Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 52(W1): W341-W347, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38709877

ABSTRACT

Genes commonly express multiple RNA products (RNA isoforms), which differ in exonic content and can have different functions. Making sense of the plethora of known and novel RNA isoforms being identified by transcriptomic approaches requires a user-friendly way to visualize gene isoforms and how they differ in exonic content, expression levels and potential functions. Here we introduce IsoVis, a freely available webserver that accepts user-supplied transcriptomic data and visualizes the expressed isoforms in a clear, intuitive manner. IsoVis contains numerous features, including the ability to visualize all RNA isoforms of a gene and their expression levels; the annotation of known isoforms from external databases; mapping of protein domains and features to exons, allowing changes to protein sequence and function between isoforms to be established; and extensive species compatibility. Datasets visualised on IsoVis remain private to the user, allowing analysis of sensitive data. IsoVis visualisations can be downloaded to create publication-ready figures. The IsoVis webserver enables researchers to perform isoform analyses without requiring programming skills, is free to use, and available at https://isomix.org/isovis/.


Subject(s)
Internet , Molecular Sequence Annotation , RNA Isoforms , Software , RNA Isoforms/genetics , RNA Isoforms/metabolism , RNA Isoforms/chemistry , Humans , Animals , Exons/genetics , Transcriptome/genetics , Alternative Splicing
2.
BMC Genomics ; 25(1): 814, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210279

ABSTRACT

The growth factor Neuregulin-1 (NRG1) has pleiotropic roles in proliferation and differentiation of the stem cell niche in different tissues. It has been implicated in gut, brain and muscle development and repair. Six isoform classes of NRG1 and over 28 protein isoforms have been previously described. Here we report a new class of NRG1, designated NRG1-VII to denote that these NRG1 isoforms arise from a myeloid-specific transcriptional start site (TSS) previously uncharacterized. Long-read sequencing was used to identify eight high-confidence NRG1-VII transcripts. These transcripts presented major structural differences from one another, through the use of cassette exons and alternative stop codons. Expression of NRG1-VII was confirmed in primary human monocytes and tissue resident macrophages and induced pluripotent stem cell-derived macrophages (iPSC-derived macrophages). Isoform switching via cassette exon usage and alternate polyadenylation was apparent during monocyte maturation and macrophage differentiation. NRG1-VII is the major class expressed by the myeloid lineage, including tissue-resident macrophages. Analysis of public gene expression data indicates that monocytes and macrophages are a primary source of NRG1. The size and structure of class VII isoforms suggests that they may be more diffusible through tissues than other NRG1 classes. However, the specific roles of class VII variants in tissue homeostasis and repair have not yet been determined.


Subject(s)
Cell Differentiation , Macrophages , Neuregulin-1 , Protein Isoforms , Humans , Neuregulin-1/metabolism , Neuregulin-1/genetics , Macrophages/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Monocytes/metabolism , Monocytes/cytology , Transcription Initiation Site , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Exons/genetics , Alternative Splicing , Myeloid Cells/metabolism , Myeloid Cells/cytology
3.
Genome Res ; 31(6): 1069-1081, 2021 06.
Article in English | MEDLINE | ID: mdl-34011578

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is a widely used method for identifying cell types and trajectories in biologically heterogeneous samples, but it is limited in its detection and quantification of lowly expressed genes. This results in missing important biological signals, such as the expression of key transcription factors (TFs) driving cellular differentiation. We show that targeted sequencing of ∼1000 TFs (scCapture-seq) in iPSC-derived neuronal cultures greatly improves the biological information garnered from scRNA-seq. Increased TF resolution enhanced cell type identification, developmental trajectories, and gene regulatory networks. This allowed us to resolve differences among neuronal populations, which were generated in two different laboratories using the same differentiation protocol. ScCapture-seq improved TF-gene regulatory network inference and thus identified divergent patterns of neurogenesis into either excitatory cortical neurons or inhibitory interneurons. Furthermore, scCapture-seq revealed a role for of retinoic acid signaling in the developmental divergence between these different neuronal populations. Our results show that TF targeting improves the characterization of human cellular models and allows identification of the essential differences between cellular populations, which would otherwise be missed in traditional scRNA-seq. scCapture-seq TF targeting represents a cost-effective enhancement of scRNA-seq, which could be broadly applied to improve scRNA-seq resolution.


Subject(s)
Induced Pluripotent Stem Cells , Single-Cell Analysis , Gene Expression Profiling/methods , Gene Regulatory Networks , Humans , Induced Pluripotent Stem Cells/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Nucleic Acids Res ; 50(4): e19, 2022 02 28.
Article in English | MEDLINE | ID: mdl-34850115

ABSTRACT

Accurately quantifying gene and isoform expression changes is essential to understanding cell functions, differentiation and disease. Sequencing full-length native RNAs using long-read direct RNA sequencing (DRS) has the potential to overcome many limitations of short and long-read sequencing methods that require RNA fragmentation, cDNA synthesis or PCR. However, there are a lack of tools specifically designed for DRS and its ability to identify differential expression in complex organisms is poorly characterised. We developed NanoCount for fast, accurate transcript isoform quantification in DRS and demonstrate it outperforms similar methods. Using synthetic controls and human SH-SY5Y cell differentiation into neuron-like cells, we show that DRS accurately quantifies RNA expression and identifies differential expression of genes and isoforms. Differential expression of 231 genes, 333 isoforms, plus 27 isoform switches were detected between undifferentiated and differentiated SH-SY5Y cells and samples clustered by differentiation state at the gene and isoform level. Genes upregulated in neuron-like cells were associated with neurogenesis. NanoCount quantification of thousands of novel isoforms discovered with DRS likewise enabled identification of their differential expression. Our results demonstrate enhanced DRS isoform quantification with NanoCount and establish the ability of DRS to identify biologically relevant differential expression of genes and isoforms.


Subject(s)
Nanopore Sequencing , Nanopores , Gene Expression Profiling/methods , Humans , Protein Isoforms/genetics , RNA/genetics , Sequence Analysis, RNA/methods , Transcriptome
5.
BMC Biol ; 21(1): 186, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37667240

ABSTRACT

BACKGROUND: Studies have shown that paternal stress prior to conception can influence the innate behaviours of their offspring. The evolutionary impacts of such intergenerational effects are therefore of considerable interest. Our group previously showed in a model of daily stress that glucocorticoid treatment of adult male mouse breeders prior to conception leads to increased anxiety-related behaviours in male offspring. Here, we aimed to understand the transgenerational effects of paternal stress exposure on the social behaviour of progeny and its potential influence on reproductive success. RESULTS: We assessed social parameters including social reward, male attractiveness and social dominance, in the offspring (F1) and grand-offspring (F2). We report that paternal corticosterone treatment was associated with increased display of subordination towards other male mice. Those mice were unexpectedly more attractive to female mice while expressing reduced levels of the key rodent pheromone Darcin, contrary to its conventional role in driving female attraction. We investigated the epigenetic regulation of major urinary protein (Mup) expression by performing the first Oxford Nanopore direct methylation of sperm DNA in a mouse model of stress, but found no differences in Mup genes that could be attributed to corticosterone-treatment. Furthermore, no overt differences of the prefrontal cortex transcriptome were found in F1 offspring, implying that peripheral mechanisms are likely contributing to the phenotypic differences. Interestingly, no phenotypic differences were observed in the F2 grand-offspring. CONCLUSIONS: Overall, our findings highlight the potential of moderate paternal stress to affect intergenerational (mal)adaptive responses, informing future studies of adaptiveness in rodents, humans and other species.


Subject(s)
Corticosterone , Epigenesis, Genetic , Adult , Humans , Male , Female , Animals , Mice , Semen , Research Design , Pheromones
6.
Bioinformatics ; 38(15): 3741-3748, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35639973

ABSTRACT

MOTIVATION: Long-read sequencing methods have considerable advantages for characterizing RNA isoforms. Oxford Nanopore sequencing records changes in electrical current when nucleic acid traverses through a pore. However, basecalling of this raw signal (known as a squiggle) is error prone, making it challenging to accurately identify splice junctions. Existing strategies include utilizing matched short-read data and/or annotated splice junctions to correct nanopore reads but add expense or limit junctions to known (incomplete) annotations. Therefore, a method that could accurately identify splice junctions solely from nanopore data would have numerous advantages. RESULTS: We developed 'NanoSplicer' to identify splice junctions using raw nanopore signal (squiggles). For each splice junction, the observed squiggle is compared to candidate squiggles representing potential junctions to identify the correct candidate. Measuring squiggle similarity enables us to compute the probability of each candidate junction and find the most likely one. We tested our method using (i) synthetic mRNAs with known splice junctions and (ii) biological mRNAs from a lung-cancer cell-line. The results from both datasets demonstrate NanoSplicer improves splice junction identification, especially when the basecalling error rate near the splice junction is elevated. AVAILABILITY AND IMPLEMENTATION: NanoSplicer is available at https://github.com/shimlab/NanoSplicer and archived at https://doi.org/10.5281/zenodo.6403849. Data is available from ENA: ERS7273757 and ERS7273453. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Nanopore Sequencing , Nanopores , High-Throughput Nucleotide Sequencing , Probability , Sequence Analysis, DNA , Software
8.
Hum Mutat ; 42(1): 19-24, 2021 01.
Article in English | MEDLINE | ID: mdl-33169436

ABSTRACT

The diagnosis of Mendelian disorders following uninformative exome and genome sequencing remains a challenging and often unmet need. Following uninformative exome and genome sequencing of a family quartet including two siblings with suspected mitochondrial disorder, RNA sequencing (RNAseq) was pursued in one sibling. Long-read amplicon sequencing was used to determine and quantify transcript structure. Immunoblotting studies and quantitative proteomics were performed to demonstrate functional impact. Differential expression analysis of RNAseq data identified significantly decreased expression of the mitochondrial OXPHOS Complex I subunit NDUFB10 associated with a cryptic exon in intron 1 of NDUFB10, that included an in-frame stop codon. The cryptic exon contained a rare intronic variant that was homozygous in both affected siblings. Immunoblot and quantitative proteomic analysis of fibroblasts revealed decreased abundance of Complex I subunits, providing evidence of isolated Complex I deficiency. Through multiomic analysis we present data implicating a deep intronic variant in NDUFB10 as the cause of mitochondrial disease in two individuals, providing further support of the gene-disease association. This study highlights the importance of transcriptomic and proteomic analyses as complementary diagnostic tools in patients undergoing genome-wide diagnostic evaluation.


Subject(s)
Mitochondrial Diseases , NADH Dehydrogenase/genetics , Proteomics , Electron Transport Complex I/genetics , Humans , Introns/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mutation
9.
Rheumatology (Oxford) ; 60(10): 4495-4507, 2021 10 02.
Article in English | MEDLINE | ID: mdl-33493312

ABSTRACT

OBJECTIVES: To assess efficacy, pharmacokinetics (PK) and safety of intravenous (i.v.) golimumab in patients with polyarticular-course JIA (pc-JIA). METHODS: Children aged 2 to <18 years with active pc-JIA despite MTX therapy for ≥2 months received 80 mg/m2 golimumab at weeks 0, 4, then every 8 weeks through week 52 plus MTX weekly through week 28. The primary and major secondary endpoints were PK exposure and model-predicted steady-state area under the curve (AUCss) over an 8-week dosing interval at weeks 28 and 52, respectively. JIA ACR response and safety were also assessed. RESULTS: In total, 127 children were treated with i.v. golimumab. JIA ACR 30, 50, 70, and 90 response rates were 84%, 80%, 70% and 47%, respectively, at week 28 and were maintained through week 52. Golimumab serum concentrations and AUCss were 0.40 µg/ml and 399 µg ⋅ day/ml at week 28. PK exposure was maintained at week 52. Steady-state trough golimumab concentrations and AUCss were consistent across age categories and comparable to i.v. golimumab dosed 2 mg/kg in adults with rheumatoid arthritis. Golimumab antibodies and neutralizing antibodies were detected via a highly sensitive drug-tolerant assay in 31% (39/125) and 19% (24/125) of patients, respectively. Median trough golimumab concentration was lower in antibody-positive vs antibody-negative patients. Serious infections were reported in 6% of patients, including one death due to septic shock. CONCLUSION: Body surface area-based dosing of i.v. golimumab was well tolerated and provided adequate PK exposure for clinical efficacy in paediatric patients with active pc-JIA.ClinicalTrials.gov number NCT02277444.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antirheumatic Agents/administration & dosage , Arthritis, Juvenile/drug therapy , Arthritis/drug therapy , Administration, Intravenous , Adolescent , Child , Child, Preschool , Female , Humans , Male , Treatment Outcome
10.
Mol Psychiatry ; 25(1): 37-47, 2020 01.
Article in English | MEDLINE | ID: mdl-31695164

ABSTRACT

RNA splicing is a key mechanism linking genetic variation with psychiatric disorders. Splicing profiles are particularly diverse in brain and difficult to accurately identify and quantify. We developed a new approach to address this challenge, combining long-range PCR and nanopore sequencing with a novel bioinformatics pipeline. We identify the full-length coding transcripts of CACNA1C in human brain. CACNA1C is a psychiatric risk gene that encodes the voltage-gated calcium channel CaV1.2. We show that CACNA1C's transcript profile is substantially more complex than appreciated, identifying 38 novel exons and 241 novel transcripts. Importantly, many of the novel variants are abundant, and predicted to encode channels with altered function. The splicing profile varies between brain regions, especially in cerebellum. We demonstrate that human transcript diversity (and thereby protein isoform diversity) remains under-characterised, and provide a feasible and cost-effective methodology to address this. A detailed understanding of isoform diversity will be essential for the translation of psychiatric genomic findings into pathophysiological insights and novel psychopharmacological targets.


Subject(s)
Alternative Splicing/genetics , Calcium Channels, L-Type/genetics , Sequence Analysis, DNA/methods , Brain/metabolism , Calcium Channels, L-Type/metabolism , Exons/genetics , Humans , Protein Isoforms/metabolism , RNA Splicing/genetics , RNA, Messenger/metabolism , Risk Factors
11.
Am J Hum Genet ; 101(2): 255-266, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28777932

ABSTRACT

Breast cancer risk is strongly associated with an intergenic region on 11q13. We have previously shown that the strongest risk-associated SNPs fall within a distal enhancer that regulates CCND1. Here, we report that, in addition to regulating CCND1, this enhancer regulates two estrogen-regulated long noncoding RNAs, CUPID1 and CUPID2. We provide evidence that the risk-associated SNPs are associated with reduced chromatin looping between the enhancer and the CUPID1 and CUPID2 bidirectional promoter. We further show that CUPID1 and CUPID2 are predominantly expressed in hormone-receptor-positive breast tumors and play a role in modulating pathway choice for the repair of double-strand breaks. These data reveal a mechanism for the involvement of this region in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Chromosomes, Human, Pair 11/genetics , Cyclin D1/genetics , DNA Repair/genetics , RNA, Long Noncoding/genetics , Cell Line, Tumor , Chromatin/metabolism , DNA Breaks, Double-Stranded , DNA Damage/genetics , Enhancer Elements, Genetic/genetics , Estrogens/metabolism , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease/genetics , Humans , MCF-7 Cells , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , RNA Interference , RNA, Guide, Kinetoplastida/genetics , RNA, Small Interfering/genetics
12.
RNA Biol ; 17(12): 1741-1753, 2020 12.
Article in English | MEDLINE | ID: mdl-32597303

ABSTRACT

RNA-seq is the standard method for profiling gene expression in many biological systems. Due to the wide dynamic range and complex nature of the transcriptome, RNA-seq provides an incomplete characterization, especially of lowly expressed genes and transcripts. Targeted RNA sequencing (RNA CaptureSeq) focuses sequencing on genes of interest, providing exquisite sensitivity for transcript detection and quantification. However, uses of CaptureSeq have focused on bulk samples and its performance on very small populations of cells is unknown. Here we show CaptureSeq greatly enhances transcriptomic profiling of target genes in ultra-low-input samples and provides equivalent performance to that on bulk samples. We validate the performance of CaptureSeq using multiple probe sets on samples of iPSC-derived cortical neurons. We demonstrate up to 275-fold enrichment for target genes, the detection of 10% additional genes and a greater than 5-fold increase in identified gene isoforms. Analysis of spike-in controls demonstrated CaptureSeq improved both detection sensitivity and expression quantification. Comparison to the CORTECON database of cerebral cortex development revealed CaptureSeq enhanced the identification of sample differentiation stage. CaptureSeq provides sensitive, reliable and quantitative expression measurements on hundreds-to-thousands of target genes from ultra-low-input samples and has the potential to greatly enhance transcriptomic profiling when samples are limiting.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Sequence Analysis, RNA , Transcriptome , Cell Differentiation/genetics , Computational Biology/methods , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Neurons/cytology , Neurons/metabolism , Sequence Analysis, RNA/methods , Transcription Factors/metabolism
13.
Genome Res ; 26(5): 705-16, 2016 05.
Article in English | MEDLINE | ID: mdl-27197243

ABSTRACT

Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources.


Subject(s)
Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , Transcriptome , Animals , Mice
14.
Nucleic Acids Res ; 45(D1): D128-D134, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27794554

ABSTRACT

RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/.


Subject(s)
Databases, Nucleic Acid , RNA, Untranslated/chemistry , Animals , Genomics , Humans , Nucleotides/chemistry , Sequence Analysis, RNA , Species Specificity
15.
Genome Res ; 25(2): 290-303, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25561518

ABSTRACT

During the splicing reaction, the 5' intron end is joined to the branchpoint nucleotide, selecting the next exon to incorporate into the mature RNA and forming an intron lariat, which is excised. Despite a critical role in gene splicing, the locations and features of human splicing branchpoints are largely unknown. We use exoribonuclease digestion and targeted RNA-sequencing to enrich for sequences that traverse the lariat junction and, by split and inverted alignment, reveal the branchpoint. We identify 59,359 high-confidence human branchpoints in >10,000 genes, providing a first map of splicing branchpoints in the human genome. Branchpoints are predominantly adenosine, highly conserved, and closely distributed to the 3' splice site. Analysis of human branchpoints reveals numerous novel features, including distinct features of branchpoints for alternatively spliced exons and a family of conserved sequence motifs overlapping branchpoints we term B-boxes, which exhibit maximal nucleotide diversity while maintaining interactions with the keto-rich U2 snRNA. Different B-box motifs exhibit divergent usage in vertebrate lineages and associate with other splicing elements and distinct intron-exon architectures, suggesting integration within a broader regulatory splicing code. Lastly, although branchpoints are refractory to common mutational processes and genetic variation, mutations occurring at branchpoint nucleotides are enriched for disease associations.


Subject(s)
Consensus Sequence , Genomics , Introns , RNA Splicing , Alternative Splicing , Animals , Computational Biology/methods , Evolution, Molecular , Exons , Genetic Variation , Genomics/methods , Humans , Nucleotide Motifs , Position-Specific Scoring Matrices , RNA Splice Sites
16.
Nat Methods ; 12(4): 339-42, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25751143

ABSTRACT

We compared quantitative RT-PCR (qRT-PCR), RNA-seq and capture sequencing (CaptureSeq) in terms of their ability to assemble and quantify long noncoding RNAs and novel coding exons across 20 human tissues. CaptureSeq was superior for the detection and quantification of genes with low expression, showed little technical variation and accurately measured differential expression. This approach expands and refines previous annotations and simultaneously generates an expression atlas.


Subject(s)
Gene Expression Profiling , RNA, Long Noncoding/genetics , RNA/genetics , Sequence Analysis/methods , Humans , K562 Cells , Polymerase Chain Reaction , RNA/blood , RNA/chemistry
17.
Nucleic Acids Res ; 43(Database issue): D168-73, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25332394

ABSTRACT

Despite the prevalence of long noncoding RNA (lncRNA) genes in eukaryotic genomes, only a small proportion have been examined for biological function. lncRNAdb, available at http://lncrnadb.org, provides users with a comprehensive, manually curated reference database of 287 eukaryotic lncRNAs that have been described independently in the scientific literature. In addition to capturing a great proportion of the recent literature describing functions for individual lncRNAs, lncRNAdb now offers an improved user interface enabling greater accessibility to sequence information, expression data and the literature. The new features in lncRNAdb include the integration of Illumina Body Atlas expression profiles, nucleotide sequence information, a BLAST search tool and easy export of content via direct download or a REST API. lncRNAdb is now endorsed by RNAcentral and is in compliance with the International Nucleotide Sequence Database Collaboration.


Subject(s)
Databases, Nucleic Acid , RNA, Long Noncoding/physiology , Base Sequence , Conserved Sequence , Gene Expression , Humans , Internet , Proteins/genetics , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/metabolism , Sequence Alignment
18.
Nucleic Acids Res ; 43(Database issue): D123-9, 2015 01.
Article in English | MEDLINE | ID: mdl-25352543

ABSTRACT

The field of non-coding RNA biology has been hampered by the lack of availability of a comprehensive, up-to-date collection of accessioned RNA sequences. Here we present the first release of RNAcentral, a database that collates and integrates information from an international consortium of established RNA sequence databases. The initial release contains over 8.1 million sequences, including representatives of all major functional classes. A web portal (http://rnacentral.org) provides free access to data, search functionality, cross-references, source code and an integrated genome browser for selected species.


Subject(s)
Databases, Nucleic Acid , RNA, Untranslated/chemistry , Chromosome Mapping , Humans , Internet , RNA, Untranslated/genetics , Sequence Analysis, RNA
19.
Nano Lett ; 16(1): 728-35, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26682931

ABSTRACT

Directed self-assembly (DSA) of block copolymers (BCPs) is an attractive advanced patterning technology being considered for future integrated circuit manufacturing. By controlling interfacial interactions, self-assembled microdomains in thin films of polystyrene-block-poly(methyl methacrylate), PS-b-PMMA, can be oriented perpendicular to surfaces to form line/space or hole patterns. However, its relatively weak Flory interaction parameter, χ, limits its capability to pattern sub-10 nm features. Many BCPs with higher interaction parameters are capable of forming smaller features, but these "high-χ" BCPs typically have an imbalance in surface energy between the respective blocks that make it difficult to achieve the required perpendicular orientation. To address this challenge, we devised a polymeric surface active additive mixed into the BCP solution, referred to as an embedded neutral layer (ENL), which segregates to the top of the BCP film during casting and annealing and balances the surface tensions at the top of the thin film. The additive comprises a second BCP with a "neutral block" designed to provide matched surface tensions with the respective polymers of the main BCP and a "surface anchoring block" with very low surface energy that drives the material to the air interface during spin-casting and annealing. The surface anchoring block allows the film to be annealed above the glass transition temperature of the two materials without intermixing of the two components. DSA was also demonstrated with this embedded neutral top layer formulation on a chemical patterned template using a single step coat and simple thermal annealing. This ENL technology holds promise to enable the use of high-χ BCPs in advanced patterning applications.

20.
Genome Res ; 22(5): 885-98, 2012 May.
Article in English | MEDLINE | ID: mdl-22406755

ABSTRACT

Transcriptomic analyses have identified tens of thousands of intergenic, intronic, and cis-antisense long noncoding RNAs (lncRNAs) that are expressed from mammalian genomes. Despite progress in functional characterization, little is known about the post-transcriptional regulation of lncRNAs and their half-lives. Although many are easily detectable by a variety of techniques, it has been assumed that lncRNAs are generally unstable, but this has not been examined genome-wide. Utilizing a custom noncoding RNA array, we determined the half-lives of ∼800 lncRNAs and ∼12,000 mRNAs in the mouse Neuro-2a cell line. We find only a minority of lncRNAs are unstable. LncRNA half-lives vary over a wide range, comparable to, although on average less than, that of mRNAs, suggestive of complex metabolism and widespread functionality. Combining half-lives with comprehensive lncRNA annotations identified hundreds of unstable (half-life < 2 h) intergenic, cis-antisense, and intronic lncRNAs, as well as lncRNAs showing extreme stability (half-life > 16 h). Analysis of lncRNA features revealed that intergenic and cis-antisense RNAs are more stable than those derived from introns, as are spliced lncRNAs compared to unspliced (single exon) transcripts. Subcellular localization of lncRNAs indicated widespread trafficking to different cellular locations, with nuclear-localized lncRNAs more likely to be unstable. Surprisingly, one of the least stable lncRNAs is the well-characterized paraspeckle RNA Neat1, suggesting Neat1 instability contributes to the dynamic nature of this subnuclear domain. We have created an online interactive resource (http://stability.matticklab.com) that allows easy navigation of lncRNA and mRNA stability profiles and provides a comprehensive annotation of ~7200 mouse lncRNAs.


Subject(s)
Genome , Mice/genetics , RNA Stability , RNA, Untranslated/metabolism , Analysis of Variance , Animals , Cell Line, Tumor , Cluster Analysis , Gene Expression , Half-Life , Humans , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL