Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Nature ; 441(7091): 315-21, 2006 May 18.
Article in English | MEDLINE | ID: mdl-16710414

ABSTRACT

The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.


Subject(s)
Chromosomes, Human, Pair 1/genetics , Base Sequence , DNA Replication Timing , Disease , Gene Duplication , Genes/genetics , Genetic Variation/genetics , Genomics , Humans , Molecular Sequence Data , Open Reading Frames/genetics , Pseudogenes/genetics , Recombination, Genetic/genetics , Selection, Genetic , Sequence Analysis, DNA
2.
Nature ; 429(6990): 369-74, 2004 May 27.
Article in English | MEDLINE | ID: mdl-15164053

ABSTRACT

Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.


Subject(s)
Chromosomes, Human, Pair 9/genetics , Genes , Physical Chromosome Mapping , Base Composition , Euchromatin/genetics , Evolution, Molecular , Female , Gene Duplication , Genes, Duplicate/genetics , Genetic Variation/genetics , Genetics, Medical , Genomics , Heterochromatin/genetics , Humans , Male , Neoplasms/genetics , Neurodegenerative Diseases/genetics , Pseudogenes/genetics , Sequence Analysis, DNA , Sex Determination Processes
3.
Nature ; 429(6990): 375-81, 2004 May 27.
Article in English | MEDLINE | ID: mdl-15164054

ABSTRACT

The finished sequence of human chromosome 10 comprises a total of 131,666,441 base pairs. It represents 99.4% of the euchromatic DNA and includes one megabase of heterochromatic sequence within the pericentromeric region of the short and long arm of the chromosome. Sequence annotation revealed 1,357 genes, of which 816 are protein coding, and 430 are pseudogenes. We observed widespread occurrence of overlapping coding genes (either strand) and identified 67 antisense transcripts. Our analysis suggests that both inter- and intrachromosomal segmental duplications have impacted on the gene count on chromosome 10. Multispecies comparative analysis indicated that we can readily annotate the protein-coding genes with current resources. We estimate that over 95% of all coding exons were identified in this study. Assessment of single base changes between the human chromosome 10 and chimpanzee sequence revealed nonsense mutations in only 21 coding genes with respect to the human sequence.


Subject(s)
Chromosomes, Human, Pair 10/genetics , Genes , Physical Chromosome Mapping , Animals , Base Composition , Contig Mapping , CpG Islands/genetics , Evolution, Molecular , Exons/genetics , Gene Duplication , Genetic Variation/genetics , Genetics, Medical , Genomics , Humans , Pan troglodytes/genetics , Proteins/genetics , Pseudogenes/genetics , Sequence Analysis, DNA
4.
Nature ; 425(6960): 805-11, 2003 Oct 23.
Article in English | MEDLINE | ID: mdl-14574404

ABSTRACT

Chromosome 6 is a metacentric chromosome that constitutes about 6% of the human genome. The finished sequence comprises 166,880,988 base pairs, representing the largest chromosome sequenced so far. The entire sequence has been subjected to high-quality manual annotation, resulting in the evidence-supported identification of 1,557 genes and 633 pseudogenes. Here we report that at least 96% of the protein-coding genes have been identified, as assessed by multi-species comparative sequence analysis, and provide evidence for the presence of further, otherwise unsupported exons/genes. Among these are genes directly implicated in cancer, schizophrenia, autoimmunity and many other diseases. Chromosome 6 harbours the largest transfer RNA gene cluster in the genome; we show that this cluster co-localizes with a region of high transcriptional activity. Within the essential immune loci of the major histocompatibility complex, we find HLA-B to be the most polymorphic gene on chromosome 6 and in the human genome.


Subject(s)
Chromosomes, Human, Pair 6/genetics , Genes/genetics , Physical Chromosome Mapping , Animals , Exons/genetics , Genetic Diseases, Inborn/genetics , HLA-B Antigens/genetics , Humans , Pseudogenes/genetics , RNA, Transfer/genetics , Sequence Analysis, DNA
5.
Nature ; 428(6982): 522-8, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15057823

ABSTRACT

Chromosome 13 is the largest acrocentric human chromosome. It carries genes involved in cancer including the breast cancer type 2 (BRCA2) and retinoblastoma (RB1) genes, is frequently rearranged in B-cell chronic lymphocytic leukaemia, and contains the DAOA locus associated with bipolar disorder and schizophrenia. We describe completion and analysis of 95.5 megabases (Mb) of sequence from chromosome 13, which contains 633 genes and 296 pseudogenes. We estimate that more than 95.4% of the protein-coding genes of this chromosome have been identified, on the basis of comparison with other vertebrate genome sequences. Additionally, 105 putative non-coding RNA genes were found. Chromosome 13 has one of the lowest gene densities (6.5 genes per Mb) among human chromosomes, and contains a central region of 38 Mb where the gene density drops to only 3.1 genes per Mb.


Subject(s)
Chromosomes, Human, Pair 13/genetics , Genes/genetics , Physical Chromosome Mapping , Chromosome Mapping , Genetics, Medical , Humans , Pseudogenes/genetics , RNA, Untranslated/genetics , Sequence Analysis, DNA
6.
Science ; 274(5287): 540-6, 1996 Oct 25.
Article in English | MEDLINE | ID: mdl-8849440

ABSTRACT

The human genome is thought to harbor 50,000 to 100,000 genes, of which about half have been sampled to date in the form of expressed sequence tags. An international consortium was organized to develop and map gene-based sequence tagged site markers on a set of two radiation hybrid panels and a yeast artificial chromosome library. More than 16,000 human genes have been mapped relative to a framework map that contains about 1000 polymorphic genetic markers. The gene map unifies the existing genetic and physical maps with the nucleotide and protein sequence databases in a fashion that should speed the discovery of genes underlying inherited human disease. The integrated resource is available through a site on the World Wide Web at http://www.ncbi.nlm.nih.gov/SCIENCE96/.


Subject(s)
Chromosome Mapping , Genome, Human , Human Genome Project , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Chromosomes, Artificial, Yeast , Computer Communication Networks , DNA, Complementary/genetics , Databases, Factual , Gene Expression , Genetic Markers , Humans , Multigene Family , RNA, Messenger/genetics , Sequence Homology, Nucleic Acid , Sequence Tagged Sites
7.
Science ; 282(5389): 744-6, 1998 Oct 23.
Article in English | MEDLINE | ID: mdl-9784132

ABSTRACT

A map of 30,181 human gene-based markers was assembled and integrated with the current genetic map by radiation hybrid mapping. The new gene map contains nearly twice as many genes as the previous release, includes most genes that encode proteins of known function, and is twofold to threefold more accurate than the previous version. A redesigned, more informative and functional World Wide Web site (www.ncbi.nlm.nih.gov/genemap) provides the mapping information and associated data and annotations. This resource constitutes an important infrastructure and tool for the study of complex genetic traits, the positional cloning of disease genes, the cross-referencing of mammalian genomes, and validated human transcribed sequences for large-scale studies of gene expression.


Subject(s)
Chromosomes, Human/genetics , Genome, Human , Physical Chromosome Mapping , Animals , Expressed Sequence Tags , Gene Expression , Genetic Markers , Human Genome Project , Humans , Internet , Rats , Sequence Tagged Sites
8.
Mol Biotechnol ; 3(3): 259-65, 1995 Jun.
Article in English | MEDLINE | ID: mdl-7552695

ABSTRACT

This work concentrates on a single procedure, namely hybridizing Southern blots with nonradioactive probes. Stress is placed on features of the procedures where attention to detail is necessary to obtain strong signals and clear background. Some indications are given to the future development of the technology.


Subject(s)
Blotting, Southern/methods , DNA/analysis , Molecular Probe Techniques , Animals , DNA Probes , Humans
9.
DNA Seq ; 7(1): 47-9, 1996.
Article in English | MEDLINE | ID: mdl-9063638

ABSTRACT

The development of radiation hybrid (RH) mapping (Cox et al., 1990) and the availability of large numbers of STS markers, together with extensive bacterial clone resources provided a means to accelerate the process of mapping a human chromosome and preparing bacterial clone contigs ready to sequence. Our aim is to construct physical clone maps covering those regions of chromosome 6 that are not currently extensively mapped, and use these to determine the DNA sequence of the whole chromosome. We report here a strategy which initially involves establishing a high density framework map using RH mapping. The framework markers are then used for the identification of bacterial genomic clones covering the chromosome. The bacterial clones are analysed by restriction enzyme fingerprinting and STS-content analysis to identify sequence-ready contigs. Contig gap closure will also be performed by clone walking.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Human, Pair 6/genetics , Sequence Analysis, DNA/methods , Cloning, Molecular , DNA Fingerprinting/methods , DNA, Complementary , Gene Expression , Genetic Markers , Genetic Vectors , Humans
10.
DNA Seq ; 8(3): 151-4, 1997.
Article in English | MEDLINE | ID: mdl-10668960

ABSTRACT

Our aim is to construct physical clone maps covering those regions of chromosome 6 that are not currently extensively mapped, and use these to determine the DNA sequence of the whole chromosome. The strategy we are following involves establishing a high density framework map of the order of 15 markers per Megabase using radiation hybrid (RH) mapping. The markers are then used to identify large-insert genomic bacterial clones covering the chromosome, which are assembled into sequence-ready contigs by restriction enzyme fingerprinting and sequence tagged site (STS) content analysis. Contig gap closure is performed by walking experiments using STSs developed from the end sequences of the clone inserts.


Subject(s)
Chromosomes, Human, Pair 6/genetics , Contig Mapping , Databases, Factual , Humans , Sequence Analysis, DNA
11.
Australas Radiol ; 35(2): 148-51, 1991 May.
Article in English | MEDLINE | ID: mdl-1930011

ABSTRACT

The authors have reviewed 308 localisation biopsies performed on nonpalpable breast lesions between 1986 and 1990. The initiating mammogram, specimen radiograph, radiologists' reports and histology reports have been analysed with respect to the nature of the mammographic lesion, patient age, breast parenchymal pattern and histologic diagnosis. The overall malignant biopsy rate was 28%. Malignancy was found in 67% of biopsies for architectural distortion, 27% for calcification and 25% for a mass lesion. Masses if malignant proved to have an invasive component in the majority of cases (29/33). Calcification if malignant was more often in situ carcinoma (25/44). 29% of malignant biopsies were in women under the age of 50 and approximately half of these had an invasive component. The histologic nature of benign lesions is presented with identification of those with proliferative breast disease. The results are compared with those of other recently published series. Implications are discussed for the management of minimally suspicious lesions and for screening mammography.


Subject(s)
Biopsy , Breast/pathology , Adult , Aged , Breast Neoplasms/diagnosis , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Humans , Mammography , Middle Aged
12.
Avian Pathol ; 21(2): 307-13, 1992.
Article in English | MEDLINE | ID: mdl-18670942

ABSTRACT

In an attempt to produce a persistent infection with M. iowae (Mi) three separate trials were conducted using strain B 11/80, a virulent strain, strain M 012-118, a recent isolate of unknown virulence, and strain Iowae 695 (I 695), the type strain. In each trial groups of 2-day-old poults were infected via the oesophagus, trachea, cloaca and directly into the lungs. Isolation during life was attempted from the oropharynx and the cloaca, and at necropsy at the end of the experiment (21 days after infection) from the trachea, lungs and airsacs, and the brain. The highest proportion of isolations were made at necropsy from the lungs and air sacs, and trachea, from birds infected with B 11/80 or M 012-118 via the lungs or B 11/80 given via the trachea. During life the proportion of isolations was lower than at necropsy but highest, overall, with B 11/80 given via the lungs or trachea and isolated from the oropharynx, or administered via the cloaca and isolated form this site. Strain I 695 was rarely isolated whatever the route of infection. There were few recoveries following infection via the oesophagus with any strain and no mycoplasmas were isolated from the brain. For the production of MI infection suitable for monitoring antimicrobials in young poults we would recommend infection with a pathogenic strain of the organism directly into the lungs.

13.
Nature ; 407(6803): 516-20, 2000 Sep 28.
Article in English | MEDLINE | ID: mdl-11029003

ABSTRACT

The human genome sequence will provide a reference for measuring DNA sequence variation in human populations. Sequence variants are responsible for the genetic component of individuality, including complex characteristics such as disease susceptibility and drug response. Most sequence variants are single nucleotide polymorphisms (SNPs), where two alternate bases occur at one position. Comparison of any two genomes reveals around 1 SNP per kilobase. A sufficiently dense map of SNPs would allow the detection of sequence variants responsible for particular characteristics on the basis that they are associated with a specific SNP allele. Here we have evaluated large-scale sequencing approaches to obtaining SNPs, and have constructed a map of 2,730 SNPs on human chromosome 22. Most of the SNPs are within 25 kilobases of a transcribed exon, and are valuable for association studies. We have scaled up the process, detecting over 65,000 SNPs in the genome as part of The SNP Consortium programme, which is on target to build a map of 1 SNP every 5 kilobases that is integrated with the human genome sequence and that is freely available in the public domain.


Subject(s)
Chromosomes, Human, Pair 22 , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Cell Line , Chromosome Mapping/methods , Evaluation Studies as Topic , Gene Library , Genome, Human , Humans , Sequence Alignment
14.
Nature ; 409(6822): 860-921, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11237011

ABSTRACT

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.


Subject(s)
Genome, Human , Human Genome Project , Sequence Analysis, DNA , Animals , Chromosome Mapping , Conserved Sequence , CpG Islands , DNA Transposable Elements , Databases, Factual , Drug Industry , Evolution, Molecular , Forecasting , GC Rich Sequence , Gene Duplication , Genes , Genetic Diseases, Inborn , Genetics, Medical , Humans , Mutation , Private Sector , Proteins/genetics , Proteome , Public Sector , RNA/genetics , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA/methods , Species Specificity
15.
Nature ; 409(6822): 942-3, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11237015

ABSTRACT

We constructed maps for eight chromosomes (1, 6, 9, 10, 13, 20, X and (previously) 22), representing one-third of the genome, by building landmark maps, isolating bacterial clones and assembling contigs. By this approach, we could establish the long-range organization of the maps early in the project, and all contig extension, gap closure and problem-solving was simplified by containment within local regions. The maps currently represent more than 94% of the euchromatic (gene-containing) regions of these chromosomes in 176 contigs, and contain 96% of the chromosome-specific markers in the human gene map. By measuring the remaining gaps, we can assess chromosome length and coverage in sequenced clones.


Subject(s)
Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 13 , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 20 , Chromosomes, Human, Pair 6 , Contig Mapping , Genome, Human , X Chromosome , Humans
16.
Nature ; 414(6866): 865-71, 2001.
Article in English | MEDLINE | ID: mdl-11780052

ABSTRACT

The finished sequence of human chromosome 20 comprises 59,187,298 base pairs (bp) and represents 99.4% of the euchromatic DNA. A single contig of 26 megabases (Mb) spans the entire short arm, and five contigs separated by gaps totalling 320 kb span the long arm of this metacentric chromosome. An additional 234,339 bp of sequence has been determined within the pericentromeric region of the long arm. We annotated 727 genes and 168 pseudogenes in the sequence. About 64% of these genes have a 5' and a 3' untranslated region and a complete open reading frame. Comparative analysis of the sequence of chromosome 20 to whole-genome shotgun-sequence data of two other vertebrates, the mouse Mus musculus and the puffer fish Tetraodon nigroviridis, provides an independent measure of the efficiency of gene annotation, and indicates that this analysis may account for more than 95% of all coding exons and almost all genes.


Subject(s)
Chromosomes, Human, Pair 20 , Animals , Base Sequence , Computational Biology , Contig Mapping , DNA , Genetic Diseases, Inborn/genetics , Genetic Variation , Humans , Mice , Physical Chromosome Mapping , Proteome , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL