ABSTRACT
Modular SCF (SKP1-CUL1-Fbox) ubiquitin E3 ligases orchestrate multiple cellular pathways in eukaryotes. Their variable SKP1-Fbox substrate receptor (SR) modules enable regulated substrate recruitment and subsequent proteasomal degradation. CAND proteins are essential for the efficient and timely exchange of SRs. To gain structural understanding of the underlying molecular mechanism, we reconstituted a human CAND1-driven exchange reaction of substrate-bound SCF alongside its co-E3 ligase DCNL1 and visualized it by cryo-EM. We describe high-resolution structural intermediates, including a ternary CAND1-SCF complex, as well as conformational and compositional intermediates representing SR- or CAND1-dissociation. We describe in molecular detail how CAND1-induced conformational changes in CUL1/RBX1 provide an optimized DCNL1-binding site and reveal an unexpected dual role for DCNL1 in CAND1-SCF dynamics. Moreover, a partially dissociated CAND1-SCF conformation accommodates cullin neddylation, leading to CAND1 displacement. Our structural findings, together with functional biochemical assays, help formulate a detailed model for CAND-SCF regulation.
Subject(s)
Cullin Proteins , SKP Cullin F-Box Protein Ligases , Humans , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Cullin Proteins/metabolism , Transcription Factors/metabolism , Carrier Proteins/metabolismABSTRACT
The Mre11/Rad50/Nbs1 protein complex plays central enzymatic and signaling roles in the DNA-damage response. Nuclease (Mre11) and scaffolding (Rad50) components of MRN have been extensively characterized, but the molecular basis of Nbs1 function has remained elusive. Here, we present a 2.3A crystal structure of the N-terminal region of fission yeast Nbs1, revealing an unusual but conserved architecture in which the FHA- and BRCT-repeat domains structurally coalesce. We demonstrate that diphosphorylated pSer-Asp-pThr-Asp motifs, recently identified as multicopy docking sites within Mdc1, are evolutionarily conserved Nbs1 binding targets. Furthermore, we show that similar phosphomotifs within Ctp1, the fission yeast ortholog of human CtIP, promote interactions with the Nbs1 FHA domain that are necessary for Ctp1-dependent resistance to DNA damage. Finally, we establish that human Nbs1 interactions with Mdc1 occur through both its FHA- and BRCT-repeat domains, suggesting how their structural and functional interdependence underpins Nbs1 adaptor functions in the DNA-damage response.
Subject(s)
Cell Cycle Proteins/chemistry , Chromosomal Proteins, Non-Histone/chemistry , DNA Repair , Nuclear Proteins/chemistry , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces/chemistry , Amino Acid Sequence , Crystallography, X-Ray , DNA Damage , DNA-Binding Proteins/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Phosphorylation , Protein Structure, Tertiary , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Sequence AlignmentABSTRACT
Mdc1 is a large modular phosphoprotein scaffold that maintains signaling and repair complexes at double-stranded DNA break sites. Mdc1 is anchored to damaged chromatin through interaction of its C-terminal BRCT-repeat domain with the tail of γH2AX following DNA damage, but the role of the N-terminal forkhead-associated (FHA) domain remains unclear. We show that a major binding target of the Mdc1 FHA domain is a previously unidentified DNA damage and ATM-dependent phosphorylation site near the N-terminus of Mdc1 itself. Binding to this motif stabilizes a weak self-association of the FHA domain to form a tight dimer. X-ray structures of free and complexed Mdc1 FHA domain reveal a 'head-to-tail' dimerization mechanism that is closely related to that seen in pre-activated forms of the Chk2 DNA damage kinase, and which both positively and negatively influences Mdc1 FHA domain-mediated interactions in human cells prior to and following DNA damage.
Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/chemistry , Trans-Activators/metabolism , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Animals , Ataxia Telangiectasia Mutated Proteins , Cells, Cultured , Chromosomal Proteins, Non-Histone/analysis , DNA Breaks, Double-Stranded , DNA-Binding Proteins/analysis , Dimerization , Humans , Mice , Models, Molecular , Molecular Sequence Data , Phosphothreonine/metabolism , Protein Interaction Domains and Motifs , Threonine/metabolism , Tumor Suppressor p53-Binding Protein 1ABSTRACT
Germline mutations in the BRCA1 tumor suppressor gene often result in a significant increase in susceptibility to breast and ovarian cancers. Although the molecular basis of their effects remains largely obscure, many mutations are known to target the highly conserved C-terminal BRCT repeats that function as a phosphoserine/phosphothreonine-binding module. We report the X-ray crystal structure at a resolution of 1.85 A of the BRCA1 tandem BRCT domains in complex with a phosphorylated peptide representing the minimal interacting region of the DEAH-box helicase BACH1. The structure reveals the determinants of this novel class of BRCA1 binding events. We show that a subset of disease-linked mutations act through specific disruption of phospho-dependent BRCA1 interactions rather than through gross structural perturbation of the tandem BRCT domains.
Subject(s)
BRCA1 Protein/metabolism , Breast Neoplasms/genetics , Transcription Factors/metabolism , BRCA1 Protein/chemistry , BRCA1 Protein/genetics , Basic-Leucine Zipper Transcription Factors , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/chemistry , Crystallography, X-Ray , Fanconi Anemia Complementation Group Proteins , Female , Humans , Microscopy, Fluorescence , Mutation , Nuclear Proteins/metabolism , Phosphopeptides/metabolism , Protein Binding , Protein Structure, Tertiary , TransfectionABSTRACT
Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in trans in the presence of distant chromosome breaks.
Subject(s)
Cell Cycle Proteins/metabolism , DNA Damage/genetics , DNA Damage/physiology , Nuclear Proteins/metabolism , RNA, Ribosomal/genetics , Amino Acid Sequence , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cell Line , Cell Nucleolus/metabolism , Conserved Sequence , DNA Breaks, Double-Stranded , Gene Silencing , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Models, Biological , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Protein Interaction Domains and Motifs , RNA Polymerase I/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription, GeneticABSTRACT
Chk2/CHEK2/hCds1 is a modular serine-threonine kinase involved in transducing DNA damage signals. Phosphorylation by ataxia telangiectasia-mutated kinase (ATM) promotes Chk2 self-association, autophosphorylation, and activation. Here we use expressed protein ligation to generate a Chk2 N-terminal regulatory region encompassing a fork-head-associated (FHA) domain, a stoichiometrically phosphorylated Thr-68 motif and intervening linker. Hydrodynamic analysis reveals that Thr-68 phosphorylation stabilizes weak FHA-FHA interactions that occur in the unphosphorylated species to form a high affinity dimer. Although clearly a prerequisite for Chk2 activation in vivo, we show that dimerization modulates potential phosphodependent interactions with effector proteins and substrates through either the pThr-68 site, or the canonical FHA phosphobinding surface with which it is tightly associated. We further show that the dimer-occluded pThr-68 motif is released by intra-dimer autophosphorylation of the FHA domain at the highly conserved Ser-140 position, a major pThr contact in all FHA-phosphopeptide complex structures, revealing a mechanism of Chk2 dimer dissociation following kinase domain activation.
Subject(s)
Protein Serine-Threonine Kinases/metabolism , Amino Acid Motifs/physiology , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 2 , DNA Damage/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dimerization , Enzyme Activation/physiology , Humans , Phosphorylation/physiology , Protein Serine-Threonine Kinases/genetics , Protein Structure, Quaternary/physiology , Protein Structure, Tertiary/physiology , Signal Transduction/physiology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolismABSTRACT
Histone variant H2AX phosphorylation in response to DNA damage is the major signal for recruitment of DNA-damage-response proteins to regions of damaged chromatin. Loss of H2AX causes radiosensitivity, genome instability, and DNA double-strand-break repair defects, yet the mechanisms underlying these phenotypes remain obscure. Here, we demonstrate that mammalian MDC1/NFBD1 directly binds to phospho-H2AX (gammaH2AX) by specifically interacting with the phosphoepitope at the gammaH2AX carboxyl terminus. Moreover, through a combination of biochemical, cell-biological, and X-ray crystallographic approaches, we reveal the molecular details of the MDC1/NFBD1-gammaH2AX complex. These data provide compelling evidence that the MDC1/NFBD1 BRCT repeat domain is the major mediator of gammaH2AX recognition following DNA damage. We further show that MDC1/NFBD1-gammaH2AX complex formation regulates H2AX phosphorylation and is required for normal radioresistance and efficient accumulation of DNA-damage-response proteins on damaged chromatin. Thus, binding of MDC1/NFBD1 to gammaH2AX plays a central role in the mammalian response to DNA damage.
Subject(s)
DNA Damage/physiology , Histones/metabolism , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Animals , Cell Cycle/physiology , Cell Cycle Proteins , Conserved Sequence , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Humans , Models, Molecular , Molecular Sequence Data , Molecular Structure , Peptide Library , Phosphorylation , Protein Structure, Tertiary/physiologyABSTRACT
Calcium-saturated calmodulin (CaM) directly activates CaM-dependent protein kinase I (CaMKI) by binding to a region in the C-terminal regulatory sequence of the enzyme to relieve autoinhibition. The structure of CaM in a high-affinity complex with a 25-residue peptide of CaMKI (residues 294-318) has been determined by X-ray crystallography at 1.7 A resolution. Upon complex formation, the CaMKI peptide adopts an alpha-helical conformation, while changes in the CaM domain linker enable both its N- and C-domains to wrap around the peptide helix. Target peptide residues Trp-303 (interacting with the CaM C-domain) and Met-316 (with the CaM N-domain) define the mode of binding as 1-14. In addition, two basic patches on the peptide form complementary charge interactions with CaM. The CaM-peptide affinity is approximately 1 pM, compared with 30 nM for the CaM-kinase complex, indicating that activation of autoinhibited CaMKI by CaM requires a costly energetic disruption of the interactions between the CaM-binding sequence and the rest of the enzyme. We present biochemical and structural evidence indicating the involvement of both CaM domains in the activation process: while the C-domain exhibits tight binding toward the regulatory sequence, the N-domain is necessary for activation. Our crystal structure also enables us to identify the full CaM-binding sequence. Residues Lys-296 and Phe-298 from the target peptide interact directly with CaM, demonstrating overlap between the autoinhibitory and CaM-binding sequences. Thus, the kinase activation mechanism involves the binding of CaM to residues associated with the inhibitory pseudosubstrate sequence.