Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Chemistry ; 30(28): e202400308, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38488326

ABSTRACT

Cyclic peptides are increasingly important structures in drugs but their development can be impeded by difficulties associated with their synthesis. Here, we introduce the 3-aminoazetidine (3-AAz) subunit as a new turn-inducing element for the efficient synthesis of small head-to-tail cyclic peptides. Greatly improved cyclizations of tetra-, penta- and hexapeptides (28 examples) under standard reaction conditions are achieved by introduction of this element within the linear peptide precursor. Post-cyclization deprotection of the amino acid side chains with strong acid is realized without degradation of the strained four-membered azetidine. A special feature of this chemistry is that further late-stage modification of the resultant macrocyclic peptides can be achieved via the 3-AAz unit. This is done by: (i) chemoselective deprotection and substitution at the azetidine nitrogen, or by (ii) a click-based approach employing a 2-propynyl carbamate on the azetidine nitrogen. In this way, a range of dye and biotin tagged macrocycles are readily produced. Structural insights gained by XRD analysis of a cyclic tetrapeptide indicate that the azetidine ring encourages access to the less stable, all-trans conformation. Moreover, introduction of a 3-AAz into a representative cyclohexapeptide improves stability towards proteases compared to the homodetic macrocycle.


Subject(s)
Azetidines , Peptides, Cyclic , Azetidines/chemistry , Azetidines/chemical synthesis , Cyclization , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Click Chemistry
2.
J Org Chem ; 89(4): 2759-2763, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38308650

ABSTRACT

On the basis of steric hindrance, one carbonyl group in a diketone can be reduced in a regioselective manner, with high enantioselectivity. The methodology can be extended to ketones with varied length of hydrocarbon chain spacing, and the products can be converted by oxidation to hydroxy esters or lactones without loss of enantiopurity.

3.
Org Biomol Chem ; 22(3): 590-605, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38131271

ABSTRACT

Biphenyl-fused-dioxacyclodecynes are a promising class of strained alkyne for use in Cu-free 'click' reactions. In this paper, a series of functionalised derivatives of this class of reagent, containing fluorescent groups, are described. Studies aimed at understanding and increasing the reactivity of the alkynes are also presented, together with an investigation of the bioconjugation of the reagents with an azide-labelled protein.

4.
J Org Chem ; 88(1): 684-689, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36484714

ABSTRACT

An efficient methodology for the synthesis of benzofuropyridines and dibenzofurans from fluoropyridines or fluoroarenes and 2-bromophenyl acetates is reported. This streamlined one-pot procedure consists of a four-step directed ortho-lithiation, zincation, Negishi cross-coupling, and intramolecular nucleophilic aromatic substitution, allowing for the facile assembly of a diverse set of fused benzofuro heterocycles.


Subject(s)
Dibenzofurans
5.
Inorg Chem ; 62(39): 16101-16113, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37721399

ABSTRACT

In this study, we report the synthesis and characterization of some heteroleptic Cr(III) complexes of the form [Cr(Phen)2L](OTf)3, where Phen = 1,10-phenanthroline and L is either 2,2'-bipyridine (bpy) or its derivatives, such as 4,4'-dimethyl-2,2'-bipyridine (4,4'-DMB), 4,4'-dimethoxy-2,2'-bipyridine (4,4'-DMOB), 4,4'-ditert-butyl-2,2'-bipyridine (4,4'-dtbpy), 5,5'-dimethyl-2,2'-bipyridine (5,5'-DMB), 4,4'-dimethoxycarbonyl-2,2'-bipyridine (4,4'-dmcbpy) or 1,10-phenanthroline derivatives, such as 5-methyl-1,10-phenanthroline (5-Me-Phen) and 4,7-dimethyl-1,10-phenanthroline (4,7-DMP). Heteroleptic complexes were prepared in two stages via the intermediate [Cr(Phen)2(CF3SO3)2](CF3SO3) and five examples have been crystallographically characterized. Steady-state absorption and luminescence emission characteristics of these complexes were measured in 1 M HCl solutions. The luminescence quantum yield of these complexes was found to be the lowest for [Cr(Phen)2(4,4'-dmcbpy)](OTf)3 and the highest for [Cr(Phen)2(4,4'-DMB)](OTf)3 with values of 0.31 × 10-2 and 1.48 × 10-2, respectively. The calculated excited state energy, E0-0, was found to vary within the narrow range of 163.1-165.0 kJ mol-1 across the series. Transient absorption spectra in degassed, air-equilibrated, and oxygen-saturated 1 M HCl aqueous solutions were also measured at different time decays and demonstrated no significant differences, indicating the absence of any ion-separated species in the excited state. Excited-state decay traces at the wavelength of maximum absorption were used to calculate oxygen quenching rate constants, kq, which were found to be in the range 3.26-5.27 × 107 M-1 s-1. Singlet oxygen luminescence photosensitized by these complexes was observed in D2O, and its luminescence intensity at 1270 nm was used for the determination of singlet oxygen quantum yields for these complexes, which were in the range of 0.20-0.44, while the fraction of the excited 2E state quenched by oxygen was in the range of 0.22-0.68, and the efficiency of singlet oxygen production was in the range of 0.44-0.90. The mechanism by which the excited 2E state is quenched by oxygen is explained by a spin statistical model that predicts the balance between charge transfer and noncharge transfer deactivation pathways, which was represented by the parameter pCT that was found to vary from 0.35 to 0.68 for this series of Cr(III) complexes.

6.
Inorg Chem ; 61(46): 18536-18544, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36354759

ABSTRACT

CO2 epoxidation to cyclic carbonates under mild, solvent-free conditions is a promising pathway toward sustainable CO2 utilization. Metal-organic frameworks (MOFs) explored for such applications so far are commonly composed of nonrenewable ligands such as benzene dicarboxylate (BDC) or synthetically complex linkers and therefore are not suitable for commercial utilization. Here, we report new yttrium 2,5-furandicarboxylate (FDC)-based MOFs: "UOW-1" and "UOW-2" synthesized via solvothermal assembly, with the former having a unique structural topology. The FDC linker can be derived from biomass and is a green and sustainable alternative to conventionally used BDC ligands, which are sourced exclusively from fossil fuels. UOW-1, owing to unique coordination unsaturation and a high density of Lewis active sites, promotes a high catalytic activity (∼100% conversion; ∼99% selectivity), a high turnover frequency (70 h-1), and favorable first-order kinetics for CO2 epoxidation reactions using an epichlorohydrin model substrate under solvent-free conditions within 6 h and a minimal cocatalyst amount. A systematic catalytic study was carried out by broadening the epoxide substrate scope to determine the influence of electronic and steric factors on CO2 epoxidation. Accordingly, higher conversion efficiencies were observed for substrates with high electrophilicity on the carbon center and minimal steric bulk. The work presents the first demonstration of sustainable FDC-based MOFs used for efficient CO2 utilization.

7.
Molecules ; 27(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364075

ABSTRACT

Rollover cyclometalated complexes constitute a family of derivatives which differ from classical cyclometalated species in certain aspects. Various potential application fields have been developed for both classes of compounds, which have both similarities and differences. In order to uncover the relationships and distinctions between these two families of compounds, four Pt(II) cyclometalated complexes derived from 2-phenylpyridine (ppy) and 2,2'-bipyridine (bpy), assumed as prototypical ligands, were compared. For this study, an electron rich isostructural and isoelectronic pair of compounds, [Pt(N^C)Me(PPh3)], and an electron-poorer compound, [Pt(N^C)Cl(PPh3)] were chosen (N^C = ppy or bpy). DFT calculations, cyclic voltammetry, and UV-Vis spectra also helped to shed light into these species. Due to the presence of the more electronegative nitrogen in place of a C-H group, the rollover bpy-H ligand becomes a slightly weaker donor than the classical ppy-H ligand, and hence, generates (slightly) more stable cyclometalated complexes, lower energy frontier molecular orbitals, and electron-poorer platinum centers. On the whole, it was revealed that classical and rollover complexes have overall structural similarity, which contrasts to their somewhat different chemical behavior.


Subject(s)
Electrons , Platinum , Ligands , Crystallography, X-Ray , Platinum/chemistry , Nitrogen
8.
Chemistry ; 27(41): 10711-10716, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34046954

ABSTRACT

Photoactivatable agents offer the prospect of highly selective cancer therapy with low side effects and novel mechanisms of action that can combat current drug resistance. 1,8-Naphthalimides with their extended π system can behave as light-harvesting groups, fluorescent probes and DNA intercalators. We conjugated N-(carboxymethyl)-1,8-naphthalimide (gly-R-Nap) with an R substituent on the naphthyl group to photoactive diazido PtIV complexes to form t,t,t-[Pt(py)2 (N3 )2 (OH)(gly-R-Nap)], R=H (1), 3-NO2 (2) or 4-NMe2 (3). They show enhanced photo-oxidation, cellular accumulation and promising photo-cytotoxicity in human A2780 ovarian, A549 lung and PC3 prostate cancer cells with visible light activation, and low dark cytotoxicity. Complexes 1 and 2 exhibit pre-intercalation into DNA, resulting in enhanced photo-induced DNA crosslinking. Complex 3 has a red-shifted absorption band at 450 nm, allowing photoactivation and photo-cytotoxicity with green light.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Antineoplastic Agents/pharmacology , Cell Line, Tumor , DNA , Female , Humans , Light , Organoplatinum Compounds , Platinum
9.
J Org Chem ; 86(13): 8786-8796, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34156248

ABSTRACT

exo-Methylene-ß-lactams were synthesized in two steps from commercially available 3-bromo-2-(bromomethyl)propionic acid and reacted with arene diazonium salts in a Heck-type arylation in the presence of catalytic amounts of Pd(OAc)2 under ligand-free conditions. The products, arylidene-ß-lactams, were obtained in high yields as single isomers. The ß-hydride elimination step of the Pd-catalyzed coupling reaction proceeds with high exo-regioselectivity and E-stereoselectivity. With aryl iodides, triflates, or bromides, the coupling products were isolated only in low yields, due to extensive decomposition of the starting material at elevated temperatures. This underlines that arene diazonium salts can be superior arylating reagents in Heck-type reactions and yield coupling products in synthetically useful yields and selectivities when conventional conditions fail.


Subject(s)
beta-Lactams , Catalysis , Ligands
10.
Angew Chem Int Ed Engl ; 60(12): 6462-6472, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33590607

ABSTRACT

Most metallodrugs are prodrugs that can undergo ligand exchange and redox reactions in biological media. Here we have investigated the cellular stability of the anticancer complex [OsII [(η6 -p-cymene)(RR/SS-MePh-DPEN)] [1] (MePh-DPEN=tosyl-diphenylethylenediamine) which catalyses the enantioselective reduction of pyruvate to lactate in cells. The introduction of a bromide tag at an unreactive site on a phenyl substituent of Ph-DPEN allowed us to probe the fate of this ligand and Os in human cancer cells by a combination of X-ray fluorescence (XRF) elemental mapping and inductively coupled plasma-mass spectrometry (ICP-MS). The BrPh-DPEN ligand is readily displaced by reaction with endogenous thiols and translocated to the nucleus, whereas the Os fragment is exported from the cells. These data explain why the efficiency of catalysis is low, and suggests that it could be optimised by developing thiol resistant analogues. Moreover, this work also provides a new way for the delivery of ligands which are inactive when administered on their own.


Subject(s)
Antineoplastic Agents/chemistry , Metal-Organic Frameworks/chemistry , Osmium/chemistry , Antineoplastic Agents/pharmacology , Catalysis , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Hydrogenation , Metal-Organic Frameworks/pharmacology , Molecular Conformation , Osmium/pharmacology
11.
J Org Chem ; 85(17): 11309-11330, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32786626

ABSTRACT

A series of α-amino ketones were reduced using asymmetric transfer hydrogenation (ATH) through a dynamic kinetic resolution (DKR). The protecting group was matched to the reducing agent, and following optimization, a series of substrates were investigated, giving products in high diastereoselectivity, over 99% ee in several cases and full conversion. The methodology was applied to the enantioselective synthesis of an MDM2-p53 inhibitor precursor.

12.
Org Biomol Chem ; 18(28): 5400-5405, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32618315

ABSTRACT

The synthesis and use of oxetane modified dipeptide building blocks in solution and solid-phase peptide synthesis (SPPS) is reported. The preparation of building blocks containing non-glycine residues at the N-terminus in a stereochemically controlled manner is challenging. Here, a practical 4-step route to such building blocks is demonstrated, through the synthesis of dipeptides containing contiguous alanine residues. The incorporation of these new derivatives at specific sites along the backbone of an alanine-rich peptide sequence containing eighteen amino acids is demonstrated via solid-phase peptide synthesis. Additionally, new methods to enable the incorporation of all 20 of the proteinogenic amino acids into such dipeptide building blocks are reported through modifications of the synthetic route (for Cys and Met) and by changes to the protecting group strategy (for His, Ser and Thr).


Subject(s)
Dipeptides/antagonists & inhibitors , Dipeptides/chemical synthesis , Drug Development , Ethers, Cyclic/pharmacology , Solid-Phase Synthesis Techniques , Dipeptides/chemistry , Ethers, Cyclic/chemical synthesis , Ethers, Cyclic/chemistry , Molecular Structure
13.
Org Biomol Chem ; 18(20): 3893-3897, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32392272

ABSTRACT

A synthesis of unprecedented and stable glycosyl sulfoximines is reported. The developed strategies represent the first example of highly stereoselective sulfoximine formation directly from thioglycosides. This synthetic protocol has been tested on several ß-thioglycosides bearing different aromatics and alkyls as S-substituents, and bearing glucose, mannose and galactose as glycosyl units. The process has been extended to a lactose derived thioglycoside and to a glucose derived sulfenamide. The process was chemo- and stereoselective, and X-ray analysis confirmed the structure and provided stereochemical information on the configuration at the sulfur atom. A model for the stereochemical outcome is proposed based on the steric environment of the sulfide.

14.
Eur J Inorg Chem ; 2020(11-12): 1052-1060, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-33776557

ABSTRACT

We report the synthesis, characterisation and cytotoxicity of six cyclometalated rhodium(III) complexes [CpXRh(C^N)Z]0/+, in which CpX = Cp*, Cpph, or Cpbiph, C^N = benzo[h]quinoline, and Z = chloride or pyridine. Three x-ray crystal structures showing the expected "piano-stool" configurations have been determined. The chlorido complexes hydrolysed faster in aqueous solution, also reacted preferentially with 9-ethyl guanine or glutathione compared to their pyridine analogues. The 1-biphenyl-2,3,4,5,-tetramethylcyclopentadienyl complex [CpbiphRh(benzo[h]quinoline)Cl] (3a) was the most efficient catalyst in coenzyme reduced nicotinamide adenine dinucleotide (NADH) oxidation to NAD+ and induced an elevated level of reactive oxygen species (ROS) in A549 human lung cancer cells. The pyridine complex [CpbiphRh(benzo[h]quinoline)py]+ (3b) was the most potent against A549 lung and A2780 ovarian cancer cell lines, being 5-fold more active than cisplatin towards A549 cells, and acted as a ROS scavenger. This work highlights a ligand-controlled strategy to modulate the reactivity and cytotoxicity of cyclometalated rhodium anticancer complexes.

15.
Inorganica Chim Acta ; 503: 119396, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-33776131

ABSTRACT

We report the synthesis and characterization of novel pentamethylcyclopentadienyl (Cp*) iridium(III) complexes [(Cp*)Ir(4-methyl-4'-carboxy-2,2'-bipyridine)Cl]PF6 (Ir-I), the product (Ir-II) from amide coupling of Ir-I to dibenzocyclooctyne-amine, and its conjugate (Ir-CP) with the cyclic nona-peptide c(CRWYDENAC). The familiar three-legged 'piano-stool' configuration for complex Ir-I was confirmed by its single crystal X-ray structure. Significantly, copper-free click strategy has been developed for site-specific conjugation of the parent complex Ir-I to the tumour targeting nona-cyclic peptide. The approach consisted of two steps: (i) the carboxylic acid group of the bipyridine ligand in complex Ir-I was first attached to an amine functionalized dibenzocyclooctyne group via amide formation to generate complex Ir-II; and (ii) the alkyne bond of dibenzocyclooctyne in complex Ir-II underwent a subsequent strain-promoted copper-free cycloaddition with the azide group of the modified peptide. Interestingly, while complex Ir-I was inactive towards A2780 human ovarian cancer cells, complex Ir-II exhibited moderate cytotoxic activity. Targeted complexes such as Ir-CP offer scope for enhanced activity and selectivity of this class of anticancer complexes.

16.
Angew Chem Int Ed Engl ; 59(34): 14265-14269, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32463162

ABSTRACT

The sulfone functional group has a strong capacity to direct the asymmetric transfer hydrogenation (ATH) of ketones in the presence of [(arene)Ru(TsDPEN)H] complexes by adopting a position distal to the η6 -arene ring. This preference provides a means for the prediction of the sense of asymmetric reduction. The sulfone group also facilitates the formation of a range of reduction substrates, and its ready removal provides a route to enantiomerically enriched alcohols that would otherwise be extremely difficult to prepare by direct ATH of the corresponding ketones.

17.
Analyst ; 144(5): 1575-1581, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30663751

ABSTRACT

The most widely used anticancer drugs are platinum complexes, but complexes of other transition metals also show promise and may widen the spectrum of activity, reduce side-effects, and overcome resistance. The latter include organo-iridium(iii) 'piano-stool' complexes. To understand their mechanism of action, it is important to discover how they bind to biomolecules and how binding is affected by functionalisation of the ligands bound to iridium. We have characterised, by MS and MS/MS techniques, unusual adducts from reactions between 3 novel iridium(iii) anti-cancer complexes each possessing reactive sites both at the metal (coordination by substitution of a labile chlorido ligand) and on the ligand (covalent bond formation involving imine formation by one or two aldehyde functions). Peptide modification by the metal complex had a drastic effect on both Collisonally Activated Dissociation (CAD) and Electron Capture Dissociation (ECD) MS/MS behaviour, tuning requirements, and fragmentation channels. CAD MS/MS was effective only when studying the covalent condensation products. ECD MS/MS, although hindered by electron-quenching at the Iridium complex site, was suitable for studying many of the species observed, locating the modification sites, and often identifying them to within a single amino acid residue.

18.
Phys Chem Chem Phys ; 21(26): 14350-14356, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-30702107

ABSTRACT

Photoisomerisation has been shown to be an efficient excited-state relaxation mechanism for a variety of nature-based and artificial-based molecular systems. Here we report on the excited-state relaxation dynamics and consequent photostability of a symmetrically functionalised cinnamate by transient electronic absorption spectroscopy, along with complementary computational and steady-state spectroscopy methods. The findings are then discussed in comparison to 2-ethylhexyl-E-4-methoxycinnamate, a structurally related 'off the shelf' chemical filter present in commercial sunscreens with a similar absorption profile. The present study allows for a like-for-like comparison beween 2-ethylhexyl-E-4-methoxycinnamate and the functionalised cinnamate, driven by the need to enhance solar protection across both the UVA and UVB regions of the electromagnetic spectrum.

19.
Angew Chem Int Ed Engl ; 58(8): 2350-2354, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30552796

ABSTRACT

An organoiridium-albumin bioconjugate (Ir1-HSA) was synthesized by reaction of a pendant maleimide ligand with human serum albumin. The phosphorescence of Ir1-HSA was enhanced significantly compared to parent complex Ir1. The long phosphorescence lifetime and high 1 O2 quantum yield of Ir1-HSA are highly favorable properties for photodynamic therapy. Ir1-HSA mainly accumulated in the nucleus of living cancer cells and showed remarkable photocytotoxicity against a range of cancer cell lines and tumor spheroids (light IC50 ; 0.8-5 µm, photo-cytotoxicity index PI=40-60), while remaining non-toxic to normal cells and normal cell spheroids, even after photo-irradiation. This nucleus-targeting organoiridium-albumin is a strong candidate photosensitizer for anticancer photodynamic therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Nucleus/drug effects , Coordination Complexes/pharmacology , Iridium/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Serum Albumin, Human/metabolism , A549 Cells , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Iridium/chemistry , Models, Molecular , Molecular Structure , Optical Imaging , Photosensitizing Agents/chemistry , Serum Albumin, Human/chemistry , Structure-Activity Relationship
20.
Chemistry ; 24(40): 10078-10090, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29653033

ABSTRACT

Fourteen novel arene RuII , and cyclopentadienyl (Cpx ) RhIII and IrIII complexes containing an N,N'-chelated pyridylimino- or quinolylimino ligand functionalized with the antimalarial drug sulfadoxine have been synthesized and characterized, including three by X-ray crystallography. The rhodium and iridium complexes exhibited potent antiplasmodial activity with IC50 values of 0.10-2.0 µm in either all, or one of the three Plasmodium falciparum assays (3D7 chloroquine sensitive, Dd2 chloroquine resistant and NF54 sexual late stage gametocytes) but were only moderately active towards Trichomonas vaginalis. They were active in both the asexual blood stage and the sexual late stage gametocyte assays, whereas the clinical parent drug, sulfadoxine, was inactive. Five complexes were moderately active against Mycobacterium tuberculosis (IC50 <6.3 µm), while sulfadoxine showed no antitubercular activity. An increase in the size of both the Cpx ligand and the aromatic imino substituent increased hydrophobicity, which resulted in an increase in antiplasmodial activity.

SELECTION OF CITATIONS
SEARCH DETAIL