Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Cell ; 184(1): 194-206.e14, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33357447

ABSTRACT

Wnts are evolutionarily conserved ligands that signal at short range to regulate morphogenesis, cell fate, and stem cell renewal. The first and essential steps in Wnt secretion are their O-palmitoleation and subsequent loading onto the dedicated transporter Wntless/evenness interrupted (WLS/Evi). We report the 3.2 Å resolution cryogenic electron microscopy (cryo-EM) structure of palmitoleated human WNT8A in complex with WLS. This is accompanied by biochemical experiments to probe the physiological implications of the observed association. The WLS membrane domain has close structural homology to G protein-coupled receptors (GPCRs). A Wnt hairpin inserts into a conserved hydrophobic cavity in the GPCR-like domain, and the palmitoleate protrudes between two helices into the bilayer. A conformational switch of highly conserved residues on a separate Wnt hairpin might contribute to its transfer to receiving cells. This work provides molecular-level insights into a central mechanism in animal body plan development and stem cell biology.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Wnt Proteins/metabolism , Amino Acid Sequence , Animals , Disulfides/metabolism , Glycosylation , Humans , Hydrophobic and Hydrophilic Interactions , Intracellular Signaling Peptides and Proteins/isolation & purification , Models, Molecular , Protein Binding , Protein Domains , Protein Structure, Secondary , Protein Transport , Receptors, G-Protein-Coupled/isolation & purification , Receptors, G-Protein-Coupled/ultrastructure , Structural Homology, Protein , Structure-Activity Relationship , Wnt Proteins/chemistry , Wnt Proteins/isolation & purification , Wnt Proteins/ultrastructure
2.
Cell ; 167(1): 145-157.e17, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27662087

ABSTRACT

The type-1 ryanodine receptor (RyR1) is an intracellular calcium (Ca(2+)) release channel required for skeletal muscle contraction. Here, we present cryo-EM reconstructions of RyR1 in multiple functional states revealing the structural basis of channel gating and ligand-dependent activation. Binding sites for the channel activators Ca(2+), ATP, and caffeine were identified at interdomain interfaces of the C-terminal domain. Either ATP or Ca(2+) alone induces conformational changes in the cytoplasmic assembly ("priming"), without pore dilation. In contrast, in the presence of all three activating ligands, high-resolution reconstructions of open and closed states of RyR1 were obtained from the same sample, enabling analyses of conformational changes associated with gating. Gating involves global conformational changes in the cytosolic assembly accompanied by local changes in the transmembrane domain, which include bending of the S6 transmembrane segment and consequent pore dilation, displacement, and deformation of the S4-S5 linker and conformational changes in the pseudo-voltage-sensor domain.


Subject(s)
Calcium Channel Agonists/chemistry , Ion Channel Gating , Muscle Contraction , Ryanodine Receptor Calcium Release Channel/chemistry , Animals , Binding Sites , Caffeine/chemistry , Calcium/chemistry , Cryoelectron Microscopy , Ligands , Protein Domains , Rabbits , Tacrolimus Binding Proteins/chemistry
3.
Nature ; 629(8011): 481-488, 2024 May.
Article in English | MEDLINE | ID: mdl-38632411

ABSTRACT

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.


Subject(s)
Heterotrimeric GTP-Binding Proteins , Receptors, Calcium-Sensing , Humans , Calcium/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/chemistry , Models, Molecular , Protein Binding , Protein Multimerization , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/chemistry , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/metabolism , Binding Sites , Protein Structure, Secondary , Substrate Specificity
4.
Nature ; 629(8012): 704-709, 2024 May.
Article in English | MEDLINE | ID: mdl-38693257

ABSTRACT

Choline is an essential nutrient that the human body needs in vast quantities for cell membrane synthesis, epigenetic modification and neurotransmission. The brain has a particularly high demand for choline, but how it enters the brain remains unknown1-3. The major facilitator superfamily transporter FLVCR1 (also known as MFSD7B or SLC49A1) was recently determined to be a choline transporter but is not highly expressed at the blood-brain barrier, whereas the related protein FLVCR2 (also known as MFSD7C or SLC49A2) is expressed in endothelial cells at the blood-brain barrier4-7. Previous studies have shown that mutations in human Flvcr2 cause cerebral vascular abnormalities, hydrocephalus and embryonic lethality, but the physiological role of FLVCR2 is unknown4,5. Here we demonstrate both in vivo and in vitro that FLVCR2 is a BBB choline transporter and is responsible for the majority of choline uptake into the brain. We also determine the structures of choline-bound FLVCR2 in both inward-facing and outward-facing states using cryo-electron microscopy. These results reveal how the brain obtains choline and provide molecular-level insights into how FLVCR2 binds choline in an aromatic cage and mediates its uptake. Our work could provide a novel framework for the targeted delivery of therapeutic agents into the brain.


Subject(s)
Brain , Choline , Membrane Transport Proteins , Animals , Female , Humans , Male , Mice , Middle Aged , Biological Transport , Blood-Brain Barrier/metabolism , Brain/metabolism , Choline/metabolism , Cryoelectron Microscopy , In Vitro Techniques , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/ultrastructure , Models, Molecular
5.
Mol Cell ; 81(14): 2929-2943.e6, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34166608

ABSTRACT

The HCN1-4 channel family is responsible for the hyperpolarization-activated cation current If/Ih that controls automaticity in cardiac and neuronal pacemaker cells. We present cryoelectron microscopy (cryo-EM) structures of HCN4 in the presence or absence of bound cAMP, displaying the pore domain in closed and open conformations. Analysis of cAMP-bound and -unbound structures sheds light on how ligand-induced transitions in the channel cytosolic portion mediate the effect of cAMP on channel gating and highlights the regulatory role of a Mg2+ coordination site formed between the C-linker and the S4-S5 linker. Comparison of open/closed pore states shows that the cytosolic gate opens through concerted movements of the S5 and S6 transmembrane helices. Furthermore, in combination with molecular dynamics analyses, the open pore structures provide insights into the mechanisms of K+/Na+ permeation. Our results contribute mechanistic understanding on HCN channel gating, cyclic nucleotide-dependent modulation, and ion permeation.


Subject(s)
Cell Membrane Permeability/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ion Channel Gating/physiology , Ions/metabolism , Muscle Proteins/metabolism , Potassium Channels/metabolism , Cell Line , Cryoelectron Microscopy/methods , Cyclic AMP/metabolism , HEK293 Cells , Humans
6.
Nature ; 604(7905): 371-376, 2022 04.
Article in English | MEDLINE | ID: mdl-35388216

ABSTRACT

The outer membrane of Gram-negative bacteria has an external leaflet that is largely composed of lipopolysaccharide, which provides a selective permeation barrier, particularly against antimicrobials1. The final and crucial step in the biosynthesis of lipopolysaccharide is the addition of a species-dependent O-antigen to the lipid A core oligosaccharide, which is catalysed by the O-antigen ligase WaaL2. Here we present structures of WaaL from Cupriavidus metallidurans, both in the apo state and in complex with its lipid carrier undecaprenyl pyrophosphate, determined by single-particle cryo-electron microscopy. The structures reveal that WaaL comprises 12 transmembrane helices and a predominantly α-helical periplasmic region, which we show contains many of the conserved residues that are required for catalysis. We observe a conserved fold within the GT-C family of glycosyltransferases and hypothesize that they have a common mechanism for shuttling the undecaprenyl-based carrier to and from the active site. The structures, combined with genetic, biochemical, bioinformatics and molecular dynamics simulation experiments, offer molecular details on how the ligands come in apposition, and allows us to propose a mechanistic model for catalysis. Together, our work provides a structural basis for lipopolysaccharide maturation in a member of the GT-C superfamily of glycosyltransferases.


Subject(s)
Ligases , Lipopolysaccharides , O Antigens , Bacterial Proteins/chemistry , Carbon-Oxygen Ligases/chemistry , Carbon-Oxygen Ligases/genetics , Cryoelectron Microscopy , Glycosyltransferases , Gram-Negative Bacteria , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism
7.
Mol Cell ; 78(4): 683-699.e11, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32386575

ABSTRACT

Mycobacterium tuberculosis causes tuberculosis, a disease that kills over 1 million people each year. Its cell envelope is a common antibiotic target and has a unique structure due, in part, to two lipidated polysaccharides-arabinogalactan and lipoarabinomannan. Arabinofuranosyltransferase D (AftD) is an essential enzyme involved in assembling these glycolipids. We present the 2.9-Å resolution structure of M. abscessus AftD, determined by single-particle cryo-electron microscopy. AftD has a conserved GT-C glycosyltransferase fold and three carbohydrate-binding modules. Glycan array analysis shows that AftD binds complex arabinose glycans. Additionally, AftD is non-covalently complexed with an acyl carrier protein (ACP). 3.4- and 3.5-Å structures of a mutant with impaired ACP binding reveal a conformational change, suggesting that ACP may regulate AftD function. Mutagenesis experiments using a conditional knockout constructed in M. smegmatis confirm the essentiality of the putative active site and the ACP binding for AftD function.


Subject(s)
Acyl Carrier Protein/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Cryoelectron Microscopy/methods , Glycosyltransferases/metabolism , Mycobacterium smegmatis/enzymology , Acyl Carrier Protein/genetics , Bacterial Proteins/genetics , Catalytic Domain , Cell Wall/metabolism , Galactans/metabolism , Glycosyltransferases/genetics , Lipopolysaccharides/metabolism , Mutation , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Phylogeny , Protein Conformation , Substrate Specificity
8.
Nature ; 595(7866): 315-319, 2021 07.
Article in English | MEDLINE | ID: mdl-34135507

ABSTRACT

Docosahexaenoic acid is an omega-3 fatty acid that is essential for neurological development and function, and it is supplied to the brain and eyes predominantly from dietary sources1-6. This nutrient is transported across the blood-brain and blood-retina barriers in the form of lysophosphatidylcholine by major facilitator superfamily domain containing 2A (MFSD2A) in a Na+-dependent manner7,8. Here we present the structure of MFSD2A determined using single-particle cryo-electron microscopy, which reveals twelve transmembrane helices that are separated into two pseudosymmetric domains. The transporter is in an inward-facing conformation and features a large amphipathic cavity that contains the Na+-binding site and a bound lysolipid substrate, which we confirmed using native mass spectrometry. Together with our functional analyses and molecular dynamics simulations, this structure reveals details of how MFSD2A interacts with substrates and how Na+-dependent conformational changes allow for the release of these substrates into the membrane through a lateral gate. Our work provides insights into the molecular mechanism by which this atypical major facility superfamily transporter mediates the uptake of lysolipids into the brain, and has the potential to aid in the delivery of neurotherapeutic agents.


Subject(s)
Biological Transport , Blood-Brain Barrier/metabolism , Cryoelectron Microscopy , Fatty Acids, Omega-3/metabolism , Symporters/chemistry , Symporters/metabolism , Animals , Binding Sites , Chickens , Fatty Acids, Omega-3/chemistry , Mass Spectrometry , Models, Molecular , Molecular Dynamics Simulation , Protein Domains , Sodium/metabolism , Symporters/ultrastructure
9.
Proc Natl Acad Sci U S A ; 121(27): e2402259121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917012

ABSTRACT

HCN1-4 channels are the molecular determinants of the If/Ih current that crucially regulates cardiac and neuronal cell excitability. HCN dysfunctions lead to sinoatrial block (HCN4), epilepsy (HCN1), and chronic pain (HCN2), widespread medical conditions awaiting subtype-specific treatments. Here, we address the problem by solving the cryo-EM structure of HCN4 in complex with ivabradine, to date the only HCN-specific drug on the market. Our data show ivabradine bound inside the open pore at 3 Å resolution. The structure unambiguously proves that Y507 and I511 on S6 are the molecular determinants of ivabradine binding to the inner cavity, while F510, pointing outside the pore, indirectly contributes to the block by controlling Y507. Cysteine 479, unique to the HCN selectivity filter (SF), accelerates the kinetics of block. Molecular dynamics simulations further reveal that ivabradine blocks the permeating ion inside the SF by electrostatic repulsion, a mechanism previously proposed for quaternary ammonium ions.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ivabradine , Molecular Dynamics Simulation , Ivabradine/chemistry , Ivabradine/pharmacology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Humans , Cryoelectron Microscopy , Animals , Potassium Channels/chemistry , Potassium Channels/metabolism , Muscle Proteins/chemistry , Muscle Proteins/metabolism
10.
EMBO J ; 41(17): e108368, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35801308

ABSTRACT

The evolutionary benefit accounting for widespread conservation of oligomeric structures in proteins lacking evidence of intersubunit cooperativity remains unclear. Here, crystal and cryo-EM structures, and enzymological data, demonstrate that a conserved tetramer interface maintains the active-site structure in one such class of proteins, the short-chain dehydrogenase/reductase (SDR) superfamily. Phylogenetic comparisons support a significantly longer polypeptide being required to maintain an equivalent active-site structure in the context of a single subunit. Oligomerization therefore enhances evolutionary fitness by reducing the metabolic cost of enzyme biosynthesis. The large surface area of the structure-stabilizing oligomeric interface yields a synergistic gain in fitness by increasing tolerance to activity-enhancing yet destabilizing mutations. We demonstrate that two paralogous SDR superfamily enzymes with different specificities can form mixed heterotetramers that combine their individual enzymological properties. This suggests that oligomerization can also diversify the functions generated by a given metabolic investment, enhancing the fitness advantage provided by this architectural strategy.


Subject(s)
Biological Evolution , Oxidoreductases , Amino Acid Sequence , Catalytic Domain , Oxidoreductases/metabolism , Phylogeny
12.
Nature ; 584(7820): 304-309, 2020 08.
Article in English | MEDLINE | ID: mdl-32581365

ABSTRACT

The human GABAB receptor-a member of the class C family of G-protein-coupled receptors (GPCRs)-mediates inhibitory neurotransmission and has been implicated in epilepsy, pain and addiction1. A unique GPCR that is known to require heterodimerization for function2-6, the GABAB receptor has two subunits, GABAB1 and GABAB2, that are structurally homologous but perform distinct and complementary functions. GABAB1 recognizes orthosteric ligands7,8, while GABAB2 couples with G proteins9-14. Each subunit is characterized by an extracellular Venus flytrap (VFT) module, a descending peptide linker, a seven-helix transmembrane domain and a cytoplasmic tail15. Although the VFT heterodimer structure has been resolved16, the structure of the full-length receptor and its transmembrane signalling mechanism remain unknown. Here we present a near full-length structure of the GABAB receptor, captured in an inactive state by cryo-electron microscopy. Our structure reveals several ligands that preassociate with the receptor, including two large endogenous phospholipids that are embedded within the transmembrane domains to maintain receptor integrity and modulate receptor function. We also identify a previously unknown heterodimer interface between transmembrane helices 3 and 5 of both subunits, which serves as a signature of the inactive conformation. A unique 'intersubunit latch' within this transmembrane interface maintains the inactive state, and its disruption leads to constitutive receptor activity.


Subject(s)
Cryoelectron Microscopy , Receptors, GABA-B/chemistry , Receptors, GABA-B/ultrastructure , Calcium/metabolism , Ethanolamines/chemistry , Ethanolamines/metabolism , Humans , Ligands , Models, Molecular , Phosphorylcholine/chemistry , Phosphorylcholine/metabolism , Protein Domains , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Receptors, GABA-B/metabolism , Structure-Activity Relationship
13.
Proc Natl Acad Sci U S A ; 120(1): e2218630120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574673

ABSTRACT

A family of leucine-rich-repeat-containing G-protein-coupled receptors (LGRs) mediate diverse physiological responses when complexed with their cognate ligands. LGRs are present in all metazoan animals. In humans, the LGR ligands include glycoprotein hormones (GPHs) chorionic gonadotropin (hCG), luteinizing hormone, follicle-stimulating hormone (hFSH), and thyroid-stimulating hormone (hTSH). These hormones are αß heterodimers of cystine-knot protein chains. LGRs and their ligand chains have coevolved. Ancestral hormone homologs, present in both bilaterian animals and chordates, are identified as α2ß5. We have used single-wavelength anomalous diffraction and molecular replacement to determine structures of the α2ß5 hormone from Caenorhabditis elegans (Ceα2ß5). Ceα2ß5 is unglycosylated, as are many other α2ß5 hormones. Both Hsα2ß5, the human homolog of Ceα2ß5, and hTSH activate the same receptor (hTSHR). Despite having little sequence similarity to vertebrate GPHs, apart from the cysteine patterns from core disulfide bridges, Ceα2ß5 is generally similar in structure to these counterparts; however, its α2 and ß5 subunits are more symmetric as compared with α and ß of hCG and hFSH. This quasisymmetry suggests a hypothetical homodimeric antecedent of the α2ß5 and αß heterodimers. Known structures together with AlphaFold models from the sequences for other LGR ligands provide representatives for the molecular evolution of LGR ligands from early metazoans through the present-day GPHs. The experimental Ceα2ß5 structure validates its AlphaFold model, and thus also that for Hsα2ß5; and interfacial characteristics in a model for the Hsα2ß5:hTSHR complex are similar to those found in an experimental hTSH:hTSHR structure.


Subject(s)
Caenorhabditis elegans , Glycoproteins , Hormones , Receptors, G-Protein-Coupled , Animals , Amino Acid Sequence , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Ligands , Receptors, G-Protein-Coupled/genetics
14.
Cell ; 141(6): 1018-29, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20564790

ABSTRACT

Potassium channels embedded in cell membranes employ gates to regulate K+ current. While a specific constriction in the permeation pathway has historically been implicated in gating, recent reports suggest that the signature ion selectivity filter located in the outer membrane leaflet may be equally important. Inwardly rectifying K+ channels also control the directionality of flow, using intracellular polyamines to stem ion efflux by a valve-like action. This study presents crystallographic evidence of interdependent gates in the conduction pathway and reveals the mechanism of polyamine block. Reorientation of the intracellular domains, concomitant with activation, instigates polyamine release from intracellular binding sites to block the permeation pathway. Conformational adjustments of the slide helices, achieved by rotation of the cytoplasmic assembly relative to the pore, are directly correlated to the ion configuration in the selectivity filter. Ion redistribution occurs irrespective of the constriction, suggesting a more expansive role of the selectivity filter in gating than previously appreciated.


Subject(s)
Bacterial Proteins/chemistry , Magnetospirillum/chemistry , Receptors, KIR/chemistry , Amino Acid Sequence , Bacterial Proteins/isolation & purification , Binding Sites , Crystallography, X-Ray , Escherichia coli/genetics , Models, Molecular , Molecular Sequence Data , Phospholipids/chemistry , Polyamines/chemistry , Protein Conformation , Receptors, KIR/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment
15.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33926963

ABSTRACT

Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-Å resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Membrane Proteins/genetics , Plant Leaves/genetics , Plant Stomata/genetics , Abscisic Acid/metabolism , Anions/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/ultrastructure , Brachypodium/genetics , Brachypodium/ultrastructure , Carbon Dioxide/metabolism , Cryoelectron Microscopy , Ion Transport/genetics , Membrane Proteins/ultrastructure , Phosphorylation/genetics , Plant Leaves/ultrastructure , Plant Stomata/ultrastructure , Protein Conformation , Signal Transduction/genetics
16.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34916296

ABSTRACT

The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.


Subject(s)
Calcium/metabolism , Gene Expression Regulation/physiology , Homeostasis/physiology , Receptors, Calcium-Sensing/metabolism , Cryoelectron Microscopy , HEK293 Cells , Humans , Models, Molecular , Protein Conformation , Protein Domains , Receptors, Calcium-Sensing/genetics , Signal Transduction
17.
Proc Natl Acad Sci U S A ; 116(10): 4238-4243, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30770441

ABSTRACT

Trimeric intracellular cation (TRIC) channels are thought to provide counter-ion currents that facilitate the active release of Ca2+ from intracellular stores. TRIC activity is controlled by voltage and Ca2+ modulation, but underlying mechanisms have remained unknown. Here we describe high-resolution crystal structures of vertebrate TRIC-A and TRIC-B channels, both in Ca2+-bound and Ca2+-free states, and we analyze conductance properties in structure-inspired mutagenesis experiments. The TRIC channels are symmetric trimers, wherein we find a pore in each protomer that is gated by a highly conserved lysine residue. In the resting state, Ca2+ binding at the luminal surface of TRIC-A, on its threefold axis, stabilizes lysine blockage of the pores. During active Ca2+ release, luminal Ca2+ depletion removes inhibition to permit the lysine-bearing and voltage-sensing helix to move in response to consequent membrane hyperpolarization. Diacylglycerol is found at interprotomer interfaces, suggesting a role in metabolic control.


Subject(s)
Calcium/metabolism , Cations/metabolism , Cytoplasm/metabolism , Ion Channels/chemistry , Ion Channels/metabolism , Animals , Calcium Signaling/physiology , Crystallography, X-Ray , Models, Molecular , Mutagenesis , Protein Conformation , Sequence Analysis, Protein
18.
Int J Mol Sci ; 23(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36362390

ABSTRACT

The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted protein (referred to as colloid), comprised nearly exclusively of thyroglobulin with a half-life ranging from days to weeks. At the cellular boundary of the follicle lumen, secreted thyroglobulin becomes iodinated, resulting from the coordinated activities of enzymes localized to the thyrocyte apical plasma membrane. Thyroglobulin appearance in evolution is essentially synchronous with the appearance of the follicular architecture of the vertebrate thyroid gland. Thyroglobulin is the most highly expressed thyroid gene and represents the most abundantly expressed thyroid protein. Wildtype thyroglobulin protein is a large and complex glycoprotein that folds in the endoplasmic reticulum, leading to homodimerization and export via the classical secretory pathway to the follicle lumen. However, of the hundreds of human thyroglobulin genetic variants, most exhibit increased susceptibility to misfolding with defective export from the endoplasmic reticulum, triggering hypothyroidism as well as thyroidal endoplasmic reticulum stress. The human disease of hypothyroidism with defective thyroglobulin (either homozygous, or compound heterozygous) can be experimentally modeled in thyrocyte cell culture, or in whole animals, such as mice that are readily amenable to genetic manipulation. From a combination of approaches, it can be demonstrated that in the setting of thyroglobulin misfolding, thyrocytes under chronic continuous ER stress exhibit increased susceptibility to cell death, with interesting cell biological and pathophysiological consequences.


Subject(s)
Hypothyroidism , Thyroid Epithelial Cells , Mice , Humans , Animals , Thyroglobulin/metabolism , Hypothyroidism/metabolism , Thyroid Epithelial Cells/metabolism , Endoplasmic Reticulum/metabolism , Proteins/metabolism
19.
Nature ; 517(7532): 44-9, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25470061

ABSTRACT

Ryanodine receptors (RyRs) mediate the rapid release of calcium (Ca(2+)) from intracellular stores into the cytosol, which is essential for numerous cellular functions including excitation-contraction coupling in muscle. Lack of sufficient structural detail has impeded understanding of RyR gating and regulation. Here we report the closed-state structure of the 2.3-megadalton complex of the rabbit skeletal muscle type 1 RyR (RyR1), solved by single-particle electron cryomicroscopy at an overall resolution of 4.8 Å. We fitted a polyalanine-level model to all 3,757 ordered residues in each protomer, defining the transmembrane pore in unprecedented detail and placing all cytosolic domains as tertiary folds. The cytosolic assembly is built on an extended α-solenoid scaffold connecting key regulatory domains to the pore. The RyR1 pore architecture places it in the six-transmembrane ion channel superfamily. A unique domain inserted between the second and third transmembrane helices interacts intimately with paired EF-hands originating from the α-solenoid scaffold, suggesting a mechanism for channel gating by Ca(2+).


Subject(s)
Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/ultrastructure , Animals , Calcium/deficiency , Calcium/metabolism , Calcium/pharmacology , Cell Membrane/metabolism , Cryoelectron Microscopy , Cytosol/metabolism , Ion Channel Gating/drug effects , Muscle, Skeletal/chemistry , Protein Structure, Tertiary , Rabbits , Ryanodine Receptor Calcium Release Channel/metabolism , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism
20.
Proc Natl Acad Sci U S A ; 115(8): E1789-E1798, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29432144

ABSTRACT

Single-channel recordings are widely used to explore functional properties of ion channels. Typically, such recordings are performed at bandwidths of less than 10 kHz because of signal-to-noise considerations, limiting the temporal resolution available for studying fast gating dynamics to greater than 100 µs. Here we present experimental methods that directly integrate suspended lipid bilayers with high-bandwidth, low-noise transimpedance amplifiers based on complementary metal-oxide-semiconductor (CMOS) integrated circuits (IC) technology to achieve bandwidths in excess of 500 kHz and microsecond temporal resolution. We use this CMOS-integrated bilayer system to study the type 1 ryanodine receptor (RyR1), a Ca2+-activated intracellular Ca2+-release channel located on the sarcoplasmic reticulum. We are able to distinguish multiple closed states not evident with lower bandwidth recordings, suggesting the presence of an additional Ca2+ binding site, distinct from the site responsible for activation. An extended beta distribution analysis of our high-bandwidth data can be used to infer closed state flicker events as fast as 35 ns. These events are in the range of single-file ion translocations.


Subject(s)
Lipid Bilayers/chemistry , Ryanodine Receptor Calcium Release Channel/chemistry , Semiconductors , Calcium Signaling , Cell Membrane , Electrochemical Techniques , Ion Channel Gating , Metals/chemistry , Oxides/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL