ABSTRACT
The regenerative ability of limb bones after injury decreases during aging, but whether a similar phenomenon occurs in jawbones and whether autophagy plays a role in this process remain unclear. Through retrospective analysis of clinical data and studies on a mouse model of jawbone defects, we confirmed the presence of delayed or impaired bone regeneration in the jawbones of old individuals and mice. Subsequently, osteoblasts (OBs) derived from mouse jawbones were isolated, showing reduced osteogenesis in senescent osteoblasts (S-OBs). We observed a reduction in autophagy within both aged jawbones and S-OBs. Additionally, pharmacological inhibition of autophagy in normal OBs (N-OBs) led to cell aging and decreased osteogenesis, while autophagic activation reversed the aging phenotype of S-OBs. The activator rapamycin (RAPA) increased the autophagy level and bone regeneration in aged jawbones. Finally, we found that fatty acid-binding protein 3 (FABP3) was degraded by autolysosomes through its interaction with sequestosome 1 (P62/SQSTM1). Autophagy inhibition within senescent jawbones and S-OBs led to the excessive accumulation of FABP3, and FABP3 knockdown partially rescued the decreased osteogenesis in S-OBs and alleviated age-related compromised jawbone regeneration. In summary, we confirmed that autophagy inhibition plays an important role in delaying bone regeneration in aging jawbones. Autophagic activation or FABP3 knockdown can partially rescue the osteogenesis of S-OBs and the regeneration of aging jawbones, providing insight into jawbone aging.
Subject(s)
Aging , Autophagy , Bone Regeneration , Fatty Acid-Binding Proteins , Osteoblasts , Osteogenesis , Animals , Female , Humans , Male , Mice , Aging/physiology , Aging/metabolism , Autophagy/physiology , Cellular Senescence/physiology , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Jaw , Mice, Inbred C57BL , Osteoblasts/metabolism , Osteogenesis/physiologyABSTRACT
Background: A potential relationship between oral inflammation and cardiovascular disease has been proposed; however, the impact of cardiovascular disease on implant restoration remains unclear. This systematic review aims to assess the relationship between peri-implantitis and cardiovascular disease based on review of data obtained through observational studies. Materials and Methods: An extensive systematic literature search was performed using the PubMed/MEDLINE, Scopus, Web of Science and Cochrane Library databases. Studies published in English language up to June 2022 were conducted in accordance with PRISMA guidelines. These efforts identified 230 unique publications and, after selection, five studies were included in this meta-analysis. The Newcastle-Ottawa Scale table was used for literature quality assessment. A fixed-effect model was selected and RevMan software version 5.3 was used to identify the origin of the outcomes of the meta-analysis. Finally, results were reported through the PRISMA statement. Results: This meta-analysis found that in implant restoration the incidence of peri-implantitis in patients with cardiovascular disease was higher than those without cardiovascular disease (Risk ratio (RR) = 1.12; 95% CI: 1.02-1.23; z = 2.34; p < 0.05). Conclusions: Based on current evidence, we conclude that the presence of cardiovascular disease increases the incidence of peri-implantitis. Registration: PROSPERO database (CRD42022353693).
ABSTRACT
Certain dental procedures produce high levels of aerosols containing pathogenic microorganisms, posing a risk for the transmission of infections in dental settings. This study aimed to assess the effectiveness of various aerosol mitigation interventions during clinical dental procedures in real-world environments. A systematic literature search was conducted in PubMed/MEDLINE, Scopus, Web of Science, and Embase for English studies up to March 2023 according to the PRISMA guidelines. Only peer-reviewed controlled clinical trials (CCT) or randomized controlled trials (RCT) studies involving human subjects were included. The risk of bias of selected researches were evaluated by two independent authors using the Cochrane Collaboration tool. The literature search yielded 3491 articles, of which 42 studies met the inclusion criteria and were included in this study. Most studies evaluated bacterial contamination in bio-aerosols, while the viral and fungal contamination was assessed in only three studies. Overall, various approaches have been applied in reducing aerosol contamination in clinical scenarios, including high-volume evacuators (HVE), mouse rinses and rubber dams, air cleaning systems, and high-efficiency particulate air (HEPA) filters. The available evidence suggests that various aerosol mitigation strategies could be implemented to decrease the risk of cross-infection during clinical dental procedures in real-world environments. However, further clinical trials are necessary to establish statistical validity in measuring aerosol contamination and mitigation, as well as to evaluate the risk of infection transmission for viral and fungal contamination.