Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Publication year range
1.
J Vasc Res ; 58(4): 207-230, 2021.
Article in English | MEDLINE | ID: mdl-33839725

ABSTRACT

The molecular signaling cascades that regulate angiogenesis and microvascular remodeling are fundamental to normal development, healthy physiology, and pathologies such as inflammation and cancer. Yet quantifying such complex, fractally branching vascular patterns remains difficult. We review application of NASA's globally available, freely downloadable VESsel GENeration (VESGEN) Analysis software to numerous examples of 2D vascular trees, networks, and tree-network composites. Upon input of a binary vascular image, automated output includes informative vascular maps and quantification of parameters such as tortuosity, fractal dimension, vessel diameter, area, length, number, and branch point. Previous research has demonstrated that cytokines and therapeutics such as vascular endothelial growth factor, basic fibroblast growth factor (fibroblast growth factor-2), transforming growth factor-beta-1, and steroid triamcinolone acetonide specify unique "fingerprint" or "biomarker" vascular patterns that integrate dominant signaling with physiological response. In vivo experimental examples described here include vascular response to keratinocyte growth factor, a novel vessel tortuosity factor; angiogenic inhibition in humanized tumor xenografts by the anti-angiogenesis drug leronlimab; intestinal vascular inflammation with probiotic protection by Saccharomyces boulardii, and a workflow programming of vascular architecture for 3D bioprinting of regenerative tissues from 2D images. Microvascular remodeling in the human retina is described for astronaut risks in microgravity, vessel tortuosity in diabetic retinopathy, and venous occlusive disease.


Subject(s)
Angiogenic Proteins/metabolism , Arteries/anatomy & histology , Arteries/metabolism , Models, Anatomic , Models, Cardiovascular , Neovascularization, Physiologic , Signal Transduction , Vascular Remodeling , Angiogenic Proteins/genetics , Animals , Astronauts , Bioprinting , Computer Simulation , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Fractals , Gene Expression Regulation , Humans , Neovascularization, Pathologic , Neovascularization, Physiologic/genetics , Printing, Three-Dimensional , Retinal Vein Occlusion/metabolism , Retinal Vein Occlusion/pathology , Retinal Vessels/metabolism , Retinal Vessels/pathology , Signal Transduction/genetics , Software , Vascular Remodeling/genetics , Weightlessness
2.
Retina ; 40(4): 648-656, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30762649

ABSTRACT

PURPOSE: Intravitreal injections acutely and temporarily increase intraocular pressure (IOP), and this may have cumulative long-term effects including an increased risk for glaucoma surgery. This study was designed to measure retinal perfusion density changes on optical coherence tomography (OCT) angiography and OCT thickness alterations associated with acutely increased IOP after intravitreal injections. METHODS: Retrospective observational clinical study of 40 eyes (39 patients) with various retinopathies from October 2016 to June 2017 at a tertiary care retina clinic in NYC. Patients were older than 18 years, with vision >20/100, able to fixate and without media opacities precluding OCT angiography, receiving intravitreal bevacizumab or aflibercept for diabetic retinopathy, retinal vein occlusion, macular degeneration, retinal neovascularization, or radiation retinopathy. The 3-mm × 3-mm macular and 4.5-mm × 4.5-mm peripapillary OCT angiography perfusion density, macular OCT thickness, and IOP were measured before and immediately after intravitreal injections. Paired t-test was used to compare preinjection and postinjection values for perfusion density and OCT thickness. Regression analysis was performed for potential effects of baseline IOP, IOP change, and age. RESULTS: Statistically significant decreases in angiographic perfusion density (P < 0.05) were found in most areas of the superficial and deep layer macular OCT angiography, and the overall optic nerve head and the radial peripapillary capillary layer, preferentially temporal. Macular OCT thickness was significantly decreased in the temporal region and increased in the nasal region. Regression analysis showed relationships between age and decreased superficial macular perfusion. Preinjection IOP was only related to OCT thickness in the fovea. Intraocular pressure change was related only to decreased superficial macular perfusion density. CONCLUSION: Intravitreal injections produce acute IOP changes that are associated with reduced macular and peripapillary perfusion density. Therefore, it is possible that patients receiving regular intravitreal injections may be sustaining perfusion-related injury to ocular structures that may produce glaucomatous damage to the macula and optic nerve.


Subject(s)
Fluorescein Angiography/methods , Intraocular Pressure/drug effects , Optic Disk/blood supply , Receptors, Vascular Endothelial Growth Factor/administration & dosage , Recombinant Fusion Proteins/administration & dosage , Retinal Diseases/diagnosis , Retinal Vessels/pathology , Tomography, Optical Coherence/methods , Adult , Aged , Aged, 80 and over , Female , Fundus Oculi , Humans , Macula Lutea/blood supply , Male , Middle Aged , Retinal Diseases/drug therapy , Retrospective Studies , Treatment Outcome
3.
Retina ; 35(10): 2028-36, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25932560

ABSTRACT

PURPOSE: Eyes fellow to nonischemic central retinal vein occlusion (CRVO) were examined for abnormalities, which might explain their increased risk for future occlusion, using adaptive optics scanning light ophthalmoscope fluorescein angiography. METHODS: Adaptive optics scanning light ophthalmoscope fluorescein angiography foveal microvascular densities were calculated. Nonperfused capillaries adjacent to the foveal avascular zone were identified. Spectral domain optical coherence tomography, ultrawide field fluorescein angiographies, and microperimetry were also performed. RESULTS: Ten fellow eyes of nine nonischemic CRVO and 1 nonischemic hemi-CRVO subjects and four affected eyes of three nonischemic CRVO and one nonischemic hemi-CRVO subjects were imaged. Ninety percent of fellow eyes and 100% of affected eyes demonstrated at least 1 nonperfused capillary compared with 31% of healthy eyes. Fellow eye microvascular density (35 ± 3.6 mm(-1)) was significantly higher than that of affected eyes (25 ± 5.2 mm(-1)) and significantly lower than that of healthy eyes (42 ± 4.2 mm(-1)). Compared with healthy controls, spectral domain optical coherence tomography thicknesses showed no significant difference, whereas microperimetry and 2/9 ultrawide field fluorescein angiography revealed abnormalities in fellow eyes. CONCLUSION: Fellow eye changes detectable on adaptive optics scanning light ophthalmoscope fluorescein angiography reflect subclinical pathology difficult to detect using conventional imaging technologies. These changes may help elucidate the pathogenesis of nonischemic CRVO and help identify eyes at increased risk of future occlusion.


Subject(s)
Functional Laterality/physiology , Regional Blood Flow/physiology , Retinal Vein Occlusion/diagnosis , Retinal Vein Occlusion/physiopathology , Retinal Vessels/pathology , Adult , Aged , Capillaries/pathology , Female , Fluorescein Angiography , Humans , Ischemia/diagnosis , Ischemia/physiopathology , Male , Middle Aged , Retrospective Studies , Tomography, Optical Coherence , Visual Field Tests , Visual Fields/physiology , Young Adult
4.
Biomed Opt Express ; 14(1): 387-428, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36698659

ABSTRACT

Twenty-five years ago, adaptive optics (AO) was combined with fundus photography, thereby initiating a new era in the field of ophthalmic imaging. Since that time, clinical applications of AO ophthalmoscopy to investigate visual system structure and function in both health and disease abound. To date, AO ophthalmoscopy has enabled visualization of most cell types in the retina, offered insight into retinal and systemic disease pathogenesis, and been integrated into clinical trials. This article reviews clinical applications of AO ophthalmoscopy and addresses remaining challenges for AO ophthalmoscopy to become fully integrated into standard ophthalmic care.

5.
Am J Ophthalmol Case Rep ; 30: 101836, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37124154

ABSTRACT

Purpose: To describe the spatial distribution and morphologic characteristics of macrophage-like cells called hyalocytes in the posterior vitreous cortex of a patient with unilateral partial posterior vitreous detachment (PVD) using coronal plane en face optical coherence tomography (OCT). Observations: A 54-year-old male with sickle cell disease (HbSC genotype) presented with a partial PVD in one eye. Rendered volumes of a slab extending from 600 µm to 3 µm anterior to the inner limiting membrane (ILM) revealed hyperreflective foci in the detached posterior vitreous cortex suspended anterior to the macula, likely representing hyalocytes. In the fellow eye without PVD, hyperreflective foci were located 3 µm anterior to the ILM. The morphology of the cells in the eye with PVD varied between a ramified state with multiple elongated processes and a more activated state characterized by a plump cell body with fewer retracted processes. In the same anatomical location, the hyperreflective foci were 10-fold more numerous in the patient with vaso-occlusive disease than in an unaffected, age-matched control. Conclusions and Importance: Direct, non-invasive, and label-free techniques of imaging cells at the vitreoretinal interface and within the vitreous body is an emerging field. The findings from this case report suggest that coronal plane en face OCT can be used to provide a detailed and quantitative characterization of cells at the human vitreo-retinal interface in vivo. Importantly, this case report demonstrates that 3D-OCT renderings can enhance visualization of these cells in relation to the ILM, which may provide clues concerning the identity and contribution of these cells to the pathogenesis of vitreo-retinal diseases.

6.
Am J Ophthalmol Case Rep ; 30: 101846, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37114189

ABSTRACT

Purpose: Pigmented paravenous chorioretinal atrophy (PPCRA) is a rare retinal disease with inflammatory or infectious associations affecting the retinal pigment epithelium (RPE) and choriocapillaris. While the clinical manifestations and imaging findings are well-documented in the literature, no reports exist describing potential biomarkers of intraocular inflammation or ischemia in this condition, such as the presence of posterior vitreous cortex hyalocytes. Observations: We report a case of a 26-year-old female who presented with progressive peripheral vision loss in both eyes over one year. Dilated fundus examination revealed bilateral, asymmetric bone-spicule pigmentary changes along the retinal veins, which appeared more advanced in the left eye. Optical coherence tomography (OCT) revealed the presence of numerous hyalocytes in both eyes 3 µm anterior to the inner limiting membrane (ILM). The morphology of the hyalocytes differed between the two eyes, suggesting different levels of activation related to the stage of the disease. Specifically, the left eye, with more advanced disease, exhibited hyalocytes with multiple elongated processes consistent with a quiescent state, whereas the right eye, with the less advanced disease state, exhibited amoeboid-appearing hyalocytes suggestive of more active inflammation. Conclusions: This case illustrates how hyalocyte morphology may reflect the underlying activity of an indolent retinal degeneration and provide a useful biomarker of disease progression.

7.
Transl Vis Sci Technol ; 12(8): 2, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37531114

ABSTRACT

Purpose: The purpose of this study was to examine the sensitivity of quantitative metrics of the retinal vasculature derived from optical coherence tomography angiography (OCT-A) images. Methods: Full retinal vascular slab OCT-A images were obtained from 94 healthy participants. Capillary loss, at 1% increments up to 50%, was simulated by randomly removing capillary segments (1000 iterations of randomized loss for each participant at each percent loss). Thirteen quantitative metrics were calculated for each image: foveal avascular zone (FAZ) area, vessel density, vessel complexity index (VCI), vessel perimeter index (VPI), fractal dimension (FD), and parafoveal intercapillary area (PICA) measurements with and without the FAZ (mean PICA, summed PICA, PICA regularity, and PICA standard deviation [PICA SD]). The sensitivity of each metric was calculated as the percent loss at which 80% of the iterations for a participant fell outside of two standard deviations from the sample's normative mean. Results: The most used OCT-A metrics, FAZ area and vessel density, were not significantly different from normative values until 27.69% and 16.00% capillary loss, respectively. Across the remaining metrics, metric sensitivity ranged from 6.37% (PICA SD without FAZ) to 39.78% (Summed PICA without FAZ). Conclusions: The sensitivity of vasculature metrics for detecting random capillary loss varies substantially. Further efforts simulating different patterns of capillary loss are needed for comparison. Additionally, mapping the repeatability of metrics over time in a normal population is needed to further define metric sensitivity. Translational Relevance: Quantitative metrics vary in their ability to detect vascular abnormalities in OCT-A images. Metric choice in screening studies will need to balance expected capillary abnormalities and the quality of the OCT-A images being used.


Subject(s)
Macula Lutea , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Benchmarking , Retinal Vessels/diagnostic imaging , Fluorescein Angiography/methods
8.
J Opt Soc Am A Opt Image Sci Vis ; 29(12): 2598-607, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23455909

ABSTRACT

Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are complementary imaging modalities, the combination of which can provide clinicians with a wealth of information to detect retinal diseases, monitor disease progression, or assess new therapies. Adaptive optics (AO) is a tool that enables correction of wavefront distortions from ocular aberrations. We have developed a multimodal adaptive optics system (MAOS) for high-resolution multifunctional use in a variety of research and clinical applications. The system integrates both OCT and SLO imaging channels into an AO beam path. The optics and hardware were designed with specific features for simultaneous SLO/OCT output, for high-fidelity AO correction, for use in humans, primates, and small animals, and for efficient location and orientation of retinal regions of interest. The MAOS system was tested on human subjects and rodents. The design, performance characterization, and initial representative results from the human and animal studies are presented and discussed.


Subject(s)
Ophthalmoscopes , Retina/cytology , Tomography, Optical Coherence/instrumentation , Adult , Animals , Equipment Design , Humans , Lasers , Rats , Rats, Sprague-Dawley
9.
Optom Vis Sci ; 89(5): 602-10, 2012 May.
Article in English | MEDLINE | ID: mdl-22426172

ABSTRACT

PURPOSE: To investigate the retinal microvasculature at the fovea and peripheral retina in humans using an adaptive optics scanning laser ophthalmoscope (AOSLO) and to examine the association of foveal avascular zone (FAZ) and foveal pit morphology. METHODS: Retinal imaging of the foveal capillary network was performed on 11 subjects (15 eyes; age range 20 to 54 years) with an AOSLO. Standard deviation maps of the AOSLO images were generated from ∼10 to 30 frames, producing high-resolution maps delineating the complete capillary distribution of the retina. Foveal pit morphology was investigated in the same subjects by using a spectral domain optical coherence tomography. In an additional subject, only a relatively large retinal vasculature map was obtained using AOSLO. RESULTS: A well-demarcated FAZ was seen in 11 subjects tested with foveal capillary imaging. There was considerable individual variation in the size and shape of the FAZ. The mean FAZ area and mean FAZ effective diameter were 0.33 mm(2) and 622 µm, respectively. Foveal thickness was found to be negatively correlated with the FAZ effective diameter. CONCLUSIONS: The structure of the capillary network could be evaluated in the fovea and parafovea using our approach. We find that a smaller FAZ is associated with a narrower foveal pit opening and a thicker fovea.


Subject(s)
Fovea Centralis/blood supply , Retinal Vessels/anatomy & histology , Tomography, Optical Coherence/methods , Adult , Capillaries/cytology , Female , Humans , Male , Middle Aged , Reference Values , Young Adult
10.
Optom Vis Sci ; 89(5): 593-601, 2012 May.
Article in English | MEDLINE | ID: mdl-22488269

ABSTRACT

PURPOSE: To develop a clinical planning module (CPM) to improve the efficiency of imaging subjects with a steerable wide-field adaptive optics scanning laser ophthalmoscope (AOSLO) and to evaluate the performance of this module by imaging the retina in healthy and diseased eyes. METHODS: We developed a software-based CPM with two submodules: a navigation module and a montage acquisition module. The navigation module guides the AOSLO to image identified retinal regions from a clinical imaging platform using a matrix-based mapping between the two. The montage acquisition module systematically moves the AOSLO steering mirrors across the retina in predefined patterns. The CPM was calibrated using a model eye and tested on five normal subjects and one patient with a retinal nerve fiber layer defect. RESULTS: Within the central ±7° from the fixation target, the CPM can direct the AOSLO beam to the desired regions with localization errors of <0.3°. The navigation error increases with eccentricity, and larger errors (up to 0.8°) were evident for regions beyond 7°. The repeatability of CPM navigation was tested on the same locations from two subjects. The localization errors between trials on different days did not differ significantly (p > 0.05). The region with a size of approximately 13° × 10° can be imaged in about 30 min. An approximately 12° × 4.5° montage of the diseased region from a patient was imaged in 18 min. CONCLUSIONS: We have implemented a clinical planning module to accurately guide the AOSLO imaging beam to desired locations and to quickly acquire high-resolution AOSLO montages. The approach is not only friendly for patients and clinicians but also convenient to relate the imaging data between different imaging platforms.


Subject(s)
Image Processing, Computer-Assisted/methods , Ophthalmoscopes , Ophthalmoscopy/methods , Retina/pathology , Retinal Diseases/diagnosis , Equipment Design , Female , Humans , Male , Optics and Photonics , Reproducibility of Results
11.
Case Rep Ophthalmol Med ; 2022: 5275309, 2022.
Article in English | MEDLINE | ID: mdl-35178261

ABSTRACT

Retinal surface macrophages play key roles in the regulation of immune response, maintenance of vitreous clarity, and tissue repair. We examined the variation of parafoveal surface macrophages in a thyroid eye disease (TED) patient before and after treatment with teprotumumab (Tepezza, Horizon therapeutics). Pre- and posttreatment parafoveal surface macrophages were imaged using clinical en face OCT, and their density was assessed using a novel cell density mapping technique. Pretreatment, surface macrophage cell density was high. Macrophages had a nonuniform spatial distribution, and their appearance was round with few protrusions, consistent with an "activated" state. Posttreatment, cell density decreased. The macrophages were regularly spaced and had a ramified appearance and filopodia-like processes, consistent with a "quiescent" state. Surface macrophage density decreased as the Clinical Activity Score (CAS) decreased with teprotumumab treatment, suggesting a potential association of these cells with an underlying intraocular and retinal inflammatory process previously not described in TED.

12.
Biomed Opt Express ; 13(3): 1755-1773, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35414987

ABSTRACT

Vitreous cortex hyalocytes are resident macrophage cells that help maintain the transparency of the media, provide immunosurveillance, and respond to tissue injury and inflammation. In this study, we demonstrate the use of non-confocal quadrant-detection adaptive optics scanning light ophthalmoscopy (AOSLO) to non-invasively visualize the movement and morphological changes of the hyalocyte cell bodies and processes over 1-2 hour periods in the living human eye. The average velocity of the cells 0.52 ± 0.76 µm/min when sampled every 5 minutes and 0.23 ± 0.29 µm/min when sampled every 30 minutes, suggesting that the hyalocytes move in quick bursts. Understanding the behavior of these cells under normal physiological conditions may lead to their use as biomarkers or suitable targets for therapy in eye diseases such as diabetic retinopathy, preretinal fibrosis and glaucoma.

13.
Ophthalmol Sci ; 2(4): 100196, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36531581

ABSTRACT

Purpose: Clinical OCT angiography (OCTA) of the retinal microvasculature offers a quantitative correlate to systemic disease burden and treatment efficacy in sickle cell disease (SCD). The purpose of this study was to use the higher resolution of adaptive optics scanning light ophthalmoscopy (AOSLO) to elucidate OCTA features of parafoveal microvascular compromise identified in SCD patients. Design: Case series of 11 SCD patients and 1 unaffected control. Participants: A total of 11 eyes of 11 SCD patients (mean age, 33 years; range, 23-44; 8 female, 3 male) and 1 eye of a 34-year-old unaffected control. Methods: Ten sequential 3 × 3 mm parafoveal OCTA full vascular slab scans were obtained per eye using a commercial spectral domain OCT system (Avanti RTVue-XR; Optovue). These were used to identify areas of compromised perfusion near the foveal avascular zone (FAZ), designated as regions of interest (ROIs). Immediately thereafter, AOSLO imaging was performed on these ROIs to examine the cellular details of abnormal perfusion. Each participant was imaged at a single cross-sectional time point. Additionally, 2 of the SCD patients were imaged prospectively 2 months after initial imaging to study compromised capillary segments across time and with treatment. Main Outcome Measures: Detection and characterization of parafoveal perfusion abnormalities identified using OCTA and resolved using AOSLO imaging. Results: We found evidence of abnormal blood flow on OCTA and AOSLO imaging among all 11 SCD patients with diverse systemic and ocular histories. Adaptive optics scanning light ophthalmoscopy imaging revealed a spectrum of phenomena, including capillaries with intermittent blood flow, blood cell stasis, and sites of thrombus formation. Adaptive optics scanning light ophthalmoscopy imaging was able to resolve single sickled red blood cells, rouleaux formations, and blood cell-vessel wall interactions. OCT angiography and AOSLO imaging were sensitive enough to document improved retinal perfusion in an SCD patient 2 months after initiation of oral hydroxyurea therapy. Conclusions: Adaptive optics scanning light ophthalmoscopy imaging was able to reveal the cellular details of perfusion abnormalities detected using clinical OCTA. The synergy between these clinical and laboratory imaging modalities presents a promising avenue in the management of SCD through the development of noninvasive ocular biomarkers to prognosticate progression and measure the response to systemic treatment.

14.
Case Rep Hematol ; 2022: 6079631, 2022.
Article in English | MEDLINE | ID: mdl-36046774

ABSTRACT

Sickle cell disease (SCD) exists on a phenotypic spectrum with variable genetic expressivity, making it difficult to assess an individual patient's risk of complications at any particular point in time. Current and emerging SCD treatments, including CRISPR-based gene editing, result in a variable proportion of affected red blood cells (RBCs) still vulnerable to sickling. Clinical serological indicators of disease such as hemoglobin, indirect bilirubin, and reticulocyte count and clinical metrics including number of emergency department visits and hospitalizations over time often fall short in their ability to objectively quantify ischemic disease activity and efficacy of treatments. Clearly, better clinical biomarkers are needed. The rapidly developing field of oculomics leverages the transparent nature of the ocular tissue to directly study the retinal microvasculature in order to characterize the status of systemic diseases. In this case report, we demonstrate the ability of optical coherence tomography angiography (OCT-A) to detect and measure micro-occlusive events within the retinal capillary bed before and after RBC exchange transfusion and following CRISPR-based gene editing, as an indicator of systemic ischemic disease activity and measure of treatment efficacy. The implications of these findings are discussed.

15.
Clin Ophthalmol ; 16: 867-875, 2022.
Article in English | MEDLINE | ID: mdl-35340669

ABSTRACT

Purpose: Hemodynamic changes surrounding the optic nerve head are known to occur in thyroid-related orbitopathy (TRO). This pilot study explores the capillary and non-capillary peripapillary perfusion changes of the retina in TRO eyes without dysthyroid optic neuropathy (DON) using optical coherence tomography angiography (OCT-A). Methods: Non-capillary and capillary peripapillary perfusion densities were calculated using single 4.5 × 4.5mm en face "RPC layer" OCT-A scans of 8 TRO patients without DON (8 eyes, mean age 40.6 years, range 23-69 years). Results were compared to a previously published dataset of 133 healthy controls (133 eyes, mean 41.5 years, range 11-83 years). The strength of association was measured between OCT-A perfusion densities and clinical measures of TRO. Results: Non-capillary peripapillary perfusion density in TRO eyes was found to be significantly decreased compared to healthy controls (TRO group 15.4 ± 2.9% vs controls 21.5 ± 3.1%; p < 0.0001). Capillary peripapillary perfusion densities showed no significant difference (TRO group 42.5 ± 1.8% vs controls 42.5 ± 1.5%; p = 1.0). Clinical measures of disease did not correlate well with OCT-A perfusion densities (p>0.05). Conclusion: These findings may represent decreased blood flow and subclinical ischemia to the optic nerve. We discuss possible pathogenic mechanisms of thyroid-related vasculopathy, including vessel wall thickening due to immunologically-induced media enlargement.

16.
Biomed Opt Express ; 12(5): 2825-2840, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34123506

ABSTRACT

Pathophysiology of sickle cell disease (SCD) features intermittent vaso-occlusion of microcirculatory networks that facilitate ischemic damage. Past research has, however, relied on static images to characterize this active disease state. This study develops imaging metrics to more fully capture dynamic vascular changes, quantifying intermittent retinal capillary perfusion in unaffected controls and SCD patients using sequential optical coherence tomography angiography (OCT-A) scans. The results reveal significant dynamic variation of capillary perfusion in SCD patients compared to controls. This measurement of vaso-occlusive burden in patients would provide utility in monitoring of the disease state and in evaluating treatment efficacy.

17.
Case Rep Ophthalmol Med ; 2021: 6816195, 2021.
Article in English | MEDLINE | ID: mdl-34956683

ABSTRACT

While plasmapheresis is well known to significantly improve both retinal findings and systemic manifestations associated with Waldenstrom macroglobulinemia, few reports exist documenting changes in optical coherence tomography angiography (OCT-A). The authors present a case of a patient with Waldenstrom macroglobulinemia who had resolution of white-centered peripheral retinal lesions and parafoveal outer nuclear layer hyperreflective material following plasmapheresis. Applying image analysis software to before and after OCT-A images, the authors were able to show an objective decrease in retinal capillary and large vessel density following plasmapheresis. This technique can be used to guide treatment and surveillance for patients with hyperviscosity-related retinopathy.

18.
Am J Ophthalmol Case Rep ; 23: 101146, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34195479

ABSTRACT

PURPOSE: Lafora disease is a genetic neurodegenerative metabolic disorder caused by insoluble polyglucosan aggregate accumulation throughout the central nervous system and body. The retina is an accessible neural tissue, which may offer alternative methods to assess neurological diseases quickly and noninvasively. In this way, noninvasive imaging may provide a means to characterize neurodegenerative disease, which enables earlier identification and diagnosis of disease and the ability to monitor disease progression. In this study, we sought to characterize the retina of individuals with Lafora disease using non-invasive retinal imaging. METHODS: One eye of three individuals with genetically confirmed Lafora disease were imaged with optical coherence tomography (OCT) and adaptive optics scanning light ophthalmoscopy (AOSLO). When possible, OCT volume and line scans were acquired to assess total retinal thickness, ganglion cell-inner plexiform layer thickness, and outer nuclear layer + Henle fiber layer thickness. OCT angiography (OCTA) scans were acquired in one subject at the macula and optic nerve head (ONH). AOSLO was used to characterize the photoreceptor mosaic and examine the retinal nerve fiber layer (RNFL). RESULTS: Two subjects with previous seizure activity demonstrated reduced retinal thickness, while one subject with no apparent symptoms had normal retinal thickness. All other clinical measures, as well as parafoveal cone density, were within normal range. Nummular reflectivity at the level of the RNFL was observed using AOSLO in the macula and near the ONH in all three subjects. CONCLUSIONS: This multimodal retinal imaging approach allowed us to observe a number of retinal structural features in all three individuals. Most notably, AOSLO revealed nummular reflectivity within the inner retina of each subject. This phenotype has not been reported previously and may represent a characteristic change produced by the neurodegenerative process.

19.
Am J Ophthalmol Case Rep ; 22: 101090, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33981912

ABSTRACT

PURPOSE: Fundus albipunctatus is an inherited cause of congenital stationary night blindness. The objective of this report is to describe structural changes occurring in a macular phenotype of a novel RDH5 mutation producing fundus albipunctatus using high-resolution in vivo imaging. A 62-year-old male with longstanding night blindness underwent imaging and genetic evaluation. High-resolution images of the photoreceptor mosaic were compared to those of a healthy subject. Results of a comprehensive ophthalmic evaluation and genetic testing with imaging including fundus photography, spectral-domain optical coherence tomography (OCT), fluorescein angiography (FA), OCT angiography (OCT-A), and adaptive optics scanning light ophthalmoscopy (AOSLO) are described. OBSERVATIONS: The patient presented with visual acuity of 20/25 in both eyes and longstanding poor dark adaptation. Anterior segment examination was unremarkable. Fundoscopy revealed well circumscribed bilateral perifoveal mottling and atrophy in both eyes. Discrete white-yellow flecks were present beyond the vascular arcades extending to the far periphery. Genetic testing revealed a novel compound heterozygous RDH5 mutation (c.388C > T, p.Gln130*; c.665T > C, p.Leu222Pro). OCT demonstrated perifoveal photoreceptor and outer retinal irregularities, which corresponded to a window defect with late staining on FA. OCT-A demonstrated normal retinal vasculature with patchy areas of non-perfusion in the choriocapillaris. Macular abnormalities in both eyes were imaged using AOSLO to assess cone and rod photoreceptor architecture. While clinical features are consistent with a primary rod disorder, confocal AOSLO showed a paucity of normal cones with a small spared central island in both eyes. Rods appeared larger and more irregular throughout the macula. Non-confocal split detection AOSLO imaging revealed the presence of cone inner segments in dark regions of confocal imaging, indicating some degree of photoreceptor preservation. CONCLUSIONS AND IMPORTANCE: The AOSLO imaging of this particular macular phenotype of fundus albipunctatus demonstrates some of the structural photoreceptor abnormalities that occur in this condition, adding insight to the variable presentation of RDH5 retinopathy. The presence of preserved inner segment architecture suggests the possibility that gene therapy could play a future role in treating this condition.

20.
Case Rep Ophthalmol Med ; 2020: 8897394, 2020.
Article in English | MEDLINE | ID: mdl-32802535

ABSTRACT

Introduction. We present a case of serpiginous choroidopathy (SC) with novel OCTA and en face OCT reflectance findings which help identify subclinical disease progression. Case Presentation. En face OCT reflectance images demonstrated outer retinal tubules (ORT) at the serpiginous lesion margins of affected and unaffected retina on multimodal imaging. OCTA findings demonstrate variable dropout of choriocapillaris in "normal" retina beyond lesion borders which was not visible on standard imaging and which demonstrated a clear transition zone beyond the ORT. Discussion. This is the first report of choriocapillaris atrophy identified on OCTA not identified on traditional multimodal imaging in serpiginous choroidopathy. Damage to vasculature only visible with OCTA may help characterize the distribution of inflammation, aiding in monitoring of suppression not illustrated by traditional imaging and which may threaten the central macula. ORT in SC suggest death and reorganization of outer segments from dysfunction of the choriocapillaris and RPE, as well as serve to demarcate the area of chronic or old inflammation, supporting the hypothesis that the choriocapillaris is the primary site of inflammation in SC. Based on these findings, we recommend OCTA on all patients with serpiginous choroidopathy to monitor underlying state of inflammation and help determine immunosuppressive threshold.

SELECTION OF CITATIONS
SEARCH DETAIL