssey Thermal Emission Imaging System. These deposits are found throughout regions of low albedo in the southern highlands of Mars. Geomorphologic evidence from orbiting imagery reveals these deposits to be light-toned relative to their surroundings and to be polygonally fractured. The deposits are small (< approximately 25 km(2)) but globally widespread, occurring in middle to late Noachian terrains with a few occurrences in early Hesperian terrains. The identification of chlorides in the ancient southern highlands suggests that near-surface water was available and widespread in early Martian history.


Subject(s)
Chlorides , Mars , Water , Chemical Precipitation , Extraterrestrial Environment , Time
18.
Dev Commun Rep ; (49): 3-4, 1985.
Article in English | MEDLINE | ID: mdl-12341671

ABSTRACT

PIP: Kenya's Radio Language Arts Project, directed by the Academy for Educational Development in cooperation with the Kenya Institute of Education in 1980-85, sought to teach English to rural school children in grades 1-3 through use of an intensive, radio-based instructional system. Daily 1/2 hour lessons are broadcast throughout the school year and supported by teachers and print materials. The project further was aimed at testing the feasibility of adaptation of the successful Nicaraguan Radio Math Project to a new subject area. Difficulties were encountered in articulating a language curriculum with the precision required for a media-based instructional system. Also a challenge was defining the acceptable regional standard for pronunciation and grammar; British English was finally selected. An important modification of the Radio Math model concerned the role of the teacher. While Radio Math sought to reduce the teacher's responsibilities during the broadcast, Radio Language Arts teachers played an important instructional role during the English lesson broadcasts by providing translation and checks on work. Evaluations of the Radio language Arts Project suggest significant gains in speaking, listening, and reading skills as well as high levels of satisfaction on the part of parents and teachers.^ieng


Subject(s)
Communication , Curriculum , Education , Faculty , Information Services , Language , Mass Media , Radio , Schools , Africa , Africa South of the Sahara , Africa, Eastern , Developing Countries , Health Planning , Kenya , Organization and Administration
19.
Science ; 306(5702): 1709-14, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15576604

ABSTRACT

Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.


Subject(s)
Mars , Water , Exobiology , Extraterrestrial Environment , Ferric Compounds , Geologic Sediments , Life , Minerals , Silicates , Spacecraft , Spectrum Analysis , Sulfates , Sulfur
20.
Science ; 306(5702): 1730-3, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15576608

ABSTRACT

The location of the Opportunity landing site was determined to better than 10-m absolute accuracy from analyses of radio tracking data. We determined Rover locations during traverses with an error as small as several centimeters using engineering telemetry and overlapping images. Topographic profiles generated from rover data show that the plains are very smooth from meter- to centimeter-length scales, consistent with analyses of orbital observations. Solar cell output decreased because of the deposition of airborne dust on the panels. The lack of dust-covered surfaces on Meridiani Planum indicates that high velocity winds must remove this material on a continuing basis. The low mechanical strength of the evaporitic rocks as determined from grinding experiments, and the abundance of coarse-grained surface particles argue for differential erosion of Meridiani Planum.


Subject(s)
Mars , Extraterrestrial Environment , Geologic Sediments , Spacecraft , Wind
SELECTION OF CITATIONS
SEARCH DETAIL