ABSTRACT
Internet of Things (IoT) devices within smart cities, require innovative detection methods. This paper addresses this critical challenge by introducing a deep learning-based approach for the detection of network traffic attacks in IoT ecosystems. Leveraging the Kaggle dataset, our model integrates Convolutional Neural Networks (CNNs) and Gated Recurrent Units (GRUs) to capture both spatial and sequential features in network traffic data. We trained and evaluated our model over ten epochs, achieving an impressive overall accuracy rate of 99%. The classification report reveals the model's proficiency in distinguishing various attack categories, including 'Normal', 'DoS' (Denial of Service), 'Probe', 'U2R' (User to Root), and 'Sybil'. Additionally, the confusion matrix offers valuable insights into the model's performance across these attack types. In terms of overall accuracy, our model achieves an impressive accuracy rate of 99% across all attack categories. The weighted- average F1-score is also 99%, showcasing the model's robust performance in classifying network traffic attacks in IoT devices for smart cities. This advanced architecture exhibits the potential to fortify IoT device security in the complex landscape of smart cities, effectively contributing to the safeguarding of critical infrastructure.
ABSTRACT
Real-time collision-avoidance navigation of autonomous ships is required by many application scenarios, such as carriage of goods by sea, search, and rescue. The collision avoidance algorithm is the core of autonomous navigation for Maritime autonomous surface ships (MASS). In order to realize real-time and free-collision under the condition of multi-ship encounter in an uncertain environment, a real-time collision avoidance framework is proposed using B-spline and optimal decoupling control. This framework takes advantage to handle the uncertain environment with limited sensing MASS which plans dynamically feasible, highly reliable, and safe feasible collision avoidance. First, owing to the collision risk assessment, a B-spline-based collision avoidance trajectory search (BCATS) algorithm is proposed to generate free-collision trajectories effectively. Second, a waypoint-based collision avoidance trajectory optimization is proposed with the path-speed decoupling control. Two benefits, a reduction of control cost and an improvement in the smoothness of the collision avoidance trajectory, are delivered. Finally, we conducted an experiment using the Electronic Chart System (ECS). The results reveal the robustness and real-time collision avoidance trajectory planned by the proposed collision avoidance system.
Subject(s)
Algorithms , Risk AssessmentABSTRACT
Global warming is a leading world issue driving the common social objective of reducing carbon emissions. People have witnessed the melting of ice and abrupt changes in climate. Reducing electricity usage is one possible method of slowing these changes. In recent decades, there have been massive worldwide rollouts of smart meters that automatically capture the total electricity usage of houses and buildings. Electricity load disaggregation (ELD) helps to break down total electricity usage into that of individual appliances. Studies have implemented ELD models based on various artificial intelligence techniques using a single ELD dataset. In this paper, a powerline noise transformation approach based on optimized complete ensemble empirical model decomposition and wavelet packet transform (OCEEMD-WPT) is proposed to merge the ELD datasets. The practical implications are that the method increases the size of training datasets and provides mutual benefits when utilizing datasets collected from other sources (especially from different countries). To reveal the effectiveness of the proposed method, it was compared with CEEMD-WPT (fixed controlled coefficients), standalone CEEMD, standalone WPT, and other existing works. The results show that the proposed approach improves the signal-to-noise ratio (SNR) significantly.
ABSTRACT
Road traffic accidents have been listed in the top 10 global causes of death for many decades. Traditional measures such as education and legislation have contributed to limited improvements in terms of reducing accidents due to people driving in undesirable statuses, such as when suffering from stress or drowsiness. Attention is drawn to predicting drivers' future status so that precautions can be taken in advance as effective preventative measures. Common prediction algorithms include recurrent neural networks (RNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) networks. To benefit from the advantages of each algorithm, nondominated sorting genetic algorithm-III (NSGA-III) can be applied to merge the three algorithms. This is named NSGA-III-optimized RNN-GRU-LSTM. An analysis can be made to compare the proposed prediction algorithm with the individual RNN, GRU, and LSTM algorithms. Our proposed model improves the overall accuracy by 11.2-13.6% and 10.2-12.2% in driver stress prediction and driver drowsiness prediction, respectively. Likewise, it improves the overall accuracy by 6.9-12.7% and 6.9-8.9%, respectively, compared with boosting learning with multiple RNNs, multiple GRUs, and multiple LSTMs algorithms. Compared with existing works, this proposal offers to enhance performance by taking some key factors into account-namely, using a real-world driving dataset, a greater sample size, hybrid algorithms, and cross-validation. Future research directions have been suggested for further exploration and performance enhancement.
Subject(s)
Algorithms , Neural Networks, Computer , Attention , Forecasting , Humans , Memory, Long-TermABSTRACT
One of the key smart city visions is to bring smarter transport networks, specifically intelligent/smart transportation [...].
ABSTRACT
Driver drowsiness and stress are major causes of traffic deaths and injuries, which ultimately wreak havoc on world economic loss. Researchers are in full swing to develop various algorithms for both drowsiness and stress recognition. In contrast to existing works, this paper proposes a generic model using multiple-objective genetic algorithm optimized deep multiple kernel learning support vector machine that is capable to recognize both driver drowsiness and stress. This algorithm simplifies the research formulations and model complexity that one model fits two applications. Results reveal that the proposed algorithm achieves an average sensitivity of 99%, specificity of 98.3% and area under the receiver operating characteristic curve (AUC) of 97.1% for driver drowsiness recognition. For driver stress recognition, the best performance is yielded with average sensitivity of 98.7%, specificity of 98.4% and AUC of 96.9%. Analysis also indicates that the proposed algorithm using multiple-objective genetic algorithm has better performance compared to the grid search method. Multiple kernel learning enhances the performance significantly compared to single typical kernel. Compared with existing works, the proposed algorithm not only achieves higher accuracy but also addressing the typical issues of dataset in simulated environment, no cross-validation and unreliable measurement stability of input signals.
Subject(s)
Automobile Driving , Sleepiness , Support Vector Machine , Algorithms , Humans , ROC Curve , Stress, PsychologicalABSTRACT
Parsimony, including sparsity and low-rank, has shown great importance for data mining in social networks, particularly in tasks such as segmentation and recognition. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with convex l1-norm or nuclear norm constraints. However, the obtained results by convex optimization are usually suboptimal to solutions of original sparse or low-rank problems. In this paper, a novel robust subspace segmentation algorithm has been proposed by integrating lp-norm and Schatten p-norm constraints. Our so-obtained affinity graph can better capture local geometrical structure and the global information of the data. As a consequence, our algorithm is more generative, discriminative and robust. An efficient linearized alternating direction method is derived to realize our model. Extensive segmentation experiments are conducted on public datasets. The proposed algorithm is revealed to be more effective and robust compared to five existing algorithms.
ABSTRACT
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day.
ABSTRACT
A high accuracy localization technique using Long Term Evolution (LTE) based on a new and accurate multiple carrier noise model has been developed. In the noise consideration, the LTE multiple carriers phase noise has been incorporated so that a new and accurate noise model is achieved. An experiment was performed to characterize the phase noise of carriers at 2 GHz. The developed noise model was incorporated into LTE localization analysis in a high traffic area in Hong Kong to evaluate the accuracy of localization. The evaluation and analysis reveals that the new localization method achieves an improvement of about 10% accuracy comparing to existing widely adopted schemes.
ABSTRACT
Voice is an essential component of human communication, serving as a fundamental medium for expressing thoughts, emotions, and ideas. Disruptions in vocal fold vibratory patterns can lead to voice disorders, which can have a profound impact on interpersonal interactions. Early detection of voice disorders is crucial for improving voice health and quality of life. This research proposes a novel methodology called VDDMFS [voice disorder detection using MFCC (Mel-frequency cepstral coefficients), fundamental frequency and spectral centroid] which combines an artificial neural network (ANN) trained on acoustic attributes and a long short-term memory (LSTM) model trained on MFCC attributes. Subsequently, the probabilities generated by both the ANN and LSTM models are stacked and used as input for XGBoost, which detects whether a voice is disordered or not, resulting in more accurate voice disorder detection. This approach achieved promising results, with an accuracy of 95.67%, sensitivity of 95.36%, specificity of 96.49% and f1 score of 96.9%, outperforming existing techniques.
Subject(s)
Voice Disorders , Voice , Humans , Quality of Life , Voice Quality , Speech Acoustics , Voice Disorders/diagnosis , AcousticsABSTRACT
Alzheimer's disease (AD) is the most common type (>60%) of dementia and can wreak havoc on the psychological and physiological development of sufferers and their carers, as well as the economic and social development. Attributed to the shortage of medical staff, automatic diagnosis of AD has become more important to relieve the workload of medical staff and increase the accuracy of medical diagnoses. Using the common MRI scans as inputs, an AD detection model has been designed using convolutional neural network (CNN). To enhance the fine-tuning of hyperparameters and, thus, the detection accuracy, transfer learning (TL) is introduced, which brings the domain knowledge from heterogeneous datasets. Generative adversarial network (GAN) is applied to generate additional training data in the minority classes of the benchmark datasets. Performance evaluation and analysis using three benchmark (OASIS-series) datasets revealed the effectiveness of the proposed method, which increases the accuracy of the detection model by 2.85−3.88%, 2.43−2.66%, and 1.8−40.1% in the ablation study of GAN and TL, as well as the comparison with existing works, respectively.
ABSTRACT
BACKGROUND: Prostate cancer is the 4th most common type of cancer. To reduce the workload of medical personnel in the medical diagnosis of prostate cancer and increase the diagnostic accuracy in noisy images, a deep learning model is desired for prostate cancer detection. METHODS: A multi-scale denoising convolutional neural network (MSDCNN) model was designed for prostate cancer detection (PCD) that is capable of noise suppression in images. The model was further optimized by transfer learning, which contributes domain knowledge from the same domain (prostate cancer data) but heterogeneous datasets. Particularly, Gaussian noise was introduced in the source datasets before knowledge transfer to the target dataset. RESULTS: Four benchmark datasets were chosen as representative prostate cancer datasets. Ablation study and performance comparison between the proposed work and existing works were performed. Our model improved the accuracy by more than 10% compared with the existing works. Ablation studies also showed average improvements in accuracy using denoising, multi-scale scheme, and transfer learning, by 2.80%, 3.30%, and 3.13%, respectively. CONCLUSIONS: The performance evaluation and comparison of the proposed model confirm the importance and benefits of image noise suppression and transfer of knowledge from heterogeneous datasets of the same domain.
ABSTRACT
Electrocardiogram classification is crucial for various applications such as the medical diagnosis of cardiovascular diseases, the level of heart damage, and stress. One of the typical challenges of electrocardiogram classification problems is the small size of the datasets, which may lead to limitation in the performance of the classification models, particularly for models based on deep-learning algorithms. Transfer learning has demonstrated effectiveness in transferring knowledge from a source model with a similar domain and can enhance the performance of the target model. Nevertheless, the consideration of datasets with similar domains restricts the selection of source domains. In this paper, electrocardiogram classification was enhanced by distant transfer learning where a generative-adversarial-network-based auxiliary domain with a domain-feature-classifier negative-transfer-avoidance (GANAD-DFCNTA) algorithm was proposed to bridge the knowledge transfer from distant sources to target domains. To evaluate the performance of the proposed algorithm, eight benchmark datasets were chosen, with four from electrocardiogram datasets and four from the following distant domains: ImageNet, COCO, WordNet, and Sentiment140. The results showed an average accuracy improvement of 3.67 to 4.89%. The proposed algorithm was also compared with existing works using traditional transfer learning, revealing an average accuracy improvement of 0.303-5.19%. Ablation studies confirmed the effectiveness of the components of GANAD-DFCNTA.