Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Circ Res ; 135(1): 198-221, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38900854

ABSTRACT

From their humble discovery as cellular debris to cementing their natural capacity to transfer functional molecules between cells, the long-winded journey of extracellular vesicles (EVs) now stands at the precipice as a next-generation cell-free therapeutic tool to revolutionize modern-day medicine. This perspective provides a snapshot of the discovery of EVs to their emergence as a vibrant field of biology and the renaissance they usher in the field of biomedical sciences as therapeutic agents for cardiovascular pathologies. Rapid development of bioengineered EVs is providing innovative opportunities to overcome biological challenges of natural EVs such as potency, cargo loading and enhanced secretion, targeting and circulation half-life, localized and sustained delivery strategies, approaches to enhance systemic circulation, uptake and lysosomal escape, and logistical hurdles encompassing scalability, cost, and time. A multidisciplinary collaboration beyond the field of biology now extends to chemistry, physics, biomaterials, and nanotechnology, allowing rapid development of designer therapeutic EVs that are now entering late-stage human clinical trials.


Subject(s)
Cardiovascular Diseases , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Animals , Cardiovascular Diseases/therapy
2.
Proteomics ; : e2300211, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37786918

ABSTRACT

The integration of robust single-pot, solid-phase-enhanced sample preparation with powerful liquid chromatography-tandem mass spectrometry (LC-MS/MS) is routinely used to define the extracellular vesicle (EV) proteome landscape and underlying biology. However, EV proteome studies are often limited by sample availability, requiring upscaling cell cultures or larger volumes of biofluids to generate sufficient materials. Here, we have refined data independent acquisition (DIA)-based MS analysis of EV proteome by optimizing both protein enzymatic digestion and chromatography gradient length (ranging from 15 to 44 min). Our short 15 min gradient length can reproducibly quantify 1168 (from as little as 500 pg of EV peptides) to 3882 proteins groups (from 50 ng peptides), including robust quantification of 22 core EV marker proteins. Compared to data-dependent acquisition, DIA achieved significantly greater EV proteome coverage and quantification of low abundant protein species. Moreover, we have achieved optimal magnetic bead-based sample preparation tailored to low quantities of EVs (0.5 to 1 µg protein) to obtain sufficient peptides for MS quantification of 1908-2340 protein groups. We demonstrate the power and robustness of our pipeline in obtaining sufficient EV proteomes granularity of different cell sources to ascertain known EV biology. This underscores the capacity of our optimised workflow to capture precise and comprehensive proteome of EVs, especially from ultra-low sample quantities (sub-nanogram), an important challenge in the field where obtaining in-depth proteome information is essential.

3.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430812

ABSTRACT

Extracellular vesicles (EVs) from stem cells have shown significant therapeutic potential to repair injured cardiac tissues and regulate pathological fibrosis. However, scalable generation of stem cells and derived EVs for clinical utility remains a huge technical challenge. Here, we report a rapid size-based extrusion strategy to generate EV-like membranous nanovesicles (NVs) from easily sourced human iPSCs in large quantities (yield 900× natural EVs). NVs isolated using density-gradient separation (buoyant density 1.13 g/mL) are spherical in shape and morphologically intact and readily internalised by human cardiomyocytes, primary cardiac fibroblasts, and endothelial cells. NVs captured the dynamic proteome of parental cells and include pluripotency markers (LIN28A, OCT4) and regulators of cardiac repair processes, including tissue repair (GJA1, HSP20/27/70, HMGB1), wound healing (FLNA, MYH9, ACTC1, ILK), stress response/translation initiation (eIF2S1/S2/S3/B4), hypoxia response (HMOX2, HSP90, GNB1), and extracellular matrix organization (ITGA6, MFGE8, ITGB1). Functionally, NVs significantly promoted tubule formation of endothelial cells (angiogenesis) (p < 0.05) and survival of cardiomyocytes exposed to low oxygen conditions (hypoxia) (p < 0.0001), as well as attenuated TGF-ß mediated activation of cardiac fibroblasts (p < 0.0001). Quantitative proteome profiling of target cell proteome following NV treatments revealed upregulation of angiogenic proteins (MFGE8, MYH10, VDAC2) in endothelial cells and pro-survival proteins (CNN2, THBS1, IGF2R) in cardiomyocytes. In contrast, NVs attenuated TGF-ß-driven extracellular matrix remodelling capacity in cardiac fibroblasts (ACTN1, COL1A1/2/4A2/12A1, ITGA1/11, THBS1). This study presents a scalable approach to generating functional NVs for cardiac repair.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Endothelial Cells/metabolism , Proteome/metabolism , Transforming Growth Factor beta/metabolism , Hypoxia/metabolism
4.
Proteomics ; 21(13-14): e2100026, 2021 07.
Article in English | MEDLINE | ID: mdl-33861516

ABSTRACT

Cardiac intercellular communication is critical for heart function and often dysregulated in cardiovascular diseases. While cardiac extracellular vesicles (cEVs) are emerging mediators of signalling, their isolation remains a technical challenge hindering our understanding of cEV protein composition. Here, we utilised Langendorff-collagenase-based enzymatic perfusion and differential centrifugation to isolate cEVs from mouse heart (yield 3-6 µg/heart). cEVs are ∼200 nm, express classical EV markers (Cd63/81/9+ , Tsg101+ , Pdcd6ip/Alix+ ), and are depleted of blood (Alb/Fga/Hba) and cardiac damage markers (Mb, Tnnt2, Ldhb). Comparison with mechanically-derived EVs revealed greater detection of EV markers and decreased cardiac damage contaminants. Mass spectrometry-based proteomic profiling revealed 1721 proteins in cEVs, implicated in proteasomal and autophagic proteostasis, glycolysis, and fatty acid metabolism; essential functions often disrupted in cardiac pathologies. There was striking enrichment of 942 proteins in cEVs compared to mouse heart tissue - implicated in EV biogenesis, antioxidant activity, and lipid transport, suggesting active cargo selection and specialised function. Interestingly, cEVs contain marker proteins for cardiomyocytes, cardiac progenitors, B-cells, T-cells, macrophages, smooth muscle cells, endothelial cells, and cardiac fibroblasts, suggesting diverse cellular origin. We present a method of cEV isolation and provide insight into potential functions, enabling future studies into EV roles in cardiac physiology and disease.


Subject(s)
Extracellular Vesicles , Proteome , Animals , Biomarkers , Endothelial Cells , Mice , Proteomics
5.
Expert Rev Proteomics ; 16(1): 17-31, 2019 01.
Article in English | MEDLINE | ID: mdl-30457403

ABSTRACT

Introduction: Extracellular vesicles (EVs) are secreted into their extracellular environment, contain a specific repertoire of cellular cargo, and represent a novel vehicle for cell-cell communication. Protein post-translational modifications (PTMs) are emerging as major effectors of EV biology and function, and in turn, regulate cellular signaling. Areas covered: Discovery and investigation of PTMs such as methylation, glycosylation, acetylation, phosphorylation, sumoylation, and many others has established fundamental roles for PTMs within EVs and associated EV function. The application of enrichment strategies for modifications, high-resolution quantitative mass spectrometry-based proteomics, and improved technological approaches have provided key insights into identification and characterization of EV-based PTMs. Recently, an overwhelming appreciation for the diversity of modifications, including post-transcriptional modifications, dynamic roles of these modifications, and their emerging interplay, including protein-protein, protein-lipid, protein-RNA, and variable RNA modifications, is emerging. At a cellular level, such interplay is essential for gene expression/genome organization, protein function and localization, RNA metabolism, cell division, and cell signaling. Expert commentary: The understanding of these modifications and interactions will provide strategies toward how distinct cargo is localized, sorted, and delivered through EVs to mediate intercellular function, with further understanding of such modifications and intermolecular interactions will provide advances in EV-based therapeutic strategies.


Subject(s)
Extracellular Vesicles/chemistry , Proteomics/methods , Acetylation , Extracellular Vesicles/metabolism , Glycosylation , Methylation , Phosphorylation , Protein Processing, Post-Translational
6.
Cardiovasc Res ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879891

ABSTRACT

AIMS: Formylpeptide receptors (FPRs) play a critical role in the regulation of inflammation, an important driver of hypertension-induced end-organ damage. We have previously reported that the biased FPR small-molecule agonist, compound17b (Cmpd17b), is cardioprotective against acute, severe inflammatory insults. Here, we reveal the first compelling evidence of the therapeutic potential of this novel FPR agonist against a longer-term, sustained inflammatory insult, i.e. hypertension-induced end-organ damage. The parallels between the murine and human hypertensive proteome were also investigated. METHODS AND RESULTS: The hypertensive response to angiotensin II (Ang II, 0.7 mg/kg/day, s.c.) was attenuated by Cmpd17b (50 mg/kg/day, i.p.). Impairments in cardiac and vascular function assessed via echocardiography were improved by Cmpd17b in hypertensive mice. This functional improvement was accompanied by reduced cardiac and aortic fibrosis and vascular calcification. Cmpd17b also attenuated Ang II-induced increased cardiac mitochondrial complex 2 respiration. Proteomic profiling of cardiac and aortic tissues and cells, using label-free nano-liquid chromatography with high-sensitivity mass spectrometry, detected and quantified ∼6000 proteins. We report hypertension-impacted protein clusters associated with dysregulation of inflammatory, mitochondrial, and calcium responses, as well as modified networks associated with cardiovascular remodelling, contractility, and structural/cytoskeletal organization. Cmpd17b attenuated hypertension-induced dysregulation of multiple proteins in mice, and of these, ∼110 proteins were identified as similarly dysregulated in humans suffering from adverse aortic remodelling and cardiac hypertrophy. CONCLUSION: We have demonstrated, for the first time, that the FPR agonist Cmpd17b powerfully limits hypertension-induced end-organ damage, consistent with proteome networks, supporting development of pro-resolution FPR-based therapeutics for treatment of systemic hypertension complications.

7.
J Extracell Biol ; 2(12): e125, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38938901

ABSTRACT

Pathological reprogramming of cardiomyocyte and fibroblast proteome landscapes drive the initiation and progression of cardiac fibrosis. Although the secretome of dysfunctional cardiomyocytes is emerging as an important driver of pathological fibroblast reprogramming, our understanding of the downstream molecular players remains limited. Here, we show that cardiac fibroblast activation (αSMA+) and oxidative stress mediated by the secretome of TGFß-stimulated cardiomyocytes is associated with a profound reprogramming of their proteome and phosphoproteome landscape. Within the fibroblast global proteome there was a striking dysregulation of proteins implicated in extracellular matrix, protein localisation/metabolism, KEAP1-NFE2L2 pathway, lysosomes, carbohydrate metabolism, and transcriptional regulation. Kinase substrate enrichment analysis of phosphopeptides revealed potential role of kinases (CK2, CDK2, PKC, GSK3B) during this remodelling. We verified upregulated activity of casein kinase 2 (CK2) in secretome-treated fibroblasts, and pharmacological CK2 inhibitor TBB (4,5,6,7-Tetrabromobenzotriazole) significantly abrogated fibroblast activation and oxidative stress. Our data provides molecular insights into cardiomyocyte to cardiac fibroblast crosstalk, and the potential role of CK2 in regulating cardiac fibroblast activation and oxidative stress.

8.
Front Cell Dev Biol ; 9: 734720, 2021.
Article in English | MEDLINE | ID: mdl-34616741

ABSTRACT

Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.

9.
J Extracell Vesicles ; 10(13): e12164, 2021 11.
Article in English | MEDLINE | ID: mdl-34817906

ABSTRACT

The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gateway by bridging intra- and extracellular signalling networks, dictates EVs' capacity to communicate and interact with their environment, and is a source of potential disease biomarkers and therapeutic targets. However, our understanding of surface protein composition of large EVs (L-EVs, 100-800 nm, mean 310 nm, ATP5F1A, ATP5F1B, DHX9, GOT2, HSPA5, HSPD1, MDH2, STOML2), a major EV-subtype that are distinct from small EVs (S-EVs, 30-150 nm, mean 110 nm, CD44, CD63, CD81, CD82, CD9, PDCD6IP, SDCBP, TSG101) remains limited. Using a membrane impermeant derivative of biotin to capture surface proteins coupled to mass spectrometry analysis, we show that out of 4143 proteins identified in density-gradient purified L-EVs (1.07-1.11 g/mL, from multiple cancer cell lines), 961 proteins are surface accessible. The surface molecular diversity of L-EVs include (i) bona fide plasma membrane anchored proteins (cluster of differentiation, transporters, receptors and GPI anchored proteins implicated in cell-cell and cell-ECM interactions); and (ii) membrane surface-associated proteins (that are released by divalent ion chelator EDTA) implicated in actin cytoskeleton regulation, junction organization, glycolysis and platelet activation. Ligand-receptor analysis of L-EV surfaceome (e.g., ITGAV/ITGB1) uncovered interactome spanning 172 experimentally verified cognate binding partners (e.g., ANGPTL3, PLG, and VTN) with highest tissue enrichment for liver. Assessment of biotin inaccessible L-EV proteome revealed enrichment for proteins belonging to COPI/II-coated ER/Golgi-derived vesicles and mitochondria. Additionally, despite common surface proteins identified in L-EVs and S-EVs, our data reveals surfaceome heterogeneity between the two EV-subtype. Collectively, our study provides critical insights into diverse proteins operating at the interactive platform of L-EVs and molecular leads for future studies seeking to decipher L-EV heterogeneity and function.


Subject(s)
Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Membrane Proteins/analysis , Proteome/analysis , Proteomics/methods , Signal Transduction , Cell Line, Tumor , Chromatography, Liquid/methods , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Extracellular Vesicles/classification , Golgi Apparatus/chemistry , Golgi Apparatus/metabolism , Humans , Mitochondria/chemistry , Mitochondria/metabolism , Particle Size , Protein Transport , Tandem Mass Spectrometry/methods
10.
Methods Mol Biol ; 2261: 105-149, 2021.
Article in English | MEDLINE | ID: mdl-33420988

ABSTRACT

Extracellular vesicles (EVs) are membrane-enclosed vesicles released by cells. They carry proteins, nucleic acids, and metabolites which can be transferred to a recipient cell, locally or at a distance, to elicit a functional response. Since their discovery over 30 years ago, the functional repertoire of EVs in both physiological (e.g., organ morphogenesis, embryo implantation) and pathological (e.g., cancer, neurodegeneration) conditions has cemented their crucial role in intercellular communication. Moreover, because the cargo encapsulated within circulating EVs remains protected from degradation, their diagnostic as well as therapeutic (such as drug delivery tool) applications have garnered vested interest. Global efforts have been made to purify EV subtypes from biological fluids and in vitro cell culture media using a variety of strategies and techniques, with a major focus on EVs of endocytic origin called exosomes (30-150 nm in size). Given that the secretome comprises of soluble secreted proteins, protein aggregates, RNA granules, and EV subtypes (such as exosomes, shed microvesicles, apoptotic bodies), it is imperative to purify exosomes to homogeneity if we are to perform biochemical and biophysical characterization and, importantly, functional dissection. Besides understanding the composition of EV subtypes, defining molecular bias of how they reprogram target cells also remains of paramount importance in this area of active research. Here, we outline a systematic "how to" protocol (along with useful insights/tips) to obtain highly purified exosomes and perform their biophysical and biochemical characterization. This protocol employs a mass spectrometry-based proteomics approach to characterize the protein composition of exosomes. We also provide insights on different isolation strategies and their usefulness in various downstream applications. We outline protocols for lipophilic labeling of exosomes to study uptake by a recipient cell, investigating cellular reprogramming using proteomics and studying functional response to exosomes in the Transwell-Matrigel™ Invasion assay.


Subject(s)
Analytic Sample Preparation Methods , Exosomes/metabolism , Proteins/isolation & purification , Proteomics , Tandem Mass Spectrometry , Animals , Bioreactors , Cell Culture Techniques/instrumentation , Cell Line, Tumor , Chromatography, High Pressure Liquid , Exosomes/ultrastructure , Fibroblasts/metabolism , Humans , Neoplasms/metabolism , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL