Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Chemistry ; 30(22): e202303999, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38224181

ABSTRACT

Proteases are involved in many essential biological processes. Dysregulation of their activity underlies a wide variety of human diseases. Photopharmacology, as applied on various classes of proteins, has the potential to assist protease research by enabling spatiotemporal control of protease activity. Moreover, it may be used to decrease side-effects of protease-targeting drugs. In this review, we discuss the current status of the chemical design of photoactivatable proteases inhibitors and their biological application. Additionally, we give insight into future possibilities for further development of this field of research.


Subject(s)
Peptide Hydrolases , Protease Inhibitors , Humans , Peptide Hydrolases/metabolism
2.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005392

ABSTRACT

Polyamines are polycationic alkyl-amines abundant in proliferating stem and cancer cells. How these metabolites influence numerous cellular functions remains unclear. Here we show that polyamine levels decrease during differentiation and that inhibiting polyamine synthesis leads to a differentiated-like cell state. Polyamines concentrate in the nucleus and are further enriched in the nucleoli of cells in culture and in vivo . Loss of polyamines drives changes in chromatin accessibility that correlate with altered histone post-translational modifications. Polyamines interact electrostatically with DNA on the nucleosome core, stabilizing histone tails in conformations accessible to modifying enzymes. These data reveal a mechanism by which an abundant metabolite influences chromatin structure and function in a non-sequence specific manner, facilitating chromatin remodeling during reprogramming and limiting it during fate commitment.

3.
Biomolecules ; 13(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36830711

ABSTRACT

Cells acquire polyamines putrescine (PUT), spermidine (SPD) and spermine (SPM) via the complementary actions of polyamine uptake and synthesis pathways. The endosomal P5B-type ATPases ATP13A2 and ATP13A3 emerge as major determinants of mammalian polyamine uptake. Our biochemical evidence shows that fluorescently labeled polyamines are genuine substrates of ATP13A2. They can be used to measure polyamine uptake in ATP13A2- and ATP13A3-dependent cell models resembling radiolabeled polyamine uptake. We further report that ATP13A3 enables faster and stronger cellular polyamine uptake than does ATP13A2. We also compared the uptake of new green fluorescent PUT, SPD and SPM analogs using different coupling strategies (amide, triazole or isothiocyanate) and fluorophores (symmetrical BODIPY, BODIPY-FL and FITC). ATP13A2 promotes the uptake of various SPD and SPM analogs, whereas ATP13A3 mainly stimulates the uptake of PUT and SPD conjugates. However, the polyamine linker and coupling position on the fluorophore impacts the transport capacity, whereas replacing the fluorophore affects polyamine selectivity. The highest uptake in ATP13A2 or ATP13A3 cells is observed with BODIPY-FL-amide conjugated to SPD, whereas BODIPY-PUT analogs are specifically taken up via ATP13A3. We found that P5B-type ATPase isoforms transport fluorescently labeled polyamine analogs with a distinct structure-activity relationship (SAR), suggesting that isoform-specific polyamine probes can be designed.


Subject(s)
Polyamines , Spermidine , Animals , Polyamines/metabolism , Spermidine/metabolism , Boron Compounds , Spermine/metabolism , Putrescine/metabolism , Biological Transport , Mammals/metabolism , Fluorescent Dyes , Adenosine Triphosphatases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL