ABSTRACT
The design of new remediation strategies and materials for treating saline-alkaline soils is of fundamental and practical importantance for many applications. Conventional soil remediation strategies mainly focus on the development of fertilizers or additives for water, nutrient, and heavy metal managements in soils, but they often overlook a soil sensing function for early detection of salinization/alkalization levels toward optimal and timely soil remediation. Here, new smart soils, structurally consisting of the upper signal soil and the bottom hygroscopic bed and chemically including zwitterionic, thermo-responsive poly(NIPAM-co-VPES) and poly(NIPAM-co-SBAA) aerogels in each soil layer are formulated. Upon salinization, the resultant smart soils exhibit multiple superior capacities for reducing the soil salinity and alkalinity through ion exchange, controlling the water cycling, modulating the degradation of pyridine-base ligands into water-soluble, nitrogenous salts-rich ingredients for soil fertility, and real-time monitoring salinized soils via pH-induced allochroic color changes. Further studies of plant growth in smart soils with or without salinization treatments confirm a synergy effect of soil remediation and soil sensing on facilitating the growth of plants and increasing the saline-alkaline tolerance of plants. The esign concept of smart soils can be further expanded for soil remediation and assessment.
Subject(s)
Metals, Heavy , Soil Pollutants , Fertilizers , Ligands , Polymers , Pyridines , Salts , Soil , Soil Pollutants/analysis , WaterABSTRACT
The accurate distribution of countercations (Rb+ and Sr2+ ) around a rigid, spherical, 2.9-nm size polyoxometalate cluster, {Mo132 }42- , is determined by anomalous small-angle X-ray scattering. Both Rb+ and Sr2+ ions lead to shorter diffuse lengths for {Mo132 } than prediction. Most Rb+ ions are closely associated with {Mo132 } by staying near the skeleton of {Mo132 } or in the Stern layer, whereas more Sr2+ ions loosely associate with {Mo132 } in the diffuse layer. The stronger affinity of Rb+ ions towards {Mo132 } than that of Sr2+ ions explains the anomalous lower critical coagulation concentration of {Mo132 } with Rb+ compared to Sr2+ . The anomalous behavior of {Mo132 } can be attributed to majority of negative charges being located at the inner surface of its cavity. The longer anion-cation distance weakens the Coulomb interaction, making the enthalpy change owing to the breakage of hydration layers of cations more important in regulating the counterion-{Mo132 } interaction.
ABSTRACT
Eumelanin is a ubiquitous natural pigment that has a broad absorption across ultraviolet (UV, 100-400 nm) and visible wavelengths (400-700 nm) and can protect against radiation. Synthetic eumelanin with properties similar to natural eumelanin has been made using dopamine or dihydroxyindole. Here, we use solid-state nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy to elucidate the chemical structure of synthetic eumelanins (made from dopamine and l-3,4-dihydroxyphenylalanine precursors) and investigate how their structures change after intensive UVA (315-400 nm) exposure. We first confirm that polydopamine has indole units. Upon UV exposure, the pyrrole ring in this indole unit remains intact, and a fraction of the six-membered benzyl ring is broken and the indole potentially converted to furo[3,4-b]pyrrole. This change in the chemical structure is accompanied by a release of carbon dioxide. In addition, the sepia (natural) eumelanin used for comparison is more stable than the synthetic eumelanin. Understanding the UVA degradation mechanism of eumelanin will help reveal the role of eumelanin in skin cancer and in the design of more efficient UV stabilizers.
Subject(s)
Melanins/chemistry , Photochemical Processes , Ultraviolet Rays , Animals , Humans , Melanins/metabolism , Skin Neoplasms/metabolismABSTRACT
Charge transfer between adsorbed dyes and the TiO2 surface plays a key role in controlling the efficiency of dye-sensitized solar cells (DSSCs). The lack of understanding of charge transfer steps has hindered further development of DSSCs and many solar energy conversion devices/processes. In this study, we used in situ infrared spectroscopy to investigate electron transfer and photo-electric energy conversion processes at the interface, i.e., surface hydroxyls, adsorbed species, as well as the dynamics of photo-generated electrons in TiO2 and N-TiO2 in DSSCs. Nitrogen (N-) doping of TiO2 blocked linear OH, giving more hydrophobic surface characteristics than undoped TiO2. N-Doping further increased the electron-hole separation caused by solar light on the working electrode and the current density in the DSSC. In situ infrared (IR) studies revealed that N-doping facilitated the electron transfer from the N719 dye (di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4-dicarboxylato)ruthenium(ii)) to the conduction band in TiO2, reducing the impedance in the DSSC. Probing N-TiO2 with adsorbed ethanol showed that shallow traps in N-TiO2 can be accessed by electrons from adsorbed ethanol. Electron transfer from the N719 dye is significantly faster than that from adsorbed ethanol which involves C-H bond breaking.
ABSTRACT
A transition between two isomeric clusters involving the change of the main skeleton structure of a well-defined, rigid molecular cluster [(UO2 )24 (O2 )24 (P2 O7 )12 ]48- , {U24 Pp12 }, is achieved by simply introducing proper alkali cations into its dilute aqueous solution. While the unique structural transition can be triggered by introducing any of the Na+ /K+ /Rb+ /Cs+ alkali ions, the two isomers, Li/Na-{U24 Pp12 } and Na/K-{U24 Pp12 }, as typical macroions, can accurately choose among different alkali counter-cations based on their hydrated sizes, and the ion selectivity process clearly showed endothermic features. The preferred K+ and Rb+ ions have suitable sizes to be incorporated into the proper windows on {U24 Pp12 } nanocapsules, as supported by the transition points in both ITC studies and IR measurements.
ABSTRACT
In situ Fourier transform infrared spectroscopy was used to determine the nature of adsorbed CO2 on class I (amine-impregnated) and class II (amine-grafted) sorbents with different amine densities. Adsorbed CO2 on amine sorbents exists in the form of carbamate-ammonium ion pairs, carbamate-ammonium zwitterions, and carbamic acid. The adsorbed CO2 on high-amine density sorbents showed that the formation of ammonium ions correlates with the suppression of CH stretching intensities. An HCl probing technique was used to resolve the characteristic infrared bands of ammonium ions, clarifying that the band observed around 1498 cm(-1) is a combination of the deformation vibration of ammonium ion (NH3(+)) at 1508 and 1469 cm(-1) and the deformation vibration of NH in carbamate (NHCOO(-)) at 1480 cm(-1). Carbamate and carbamic acid on sorbents with low amine density desorbed at a rate faster than those on sorbents with high amine density after switching the flow from CO2 to Ar at 55 °C. Evaluation of the desorption temperature profiles showed that the temperature required to achieve the maximal desorption of CO2 (Tmax. des) increases with amine density. The adsorbed CO2 on sorbents with high amine density is stabilized via hydrogen bonding interactions with adjacent amine sites. These sorbents require higher temperature to desorb CO2 than those with low amine density.
ABSTRACT
The evergrowing plastic production and the caused concerns of plastic waste accumulation have stimulated the need for waste plastic chemical recycling/valorization. Current methods suffer from harsh reaction conditions and long reaction time. Herein we demonstrate a non-thermal plasma-assisted method for rapid hydrogenolysis of polystyrene (PS) at ambient temperature and atmospheric pressure, generating high yield (>40 wt%) of C1-C3 hydrocarbons and ethylene being the dominant gas product (Selectivity of ethylene, SC2H4 > 70%) within ~10 min. The fast reaction kinetics is attributed to highly active hydrogen plasma, which can effectively break bonds in polymer and initiate hydrogenolysis under mild condition. Efficient hydrogenolysis of post-consumer PS materials using this method is also demonstrated, suggesting a promising approach for fast retrieval of small molecular hydrocarbon modules from plastic materials as well as a good capability to process waste plastics in complicated conditions.
ABSTRACT
Silica aerogels are interesting porous materials with extremely low density and high surface area, making them advantageous for a number of aerospace and catalysis applications. Here, we report the preparation of polydopamine (PDA)-functionalized silica aerogels using an in situ coating method, wherein the dopamine monomer was allowed to diffuse through the underlying structure of the gels in the absence of any external base and polymerize on the surface of the gel. The use of a siloxane precursor with an amine functionality decorates the silica backbone, allowing for a superior PDA coating, as evident in the darker color of PDA-coated amine-functionalized silica gels than PDA-coated silica-only gels and the X-ray photoelectron spectroscopy results. Furthermore, by varying the coating time, a series of aerogels with increasing optical absorption are prepared. Analyses using Brunauer-Emmett-Teller, scanning electron microscopy, and pycnometry show that the in situ PDA coating does not affect the inherent properties of the silica aerogels as opposed to PDA coatings deposited using an external base. Aerogels coated for 12 h and 24 h offer a surface area of 614 ± 35 and 658 ± 15 m2/g along with a porosity of 92.6 ± 0.9 and 92.4 ± 0.7%, respectively, properties similar to the native silica aerogels. PDA-coated aerogels have the potential to serve as UV ray mitigating materials due to the tortuosity of the underlying structure and the unique chemical properties of the PDA coating.
ABSTRACT
The rate-determining step of ethanol photocatalytic oxidation was identified to be the adsorption of O(2) by an infrared (IR) spectroscopy coupled with mass spectrometry method. Dosing O(2) during reaction showed that adsorption of O(2) controls the accumulation of photogenerated electrons and the formation of acetate (CH(3)COO(-)(ad)), acyl species (CH(3)CO(ad)), acetaldehyde (CH(3)CHO(ad)), CO(2), and H(2)O. Accumulation of CH(3)COO(-)(ad) on the TiO(2) surface slowed down the conversion of ethanol to CO(2) and H(2)O. Removal of CH(3)COO(-)(ad) from the TiO(2) surface holds the key to accelerating the rate of ethanol photocatalytic oxidation. This study bridges the gap between results of nanosecond and millisecond transient absorption studies and those of minute scale photocatalytic oxidation studies.
ABSTRACT
To simultaneously increase the electrical conductivity and Seebeck coefficient of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate ( PEDOT: PSS) was a challenge for realizing efficient organic thermoelectrics. In this study, for the first time, we report both increased electrical conductivities and Seebeck coefficients, hence, enhanced thermoelectric properties of PEDOT: PSS thin films by doped with binary secondary dopants, dimethyl sulfoxide (DMSO) and poly(ethylene oxide) (PEO). Without modifying film morphology, the molar ratios of PEDOT to PSS are tuned by PEO, resulting in increased proportions of PEDOT in the bipolaron states. Our study provides a facile route to optimizing thermoelectric properties of PEDOT: PSS thin films.
ABSTRACT
The water-gas shift (WGS) reaction has been studied by pulsing carbon monoxide (CO) into a steady-state water (H2O)-Ar flow over nickel(II) oxide-zinc oxide (NiO-ZnO) catalysts using in situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) coupled with a mass spectrometer method using the pulse technique (in situ pulse DRIFTS-MS) for different flow rates (gas hourly space velocity [GHSV] of 24,000-72,000 h(-1)) and reaction temperatures (250-350 °C). The results obtained from the in situ pulse DRIFTS-MS revealed that there are two types of water adsorption bands on the surface of the catalyst: (i) molecular adsorption (infrared [IR] bands in the 2500-3600 cm(-1) range and at 1640 cm(-1)), and (ii) dissociative adsorption at 3700 cm(-1), where carboxyl bands are formed at 1461 and 1368 cm(-1) and the gas-phase CO is adsorbed at 2187 and 2111 cm(-1) on the surface of the catalyst. After using a GHSV = 24,000 h(-1) H2O/Ar flow, we probed the existence of two active intermediates via the formation of two hydrogen production peaks. The products of hydrogen gas (H2) and carbon dioxide (CO2) had two pathways: the redox process and the associative process via the intermediate of the carboxyl group. In situ pulse DRIFTS-MS proves to be an effective approach for studying the nature of adsorbed species on the catalyst surface and the nature of the reaction product.
ABSTRACT
CO2 adsorption/desorption onto/from tetraethylenepentamine (TEPA) films of 4, 10, and 20 µm thicknesses were studied by in situ attenuated total reflectance (ATR) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) techniques under transient conditions. Molar absorption coefficients for adsorbed CO2 were used to determine the CO2 capture capacities and amine efficiencies (CO2/N) of the films in the DRIFTS system. Adsorption of CO2 onto surface and bulk NH2 groups of the 4 µm film produced weakly adsorbed CO2, which can be desorbed at 50 °C by reducing the CO2 partial pressure. These weakly adsorbed CO2 exhibit low ammonium ion intensities and could be in the form of ammonium-carbamate ion pairs and zwitterions. Increasing the film thickness enhanced the surface amine-amine interactions, resulting in strongly adsorbed ion pairs and zwitterions associated with NH and NH2 groups of neighboring amines. These adsorbed species may form an interconnected surface network, which slowed CO2 gas diffusion into and diminished access of the bulk amine groups (or amine efficiency) of the 20 µm film by a minimum of 65%. Desorption of strongly adsorbed CO2 comprising the surface network could occur via dissociation of NH3(+)/NH2(+)···NH2/NH ionic hydrogen bonds beginning from 60 to 80 °C, followed by decomposition of NHCOO(-)/NCOO(-) at 100 °C. These results suggest that faster CO2 diffusion and adsorption/desorption kinetics could be achieved by thinner layers of liquid or immobilized amines.
ABSTRACT
Oxidative degradation characteristics of silica-supported amine sorbents with varying amounts of tetraethylenepentamine (TEPA) and polyethylene glycol (PEG; P(200) or P(600) represents PEG with molecular weights of 200 or 600) have been studied by IR and NMR spectroscopy. Thermal treatment of the sorbents and liquid TEPA at 100 °C for 12 h changed their color from white to yellow. The CO(2) capture capacity of the TEPA/SiO(2) sorbents (i.e., SiO(2)-supported TEPA with a TEPA/SiO(2) ratio of 25:75) decreased by more than 60 %. IR and NMR spectroscopy studies showed that the yellow color of the degraded sorbents resulted from the formation of imide species. The imide species, consisting of NH associated with two C=O functional groups, were produced from the oxidation of methylene groups in TEPA. Imide species on the degraded sorbent are not capable of binding CO(2) due to its weak basicity. The addition of P(200) and P(600) to the supported amine sorbents improved both their CO(2) capture capacities and oxidative degradation resistance. IR spectroscopy results also showed that TEPA was immobilized on the SiO(2) surface through hydrogen bonding between amine groups and the silanol groups of SiO(2). The OH groups of PEG interact with NH(2) /NH of TEPA through hydrogen bonding. Hydrogen bonds disperse TEPA on SiO(2) and block O(2) from accessing TEPA for oxidation. Oxidative degradation resistance and CO(2) capture capacity of the supported amine sorbents can be optimized through adjusting the ratio of hydroxyl to amine groups in the TEPA/PEG mixture.
Subject(s)
Amines/chemistry , Carbon Dioxide/chemistry , Carbon Dioxide/isolation & purification , Silicon Dioxide/chemistry , Spectrum Analysis , Ethylenediamines/chemistry , Oxidation-Reduction , Polyethylene Glycols/chemistryABSTRACT
The CO(2) capture capacity, adsorption mechanism, and degradation characteristics of two sorbents, silica-supported tetraethylenepentamine (TEPA/SiO(2)) and polyethylene-glycol-modified TEPA/SiO(2) (PEG/TEPA/SiO(2)), are studied by diffuse reflectance infrared Fourier transform spectroscopy and mass spectrometry. The CO(2) capture capacities of TEPA/SiO(2) and PEG/TEPA/SiO(2) are determined to be 2087 and 1110 micromol CO(2) g(-1) sorbent, respectively. Both sorbents adsorb CO(2) as hydrogen-bonding species, NH(2)--O, and carbamate/carboxylate species. The CO(2) adsorption half-time increases with the number of CO(2) capture cycles. Infrared results suggest that the increased adsorption half-time is a result of diffusion limitation, caused by accumulation of TEPA and PEG species on the surface of the sorbent particles. The degradation of TEPA/SiO(2) is found to correlate with the accumulation of carboxylate/carbamic species. The addition of PEG decreases the degradation rate of the sorbent and slows down the formation of carboxylate species. These carboxylate species can block CO(2) capture on amine (NH(2)/NH) sites. The stabilizing role of PEG on TEPA/SiO(2) can be attributed to hydrogen-bonding between TEPA (NH(2)/NH)and PEG (OH).