Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 299(11): 105335, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37827291

ABSTRACT

Hepatoma-derived growth factor (HDGF) overexpression and uncontrolled reactive oxygen species (ROS) accumulation are involved in malignant transformation and poor prognosis in various types of cancer. However, the interplay between HDGF and ROS generation has not been elucidated in hepatocellular carcinoma. Here, we first analyzed the profile of HDGF expression and ROS production in newly generated orthotopic hepatomas by ultrasound-guided implantation. In situ superoxide detection showed that HDGF-overexpressing hepatomas had significantly elevated ROS levels compared with adjacent nontumor tissues. Consistently, liver tissues from HDGF-deficient mice exhibited lower ROS fluorescence than those from age- and sex-matched WT mice. ROS-detecting fluorescent dyes and flow cytometry revealed that recombinant HDGF (rHDGF) stimulated the production of superoxide anion, hydrogen peroxide, and mitochondrial ROS generation in cultured hepatoma cells in a dose-dependent manner. In contrast, the inactive Ser103Ala rHDGF mutant failed to promote ROS generation or oncogenic behaviors. Seahorse metabolic flux assays revealed that rHDGF dose dependently upregulated bioenergetics through enhanced basal and total oxygen consumption rate, extracellular acidification rate, and oxidative phosphorylation in hepatoma cells. Moreover, antioxidants of N-acetyl cysteine and MitoQ treatment significantly inhibited HDGF-mediated cell proliferation and invasive capacity. Genetic silencing of superoxide dismutase 2 augmented the HDGF-induced ROS generation and oncogenic behaviors of hepatoma cells. Finally, genetic knockdown nucleolin (NCL) and antibody neutralization of surface NCL, the HDGF receptor, abolished the HDGF-induced increase in ROS and mitochondrial energetics. In conclusion, this study has demonstrated for the first time that the HDGF/NCL signaling axis induces ROS generation by elevating ROS generation in mitochondria, thereby stimulating liver carcinogenesis.


Subject(s)
Carcinoma, Hepatocellular , Animals , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Reactive Oxygen Species , Carcinogenesis/genetics
2.
Int J Med Sci ; 21(12): 2348-2364, 2024.
Article in English | MEDLINE | ID: mdl-39310264

ABSTRACT

Recent advancements have elucidated the multifaceted roles of the Schlafen (SLFN) family, including SLFN5, SLFN11, SLFN12, SLFN13, and SLFN14, which are implicated in immunological responses. However, little is known about the roles of this gene family in relation to malignancy development. The current study aimed to explore the diagnostic and prognostic potential of Schlafen family genes in colorectal adenocarcinoma (COAD) through bioinformatics analysis. Leveraging advanced bioinformatics tools of bulk RNA-sequencing and single-cell sequencing, we conducted in-depth analyses of gene expressions, functional enrichment, and survival patterns of patients with colorectal cancer compared to normal tissue. Among Schlafen family genes, the transcription levels of SLFN5 in COAD tissues were significantly elevated and correlated with poor survival outcomes. Furthermore, SLFN5 regulated the immune response via Janus kinase (JAK)/signal transduction and activator of transcription (STAT)/interferon (IFN)-alpha/beta signaling. These chemokines in inflammation are associated with diabetes and metabolism, suggesting their involvement in altered cellular energetics for COAD progress. In addition, an immune cell deconvolution analysis indicated a correlation between SLFN5 expression and immune-related cell populations, such as regulatory T cells (Tregs). These findings highlighted the potential clinical significance of SLFN5 in COAD and provided insights into its involvement in the tumor microenvironment and immune regulation. Meanwhile, the drug discovery data of SFLN5 with potential targeted small molecules suggested its therapeutic potential for COAD. Collectively, the current research demonstrated that SFLN5 play crucial roles in tumor development and serve as a prospective biomarker for COAD.


Subject(s)
Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Single-Cell Analysis , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Single-Cell Analysis/methods , Prognosis , Biomarkers, Tumor/genetics , Computational Biology/methods , Sequence Analysis, RNA , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Gene Expression Profiling , Signal Transduction/genetics , Signal Transduction/immunology , Cell Cycle Proteins
3.
Mar Drugs ; 22(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786610

ABSTRACT

Octocoral of the genus Clavularia is a kind of marine invertebrate possessing abundant cytotoxic secondary metabolites, such as prostanoids and dolabellanes. In our continuous natural product study of C. spp., two previously undescribed prostanoids [clavulone I-15-one (1) and 12-O-deacetylclavulone I (2)] and eleven known analogs (3-13) were identified. The structures of these new compounds were elucidated based on analysis of their 1D and 2D NMR, HRESIMS, and IR data. Additionally, all tested prostanoids (1 and 3-13) showed potent cytotoxic activities against the human oral cancer cell line (Ca9-22). The major compound 3 showed cytotoxic activity against the Ca9-22 cells with the IC50 value of 2.11 ± 0.03 µg/mL, which echoes the cytotoxic effect of the coral extract. In addition, in silico tools were used to predict the possible effects of isolated compounds on human tumor cell lines and nitric oxide production, as well as the pharmacological potentials.


Subject(s)
Anthozoa , Antineoplastic Agents , Prostaglandins , Humans , Anthozoa/chemistry , Animals , Cell Line, Tumor , Prostaglandins/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Nitric Oxide/metabolism , Inhibitory Concentration 50 , Aquatic Organisms , Molecular Structure
4.
Environ Toxicol ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884142

ABSTRACT

Environmental antineoplastics such as sorafenib may pose a risk to humans through water recycling, and the increased risk of cardiotoxicity is a clinical issue in sorafenib users. Thus, developing strategies to prevent sorafenib cardiotoxicity is an urgent work. Empagliflozin, as a sodium-glucose co-transporter-2 (SGLT2) inhibitor for type 2 diabetes control, has been approved for heart failure therapy. Still, its cardioprotective effect in the experimental model of sorafenib cardiotoxicity has not yet been reported. Real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to study the effect of sorafenib exposure on cardiac SGLT2 expression. The impact of empagliflozin on cell viability was investigated in the sorafenib-treated cardiomyocytes using Alamar blue assay. Immunoblot analysis was employed to delineate the effect of sorafenib and empagliflozin on ferroptosis/proinflammatory signaling in cardiomyocytes. Ferroptosis/DNA damage/fibrosis/inflammation of myocardial tissues was studied in mice with a 28-day sorafenib ± empagliflozin treatment using histological analyses. Sorafenib exposure significantly promoted SGLT2 upregulation in cardiomyocytes and mouse hearts. Empagliflozin treatment significantly attenuated the sorafenib-induced cytotoxicity/DNA damage/fibrosis in cardiomyocytes and mouse hearts. Moreover, GPX4/xCT-dependent ferroptosis as an inducer for releasing high mobility group box 1 (HMGB1) was also blocked by empagliflozin administration in the sorafenib-treated cardiomyocytes and myocardial tissues. Furthermore, empagliflozin treatment significantly inhibited the sorafenib-promoted NFκB/HMGB1 axis in cardiomyocytes and myocardial tissues, and sorafenib-stimulated proinflammatory signaling (TNF-α/IL-1ß/IL-6) was repressed by empagliflozin administration. Finally, empagliflozin treatment significantly attenuated the sorafenib-promoted macrophage recruitments in mouse hearts. In conclusion, empagliflozin may act as a cardioprotective agent for humans under sorafenib exposure by modulating ferroptosis/DNA damage/fibrosis/inflammation. However, further clinical evidence is required to support this preclinical finding.

5.
Diabetologia ; 66(5): 913-930, 2023 05.
Article in English | MEDLINE | ID: mdl-36692509

ABSTRACT

AIMS/HYPOTHESIS: The mitochondrial chaperonin heat shock protein (HSP) 60 is indispensable in protein folding and the mitochondrial stress response; however, its role in nutrient metabolism remains uncertain. This study investigated the role of HSP60 in diet-induced non-alcoholic fatty liver disease (NAFLD). METHODS: We studied human biopsies from individuals with NAFLD, murine high-fat-diet (HFD; a diet with 60% energy from fat)-induced obesity (DIO), transgenic (Tg) mice overexpressing Hsp60 (Hsp60-Tg), and human HepG2 cells transfected with HSP60 cDNA or with HSP60 siRNA. Histomorphometry was used to assess hepatic steatosis, biochemistry kits were used to measure insulin resistance and glucose tolerance, and an automated home cage phenotyping system was used to assess energy expenditure. Body fat was assessed using MRI. Macrophage infiltration, the lipid oxidation marker 4-hydroxy-2-nonenal (4-HNE) and the oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) were detected using immunohistochemistry. Intracellular lipid droplets were evaluated by Nile red staining. Expression of HSP60, and markers of lipogenesis and fatty acid oxidation were quantified using RT-PCR and immunoblotting. Investigations were analysed using the two-way ANOVA test. RESULTS: Decreased HSP60 expression correlated with severe steatosis in human NAFLD biopsies and murine DIO. Hsp60-Tg mice developed less body fat, had reduced serum triglyceride levels, lower levels of insulin resistance and higher serum adiponectin levels than wild-type mice upon HFD feeding. Respiratory quotient profile indicated that fat in Hsp60-Tg mice may be metabolised to meet energy demands. Hsp60-Tg mice showed amelioration of HFD-mediated hepatic steatosis, M1/M2 macrophage dysregulation, and 4-HNE and 8-OHdG overproduction. Forced HSP60 expression reduced the mitochondrial unfolded protein response, while preserving mitochondrial respiratory complex activity and enhancing fatty acid oxidation. Furthermore, HSP60 knockdown enhanced intracellular lipid formation and loss of sirtuin 3 (SIRT3) signalling in HepG2 cells upon incubation with palmitic acid (PA). Forced HSP60 expression improved SIRT3 signalling and repressed PA-mediated intracellular lipid formation. SIRT3 inhibition compromised HSP60-induced promotion of AMP-activated protein kinase (AMPK) phosphorylation and peroxisome proliferator-activated receptor α (PPARα levels), while also decreasing levels of fatty acid oxidation markers. CONCLUSION/INTERPRETATION: Mitochondrial HSP60 promotes fatty acid oxidation while repressing mitochondrial stress and inflammation to ameliorate the development of NAFLD by preserving SIRT3 signalling. This study reveals the hepatoprotective effects of HSP60 and indicates that HSP60 could play a fundamental role in the development of therapeutics for NAFLD or type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Sirtuin 3 , Animals , Humans , Mice , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Insulin Resistance/genetics , Lipid Metabolism , Lipids , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism
6.
J Biol Chem ; 298(10): 102442, 2022 10.
Article in English | MEDLINE | ID: mdl-36055405

ABSTRACT

Leukocyte cell-derived chemotaxin 2 (LECT2) acts as a tumor suppressor in hepatocellular carcinoma (HCC). However, the antineoplastic mechanism of LECT2, especially its influence on hepatic cancer stem cells (CSCs), remains largely unknown. In The Cancer Genome Atlas cohort, LECT2 mRNA expression was shown to be associated with stage, grade, recurrence, and overall survival in human HCC patients, and LECT2 expression was downregulated in hepatoma tissues compared with the adjacent nontumoral liver. Here, we show by immunofluorescence and immunoblot analyses that LECT2 was expressed at lower levels in tumors and in poorly differentiated HCC cell lines. Using functional assays, we also found LECT2 was capable of suppressing oncogenic behaviors such as cell proliferation, anchorage-independent growth, migration, invasiveness, and epithelial-mesenchymal transition in hepatoma cells. Moreover, we show exogenous LECT2 treatment inhibited CSC functions such as tumor sphere formation and drug efflux. Simultaneously, hepatic CSC marker expression was also downregulated, including expression of CD133 and CD44. This was supported by infection with adenovirus encoding LECT2 (Ad-LECT2) in HCC cells. Furthermore, in animal experiments, Ad-LECT2 gene therapy showed potent efficacy in treating HCC. We demonstrate LECT2 overexpression significantly promoted cell apoptosis and reduced neovascularization/CSC expansion in rat hepatoma tissues. Mechanistically, we showed using immunoblot and immunofluorescence analyses that LECT2 inhibited ß-catenin signaling via the suppression of the hepatocyte growth factor/c-MET axis to diminish CSC properties in HCC cells. In summary, we reveal novel functions of LECT2 in the suppression of hepatic CSCs, suggesting a potential alternative strategy for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/therapeutic use , Liver Neoplasms/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Rats , Genetic Therapy
7.
Med Sci Monit ; 29: e939949, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37183387

ABSTRACT

BACKGROUND Self-injection locking (SIL) radar uses continuous-wave radar and an injection-locked oscillator-based frequency discriminator that receives and demodulates radar signals remotely to monitor vital signs. This study aimed to compare SIL radar with traditional electrocardiogram (ECG) measurements to monitor respiratory rate (RR) and heartbeat rate (HR) during the COVID-19 pandemic at a single hospital in Taiwan. MATERIAL AND METHODS We recruited 31 hospital staff members (16 males and 15 females) for respiratory rates (RR) and heartbeat rates (HR) detection. Data acquisition with the SIL radar and traditional ECG was performed simultaneously, and the accuracy of the measurements was evaluated using Bland-Altman analysis. RESULTS To analyze the results, participates were divided into 2 groups (individual subject and multiple subjects) by gender (male and female), or 4 groups (underweight, normal weight, overweight, and obesity) by body mass index (BMI). The results were analyzed using mean bias errors (MBE) and limits of agreement (LOA) with a 95% confidence interval. Bland-Altman plots were utilized to illustrate the difference between the SIL radar and ECG monitor. In all BMI groups, results of RR were more accurate than HR, with a smaller MBE. Furthermore, RR and HR measurements of the male groups were more accurate than those of the female groups. CONCLUSIONS We demonstrated that non-contact SIL radar could be used to accurately measure HR and RR for hospital healthcare during the COVID-19 pandemic.


Subject(s)
COVID-19 , Signal Processing, Computer-Assisted , Male , Humans , Female , Radar , Taiwan/epidemiology , Pandemics , Vital Signs , Heart Rate , Respiratory Rate , Hospitals , Algorithms , Monitoring, Physiologic/methods
8.
FASEB J ; 34(12): 16163-16178, 2020 12.
Article in English | MEDLINE | ID: mdl-33063394

ABSTRACT

Hepatitis is an important health problem worldwide. Novel molecular targets are in demand for detection and management of hepatitis. Hepatoma-derived growth factor (HDGF) has been delineated to participate in hepatic fibrosis and liver carcinogenesis. However, the relationship between hepatitis and HDGF remains unclear. This study aimed to elucidate the role of HDGF during hepatitis using concanavalin A (ConA)-induced hepatitis model. In cultured hepatocytes, ConA treatment-elicited HDGF upregulation at transcriptional level and promoted HDGF secretion while reducing intracellular HDGF protein level and cellular viability. Similarly, mice receiving ConA administration exhibited reduced hepatic HDGF expression and elevated circulating HDGF level, which was positively correlated with serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. By using HDGF knockout (KO) mice, it was found the ConA-evoked cell death was prominently alleviated in KO compared with control. Besides, it was delineated HDGF ablation conferred protection by suppressing the ConA-induced neutrophils recruitment in livers. Above all, the ConA-mediated activation of tumor necrosis factor-α (TNF-α)/interleukin-1ß (IL-1ß)/interleukin-6 (IL-6)/cyclooxygenase-2 (COX-2) inflammatory signaling was significantly abrogated in KO mice. Treatment with recombinant HDGF (rHDGF) dose-dependently stimulated the expression of TNF-α/IL-1ß/IL-6/COX-2 in hepatocytes, further supporting the pro-inflammatory function of HDGF. Finally, application of HDGF antibody not only attenuated the ConA-mediated inflammatory cascade in hepatocytes, but also ameliorated the ConA-induced hepatic necrosis and AST elevation in mice. In summary, HDGF participates in ConA-induced hepatitis via neutrophils recruitment and may constitute a therapeutic target for acute hepatitis.


Subject(s)
Concanavalin A/pharmacology , Hepatitis, Animal/chemically induced , Hepatitis, Animal/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , Cells, Cultured , Hepatocytes/drug effects , Hepatocytes/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Liver/drug effects , Liver/metabolism , Liver Cirrhosis/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/drug effects , Rats , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/drug effects
9.
Phytother Res ; 35(7): 3954-3967, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33825221

ABSTRACT

Microalgae extracts have shown antitumor activities. However, the antitumor mechanism of them is not yet completely clear, especially the effect on cancer stem cells (CSCs). This study aimed to elucidate the antitumor activity and mechanism of microalgal extract from thermotolerant Coelastrella sp. F50 (F50) in hepatocellular carcinoma (HCC). Oncogenic behaviors were analyzed using cell proliferation, colony formation, invasion, sphere formation, and side population cells (SPCs) assays in HCC cells after F50 treatment. The molecular mechanism was further studied by quantitative real-time PCR, immunoblot, and immunofluorescence analyses. The chemopreventive efficacy of F50 was evaluated in rat orthotopic hepatoma, and the hepatic pathologies were investigated by immunohistochemical, immunoblot, and immunofluorescence analyses. F50 specifically suppressed hepatic CSCs (tumor spheres, drug efflux, CD133/ABCG2 CSCs markers) with no cytotoxicity in vitro. In the animal experiments, prophylactic F50 administration significantly attenuated tumor progression and improved liver function in HCC-bearing rats. In the mechanistic analysis, F50 potentially inhibited cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2 ) axis in HCC cells and rat hepatoma, and exogenous PGE2 restored CSCs properties in F50-treated HCC cells. In summary, F50 extract inhibits hepatic CSCs by COX-2/PGE2 downregulation and may facilitate a novel phytotherapy for HCC prevention.


Subject(s)
Carcinoma, Hepatocellular , Chlorophyceae/chemistry , Liver Neoplasms , Neoplastic Stem Cells/drug effects , Plant Extracts , Animals , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Proliferation , Liver Neoplasms/drug therapy , Microalgae/chemistry , Plant Extracts/pharmacology , Rats
10.
Int J Mol Sci ; 21(6)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192213

ABSTRACT

Chibby is an antagonist of ß-catenin and is considered a potential tumor suppressor protein, but the role of Chibby in hepatocellular carcinoma (HCC) has not been characterized. The expression patterns of Chibby and ß-catenin in HCC specimens and paired adjacent noncancerous tissues were measured by Western blotting and immunohistochemistry. The correlations between Chibby expression and clinicopathological parameters were analyzed. Then the biological functions of Chibby were analyzed in vitro. The Chibby protein was significantly downexpressed in human primary HCC tissues compared to that in matched adjacent normal liver tissue and is a risk factor for HCC recurrence and shorter survival. Furthermore, we found that in HCC tissues the high expression of ß-catenin with low expression of Chibby in the nuclei was an independent predictor for disease-free survival (DFS) (p = 0.012) and overall survival (OS) (p = 0.005). Subsequent genetic manipulation in vitro studies revealed that Chibby knockdown induced the expression of ß-catenin and C-myc, cyclin D1 protein, which promoted cell proliferation and invasiveness. In contrast, overexpression of Chibby decreased ß-catenin expression and inhibited the cell proliferation and invasiveness. Our results suggest that low expression of Chibby was associated with advanced tumor-node-metastasis (TNM) stage and poor differentiation. Furthermore, the combination of Chibby and ß-catenin can predict poor prognosis in patients with HCC. Chibby inhibited HCC progression by blocking ß-catenin signaling in vitro. Chibby is a biomarker and may be a potential therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/mortality , Carrier Proteins/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Nuclear Proteins/metabolism , beta Catenin/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carrier Proteins/genetics , Cell Proliferation , Child , Child, Preschool , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Staging , Nuclear Proteins/genetics , Prognosis , Signal Transduction , Young Adult , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL