Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
PLoS Pathog ; 19(4): e1010491, 2023 04.
Article in English | MEDLINE | ID: mdl-37018377

ABSTRACT

Adaptation to mosquito vectors suited for transmission in urban settings is a major driver in the emergence of arboviruses. To better anticipate future emergence events, it is crucial to assess their potential to adapt to new vector hosts. In this work, we used two different experimental evolution approaches to study the adaptation process of an emerging alphavirus, Mayaro virus (MAYV), to Ae. aegypti, an urban mosquito vector of many other arboviruses. We identified E2-T179N as a key mutation increasing MAYV replication in insect cells and enhancing transmission after escaping the midgut of live Ae. aegypti. In contrast, this mutation decreased viral replication and binding in human fibroblasts, a primary cellular target of MAYV in humans. We also showed that MAYV E2-T179N generates reduced viremia and displays less severe tissue pathology in vivo in a mouse model. We found evidence in mouse fibroblasts that MAYV E2-T179N is less dependent on the Mxra8 receptor for replication than WT MAYV. Similarly, exogenous expression of human apolipoprotein receptor 2 and Mxra8 enhanced WT MAYV replication compared to MAYV E2-T179N. When this mutation was introduced in the closely related chikungunya virus, which has caused major outbreaks globally in the past two decades, we observed increased replication in both human and insect cells, suggesting E2 position 179 is an important determinant of alphavirus host-adaptation, although in a virus-specific manner. Collectively, these results indicate that adaptation at the T179 residue in MAYV E2 may result in increased vector competence-but coming at the cost of optimal replication in humans-and may represent a first step towards a future emergence event.


Subject(s)
Aedes , Alphavirus Infections , Alphavirus , Arboviruses , Chikungunya virus , Animals , Mice , Humans , Aedes/genetics , Alphavirus/genetics , Chikungunya virus/genetics , Mosquito Vectors/genetics , Glycoproteins , Immunoglobulins , Membrane Proteins
2.
BMC Biol ; 18(1): 106, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32854687

ABSTRACT

BACKGROUND: Dengue virus (DENV) is estimated to infect 390 million people annually. However, few host factors that alter disease severity are known. Malnutrition, defined as both over- and undernutrition, is a growing problem worldwide and has long been linked to dengue disease severity by epidemiological and anecdotal observations. Accordingly, we sought to establish a mouse model to assess the impact of nutritional status on DENV disease severity. RESULTS: Using transiently immunocompromised mice, we established a model of mild dengue disease with measurable viremia. We then applied it to study the effects of healthy weight, obese, and low-protein diets representing normal, over-, and undernutrition, respectively. Upon infection with DENV serotype 2, obese mice experienced more severe morbidity in the form of weight loss and thrombocytopenia compared to healthy weight groups. Additionally, obesity altered cytokine expression following DENV infection. Although low protein-fed mice did not lose significant weight after DENV2 infection, they also experienced a reduction in platelets as well as increased spleen pathology and viral titers. CONCLUSIONS: Our results indicate that obese or undernourished mice incur greater disease severity after DENV infection. These studies establish a role for nutritional status in DENV disease severity.


Subject(s)
Body Weight/physiology , Dengue/virology , Diet, High-Fat/adverse effects , Diet, Protein-Restricted/adverse effects , Nutritional Status , Animals , Dengue/physiopathology , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred C57BL , Viremia/physiopathology
3.
NPJ Vaccines ; 9(1): 59, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472211

ABSTRACT

Alphaviruses are vector-borne, medically relevant, positive-stranded RNA viruses that cause disease in animals and humans worldwide. Of this group, chikungunya virus (CHIKV) is the most significant human pathogen, responsible for generating millions of infections leading to severe febrile illness and debilitating chronic joint pain. Currently, there are limited treatments to protect against alphavirus disease; thus, there is a tremendous need to generate safe and effective vaccines. Live-attenuated vaccines (LAVs) are cost-effective and potent immunization strategies capable of generating long-term protection in a single dose. However, LAVs often produce systemic viral replication, which can lead to unwanted post-vaccination side effects and pose a risk of reversion to a pathogenic phenotype and transmission to mosquitoes. Here, we utilized a chimeric infectious clone of CHIKV engineered with the domain C of the E2 gene of Semliki Forest virus (SFV) to express IFNγ and IL-21-two potent antiviral and immunomodulatory cytokines-in order to improve the LAV's attenuation while maintaining immunogenicity. The IFNγ- and IL-21-expressing vaccine candidates were stable during passage and significantly attenuated post-vaccination, as mice experienced reduced footpad swelling with minimal systemic replication and dissemination capacity compared to the parental vaccine. Additionally, these candidates provided complete protection to mice challenged with WT CHIKV. Our dual attenuation strategy represents an innovative way to generate safe and effective alphavirus vaccines that could be applied to other viruses.

4.
RSC Med Chem ; 14(4): 782-789, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37122539

ABSTRACT

A rich potential source of new antibiotics are undeveloped natural product cytotoxins, provided they can be derivatized to restrict their activity to bacteria. In this work, we describe modification of one such candidate, the broad-spectrum, translation termination inhibitor, blasticidin S. By semisynthetically modifying blasticidin S, we produced a series of ester derivatives of this highly polar, zwitterionic compound in a single step. These derivatives showed a marked increase in activity against Gram-positive bacteria and an increase in selectivity index for pathogenic bacteria over human cells. The results of this study suggest that semisynthetic derivatization of blasticidin S and other neglected natural product antimicrobials has the potential to increase their activity against and selectivity for bacteria, an approach that can be leveraged for the development of leads against antimicrobial resistant pathogens.

5.
Front Microbiol ; 14: 1189176, 2023.
Article in English | MEDLINE | ID: mdl-37378291

ABSTRACT

Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are closely related alphaviruses that cause acute febrile illness accompanied by an incapacitating polyarthralgia that can persist for years following initial infection. In conjunction with sporadic outbreaks throughout the sub-tropical regions of the Americas, increased global travel to CHIKV- and MAYV-endemic areas has resulted in imported cases of MAYV, as well as imported cases and autochthonous transmission of CHIKV, within the United States and Europe. With increasing prevalence of CHIKV worldwide and MAYV throughout the Americas within the last decade, a heavy focus has been placed on control and prevention programs. To date, the most effective means of controlling the spread of these viruses is through mosquito control programs. However, current programs have limitations in their effectiveness; therefore, novel approaches are necessary to control the spread of these crippling pathogens and lessen their disease burden. We have previously identified and characterized an anti-CHIKV single-domain antibody (sdAb) that potently neutralizes several alphaviruses including Ross River virus and Mayaro virus. Given the close antigenic relationship between MAYV and CHIKV, we formulated a single defense strategy to combat both emerging arboviruses: we generated transgenic Aedes aegypti mosquitoes that express two camelid-derived anti-CHIKV sdAbs. Following an infectious bloodmeal, we observed significant reduction in CHIKV and MAYV replication and transmission potential in sdAb-expressing transgenic compared to wild-type mosquitoes; thus, this strategy provides a novel approach to controlling and preventing outbreaks of these pathogens that reduce quality of life throughout the tropical regions of the world.

6.
J Phys Chem Lett ; 14(42): 9490-9499, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37850349

ABSTRACT

Emerging pathogens are a historic threat to public health and economic stability. Current trial-and-error approaches to identify new therapeutics are often ineffective due to their inefficient exploration of the enormous small molecule design space. Here, we present a data-driven computational framework composed of hybrid evolutionary algorithms for evolving functional groups on existing drugs to improve their binding affinity toward the main protease (Mpro) of SARS-CoV-2. We show that combinations of functional groups and sites are critical to design drugs with improved binding affinity, which can be easily achieved using our framework by exploring a fraction of the available search space. Atomistic simulations and experimental validation elucidate that enhanced and prolonged interactions between functionalized drugs and Mpro residues result in their improved therapeutic value over that of the parental compound. Overall, this novel framework is extremely flexible and has the potential to rapidly design inhibitors for any protein with available crystal structures.


Subject(s)
COVID-19 , Humans , Antiviral Agents/chemistry , Pandemics , Protease Inhibitors/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation
7.
Virology ; 555: 64-70, 2021 03.
Article in English | MEDLINE | ID: mdl-33454558

ABSTRACT

Usutu virus (USUV; Flavivirus) has caused massive die-offs in birds across Europe since the 1950s. Although rare, severe neurologic disease in humans has been reported. USUV is genetically related to West Nile virus (WNV) and shares an ecological niche, suggesting it could spread from Europe to the Americas. USUV's risk of transmission within the United States is currently unknown. To this end, we exposed field-caught Aedes japonicus, Culex pipiens pipiens, and Culex restuans-competent vectors for WNV-to a recent European isolate of USUV. While infection rates for each species varied from 7%-21%, no dissemination or transmission was observed. These results differed from a 2018 report by Cook and colleagues, who found high dissemination rates and evidence of transmission potential using a different USUV strain, U.S. mosquito populations, temperature, and extrinsic incubation period. Future studies should evaluate the impact of these experimental conditions on USUV transmission by North American mosquitoes.


Subject(s)
Aedes/virology , Culex/virology , Flavivirus Infections , Flavivirus/pathogenicity , Mosquito Vectors/virology , Animals , Birds/virology , Flavivirus Infections/transmission , Flavivirus Infections/virology , Humans
8.
Viruses ; 13(6)2021 05 25.
Article in English | MEDLINE | ID: mdl-34070524

ABSTRACT

SARS-CoV-2 emerged in 2019 as a devastating viral pathogen with no available preventative or treatment to control what led to the current global pandemic. The continued spread of the virus and increasing death toll necessitate the development of effective antiviral treatments to combat this virus. To this end, we evaluated a new class of organometallic complexes as potential antivirals. Our findings demonstrate that two pentamethylcyclopentadienyl (Cp*) rhodium piano stool complexes, Cp*Rh(1,3-dicyclohexylimidazol-2-ylidene)Cl2 (complex 2) and Cp*Rh(dipivaloylmethanato)Cl (complex 4), have direct virucidal activity against SARS-CoV-2. Subsequent in vitro testing suggests that complex 4 is the more stable and effective complex and demonstrates that both 2 and 4 have low toxicity in Vero E6 and Calu-3 cells. The results presented here highlight the potential application of organometallic complexes as antivirals and support further investigation into their activity.


Subject(s)
Antiviral Agents/pharmacology , Organometallic Compounds/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , COVID-19/virology , Cell Line , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , Molecular Structure , Organometallic Compounds/chemistry , SARS-CoV-2/physiology , Vero Cells , Virus Replication/drug effects
9.
Virology ; 563: 98-106, 2021 11.
Article in English | MEDLINE | ID: mdl-34509029

ABSTRACT

The COVID-19 pandemic has paralyzed the global economy and resulted in millions of deaths globally. People with co-morbidities like obesity, diabetes and hypertension are at an increased risk for severe COVID-19 illness. This is of overwhelming concern because 42% of Americans are obese, 30% are pre-diabetic and 9.4% have clinical diabetes. Here, we investigated the effect of obesity on disease severity following SARS-CoV-2 infection using a well-established mouse model of diet-induced obesity. Diet-induced obese and lean control C57BL/6 N mice, transduced for ACE2 expression using replication-defective adenovirus, were infected with SARS-CoV-2, and monitored for lung pathology, viral titers, and cytokine expression. No significant differences in tissue pathology or viral replication was observed between AdV transduced lean and obese groups, infected with SARS-CoV-2, but certain cytokines were expressed more significantly in infected obese mice compared to the lean ones. Notably, significant weight loss was observed in obese mice treated with the adenovirus vector, independent of SARS-CoV-2 infection, suggesting an obesity-dependent morbidity induced by the vector. These data indicate that the adenovirus-transduced mouse model of SARS-CoV-2 infection, as described here and elsewhere, may be inappropriate for nutrition studies.


Subject(s)
COVID-19/epidemiology , Disease Models, Animal , Obesity/epidemiology , Animals , Chlorocebus aethiops , Comorbidity , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Morbidity , Vero Cells
10.
Virology ; 554: 28-36, 2021 02.
Article in English | MEDLINE | ID: mdl-33352463

ABSTRACT

Usutu virus (USUV; genus Flavivirus; family Flaviviridae) is a mosquito-borne, positive-sense RNA virus that is currently causing significant die-offs in numerous bird species throughout Europe and has caused infections in humans. Currently, there are no molecular clones for USUV, hence, hindering studies on the pathogenesis and transmission of USUV. Here, we demonstrate the development and characterization of infectious clones for two modern strains of USUV isolated from Europe and Africa. We show that the infectious clone-derived viruses replicated similarly to the parental strains in mammalian and insect cells. Additionally, we observed similar levels of replication and disease in two mouse models. These clones will aid the study of USUV infection, transmission, diagnostics, and vaccines.


Subject(s)
Flavivirus Infections/virology , Flavivirus/genetics , Flavivirus/physiology , Animals , Cell Line , Cloning, Molecular , Disease Models, Animal , Flavivirus/classification , Flavivirus/pathogenicity , Humans , Male , Mice , Mutation , Phylogeny , Viremia , Virus Replication
11.
Virology ; 551: 58-63, 2020 12.
Article in English | MEDLINE | ID: mdl-33032077

ABSTRACT

Alphaviruses (genus Alphavirus; family Togaviridae) are a medically relevant family of viruses that include chikungunya virus and Mayaro virus. Infectious cDNA clones of these viruses are necessary molecular tools to understand viral biology. Traditionally, rescuing virus from an infectious cDNA clone requires propagating plasmids in bacteria, which can result in mutations in the viral genome due to bacterial toxicity or recombination and requires specialized equipment and knowledge to propagate the bacteria. Here, we present an alternative- rolling circle amplification (RCA), an in vitro technology. We demonstrate that the viral yield of transfected RCA product is comparable to midiprepped plasmid, albeit with a slight delay in kinetics. RCA, however, is cheaper and less time-consuming. Further, sequential RCA did not introduce mutations into the viral genome, subverting the need for glycerol stocks and retransformation. These results indicate that RCA is a viable alternative to traditional plasmid-based approaches to viral rescue.


Subject(s)
Alphavirus , Nucleic Acid Amplification Techniques/methods , Alphavirus/genetics , Alphavirus/isolation & purification , Animals , Chlorocebus aethiops , Cricetinae , DNA, Complementary , Fibroblasts , Genome, Viral , HEK293 Cells , Humans , Vero Cells
12.
Virology ; 535: 227-231, 2019 09.
Article in English | MEDLINE | ID: mdl-31325837

ABSTRACT

Mayaro virus (MAYV; family Togaviridae, genus Alphavirus) is an emerging global threat that can cause severe clinical manifestations similar to Zika, dengue, and chikungunya viruses. Currently, there is a lack of molecular tools to enable a better understanding of the transmission and pathogenesis of MAYV. Here, we detail the development and characterization of infectious clones of two strains of MAYV that produce infectious virus and replicate in mammalian and mosquito cells similarly to wild-type virus. Additionally, clone-derived viruses produced identical infection rates and phenotypes in CD-1 mice compared to the parental strains. This infectious clone system will provide a resource to the research community to analyze MAYV genetic determinants of virulence, determine vector competence, and develop vaccines.


Subject(s)
Alphavirus/growth & development , Alphavirus/genetics , DNA, Complementary/genetics , DNA, Viral/genetics , Reverse Genetics/methods , Viral Vaccines/isolation & purification , Alphavirus/immunology , Alphavirus/pathogenicity , Alphavirus Infections/physiopathology , Alphavirus Infections/prevention & control , Animals , Cell Line , Cloning, Molecular , Communicable Diseases, Emerging/physiopathology , Communicable Diseases, Emerging/prevention & control , Culicidae , DNA, Complementary/isolation & purification , DNA, Viral/isolation & purification , Humans , Mice , Vaccinology/methods , Viral Vaccines/genetics , Viral Vaccines/immunology , Virology/methods
SELECTION OF CITATIONS
SEARCH DETAIL