ABSTRACT
mTOR is a critical regulator of cellular signaling downstream of multiple growth factors. The mTOR/PI3K/AKT pathway is frequently mutated in human cancers and is thus an important oncology target. Herein we report the evolution of our program to discover ATP-competitive mTOR inhibitors that demonstrate improved pharmacokinetic properties and selectivity compared to our previous leads. Through targeted SAR and structure-guided design, new imidazopyridine and imidazopyridazine scaffolds were identified that demonstrated superior inhibition of mTOR in cellular assays, selectivity over the closely related PIKK family and improved in vivo clearance over our previously reported benzimidazole series.
Subject(s)
Protein Kinase Inhibitors/chemistry , Pyridazines/chemistry , Pyridines/chemistry , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Benzimidazoles/chemistry , Binding Sites , Binding, Competitive , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical , Half-Life , Humans , Imidazoles/chemistry , Male , Mice , Microsomes, Liver/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Pyridazines/chemical synthesis , Pyridazines/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats, Sprague-Dawley , Signal Transduction/drug effects , Structure-Activity Relationship , TOR Serine-Threonine Kinases/metabolismABSTRACT
mTOR is part of the PI3K/AKT pathway and is a central regulator of cell growth and survival. Since many cancers display mutations linked to the mTOR signaling pathway, mTOR has emerged as an important target for oncology therapy. Herein, we report the discovery of triazine benzimidazole inhibitors that inhibit mTOR kinase activity with up to 200-fold selectivity over the structurally homologous kinase PI3Kα. When tested in a panel of cancer cell lines displaying various mutations, a selective inhibitor from this series inhibited cellular proliferation with a mean IC(50) of 0.41 µM. Lead compound 42 demonstrated up to 83% inhibition of mTOR substrate phosphorylation in a murine pharmacodynamic model.