Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Ther ; 29(8): 2412-2423, 2021 08 04.
Article in English | MEDLINE | ID: mdl-33895322

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the emergent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health, and there is an urgent need to develop safe and effective vaccines. Here, we report the generation and the preclinical evaluation of a novel replication-defective gorilla adenovirus-vectored vaccine encoding the pre-fusion stabilized Spike (S) protein of SARS-CoV-2. We show that our vaccine candidate, GRAd-COV2, is highly immunogenic both in mice and macaques, eliciting both functional antibodies that neutralize SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and a robust, T helper (Th)1-dominated cellular response. We show here that the pre-fusion stabilized Spike antigen is superior to the wild type in inducing ACE2-interfering, SARS-CoV-2-neutralizing antibodies. To face the unprecedented need for vaccine manufacturing at a massive scale, different GRAd genome deletions were compared to select the vector backbone showing the highest productivity in stirred tank bioreactors. This preliminary dataset identified GRAd-COV2 as a potential COVID-19 vaccine candidate, supporting the translation of the GRAd-COV2 vaccine in a currently ongoing phase I clinical trial (ClinicalTrials.gov: NCT04528641).


Subject(s)
Adenoviridae/immunology , Adenovirus Vaccines/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Gorilla gorilla/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Cell Line, Tumor , Female , Genetic Vectors/immunology , Gorilla gorilla/virology , HEK293 Cells , HeLa Cells , Humans , Macaca , Male , Mice , Mice, Inbred BALB C , Middle Aged , Pandemics/prevention & control , Young Adult
2.
N Engl J Med ; 376(10): 928-938, 2017 03 09.
Article in English | MEDLINE | ID: mdl-25426834

ABSTRACT

BACKGROUND: The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. METHODS: We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×1010 particle units or 2×1011 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer-term vaccine durability was assessed at 48 weeks after vaccination. RESULTS: In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×1011 particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×1011 particle-unit dose than in the group that received the 2×1010 particle-unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2×1011 particle-unit dose than among those who received the 2×1010 particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×1011 particle-unit dose. CONCLUSIONS: Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At the 2×1011 particle-unit dose, glycoprotein Zaire-specific antibody responses were in the range reported to be associated with vaccine-induced protective immunity in challenge studies involving nonhuman primates, and responses were sustained to week 48. Phase 2 studies and efficacy trials assessing cAd3-EBO are in progress. (Funded by the Intramural Research Program of the National Institutes of Health; VRC 207 ClinicalTrials.gov number, NCT02231866 .).


Subject(s)
Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Adenoviruses, Simian , Adult , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Ebola Vaccines/administration & dosage , Ebola Vaccines/adverse effects , Fever/etiology , Genetic Vectors , Glycoproteins/immunology , Humans , Male , Middle Aged , Pan troglodytes , T-Lymphocytes/physiology
3.
N Engl J Med ; 374(17): 1635-46, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-25629663

ABSTRACT

BACKGROUND: The West African outbreak of Ebola virus disease that peaked in 2014 has caused more than 11,000 deaths. The development of an effective Ebola vaccine is a priority for control of a future outbreak. METHODS: In this phase 1 study, we administered a single dose of the chimpanzee adenovirus 3 (ChAd3) vaccine encoding the surface glycoprotein of Zaire ebolavirus (ZEBOV) to 60 healthy adult volunteers in Oxford, United Kingdom. The vaccine was administered in three dose levels--1×10(10) viral particles, 2.5×10(10) viral particles, and 5×10(10) viral particles--with 20 participants in each group. We then assessed the effect of adding a booster dose of a modified vaccinia Ankara (MVA) strain, encoding the same Ebola virus glycoprotein, in 30 of the 60 participants and evaluated a reduced prime-boost interval in another 16 participants. We also compared antibody responses to inactivated whole Ebola virus virions and neutralizing antibody activity with those observed in phase 1 studies of a recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) to determine relative potency and assess durability. RESULTS: No safety concerns were identified at any of the dose levels studied. Four weeks after immunization with the ChAd3 vaccine, ZEBOV-specific antibody responses were similar to those induced by rVSV-ZEBOV vaccination, with a geometric mean titer of 752 and 921, respectively. ZEBOV neutralization activity was also similar with the two vaccines (geometric mean titer, 14.9 and 22.2, respectively). Boosting with the MVA vector increased virus-specific antibodies by a factor of 12 (geometric mean titer, 9007) and increased glycoprotein-specific CD8+ T cells by a factor of 5. Significant increases in neutralizing antibodies were seen after boosting in all 30 participants (geometric mean titer, 139; P<0.001). Virus-specific antibody responses in participants primed with ChAd3 remained positive 6 months after vaccination (geometric mean titer, 758) but were significantly higher in those who had received the MVA booster (geometric mean titer, 1750; P<0.001). CONCLUSIONS: The ChAd3 vaccine boosted with MVA elicited B-cell and T-cell immune responses to ZEBOV that were superior to those induced by the ChAd3 vaccine alone. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT02240875.).


Subject(s)
Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Adenoviruses, Simian/immunology , Adult , Animals , Antibodies, Viral/blood , B-Lymphocytes/physiology , Cytokines/blood , Ebola Vaccines/administration & dosage , Female , Hemorrhagic Fever, Ebola/immunology , Humans , Immunity, Cellular , Immunization, Secondary , Male , Middle Aged , Pan troglodytes , T-Lymphocytes/physiology , Vaccinia , Young Adult
4.
Mol Ther ; 26(11): 2592-2603, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30122422

ABSTRACT

Deficiency of basement membrane heterotrimeric laminin 332 component, coded by LAMA3, LAMB3, and LAMC2 genes, causes junctional epidermolysis bullosa (JEB), a severe skin adhesion defect. Herein, we report the first application of CRISPR/Cas9-mediated homology direct repair (HDR) to in situ restore LAMB3 expression in JEB keratinocytes in vitro and in immunodeficient mice transplanted with genetically corrected skin equivalents. We packaged an adenovector carrying Cas9/guide RNA (gRNA) tailored to the intron 2 of LAMB3 gene and an integration defective lentiviral vector bearing a promoterless quasi-complete LAMB3 cDNA downstream a splice acceptor site and flanked by homology arms. Upon genuine HDR, we exploited the in vitro adhesion advantage of laminin 332 production to positively select LAMB3-expressing keratinocytes. HDR and restored laminin 332 expression were evaluated at single-cell level. Notably, monoallelic-targeted integration of LAMB3 cDNA was sufficient to in vitro recapitulate the adhesive property, the colony formation typical of normal keratinocytes, as well as their cell growth. Grafting of genetically corrected skin equivalents onto immunodeficient mice showed a completely restored dermal-epidermal junction. This study provides evidence for efficient CRISPR/Cas9-mediated in situ restoration of LAMB3 expression, paving the way for ex vivo clinical application of this strategy to laminin 332 deficiency.


Subject(s)
CRISPR-Cas Systems/genetics , Cell Adhesion Molecules/genetics , Epidermolysis Bullosa, Junctional/therapy , Genetic Therapy , Animals , Basement Membrane/pathology , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/deficiency , DNA Repair/genetics , DNA, Complementary/genetics , Epidermolysis Bullosa, Junctional/genetics , Epidermolysis Bullosa, Junctional/pathology , Gene Expression Regulation , Humans , Introns/genetics , Keratinocytes/metabolism , Keratinocytes/pathology , Laminin/genetics , Lentivirus/genetics , Mice , Mutation , RNA Editing/genetics , Kalinin
5.
Hepatology ; 63(5): 1455-70, 2016 May.
Article in English | MEDLINE | ID: mdl-26474390

ABSTRACT

UNLABELLED: Adenoviral vectors encoding hepatitis C virus (HCV) nonstructural (NS) proteins induce multispecific, high-magnitude, durable CD4(+) and CD8(+) T-cell responses in healthy volunteers. We assessed the capacity of these vaccines to induce functional HCV-specific immune responses and determine T-cell cross-reactivity to endogenous virus in patients with chronic HCV infection. HCV genotype 1-infected patients were vaccinated using heterologous adenoviral vectors (ChAd3-NSmut and Ad6-NSmut) encoding HCV NS proteins in a dose escalation, prime-boost regimen, with and without concomitant pegylated interferon-α/ribavirin therapy. Analysis of immune responses ex vivo used human leukocyte antigen class I pentamers, intracellular cytokine staining, and fine mapping in interferon-γ enzyme-linked immunospot assays. Cross-reactivity of T cells with population and endogenous viral variants was determined following viral sequence analysis. Compared to healthy volunteers, the magnitude of HCV-specific T-cell responses following vaccination was markedly reduced. CD8(+) HCV-specific T-cell responses were detected in 15/24 patients at the highest dose, whereas CD4(+) T-cell responses were rarely detectable. Analysis of the host circulating viral sequence showed that T-cell responses were rarely elicited when there was sequence homology between vaccine immunogen and endogenous virus. In contrast, T cells were induced in the context of genetic mismatch between vaccine immunogen and endogenous virus; however, these commonly failed to recognize circulating epitope variants and had a distinct partially functional phenotype. Vaccination was well tolerated but had no significant effect on HCV viral load. CONCLUSION: Vaccination with potent HCV adenoviral vectored vaccines fails to restore T-cell immunity except where there is genetic mismatch between vaccine immunogen and endogenous virus; this highlights the major challenge of overcoming T-cell exhaustion in the context of persistent antigen exposure with implications for cancer and other persistent infections.


Subject(s)
Hepacivirus/immunology , Hepatitis C, Chronic/immunology , T-Lymphocytes/immunology , Viral Hepatitis Vaccines/immunology , Adenoviridae/genetics , Adult , Aged , Amino Acid Sequence , Epitopes, T-Lymphocyte , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology , Humans , Interferon-alpha/administration & dosage , Male , Middle Aged , Molecular Sequence Data , Polyethylene Glycols/administration & dosage , Recombinant Proteins/administration & dosage , Riboflavin/administration & dosage , Vaccination
6.
J Infect Dis ; 211(7): 1076-86, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25336730

ABSTRACT

BACKGROUND: Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope-thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. METHODS: We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. RESULTS: One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%-79%, compared with 79%-84% for ChAd63-MVA ME-TRAP. CONCLUSIONS: ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. CLINICAL TRIALS REGISTRATION: NCT01623557.


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adenoviruses, Simian/genetics , Adenoviruses, Simian/immunology , Adolescent , Adult , Antibodies, Protozoan/biosynthesis , Epitopes/immunology , Female , Genetic Vectors , Humans , Interferon-gamma/immunology , Liver/virology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Middle Aged , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Young Adult
7.
J Virol ; 88(10): 5502-10, 2014 May.
Article in English | MEDLINE | ID: mdl-24599994

ABSTRACT

UNLABELLED: Despite the recent progress in the development of new antiviral agents, hepatitis C virus (HCV) infection remains a major global health problem, and there is a need for a preventive vaccine. We previously reported that adenoviral vectors expressing HCV nonstructural proteins elicit protective T cell responses in chimpanzees and were immunogenic in healthy volunteers. Furthermore, recombinant HCV E1E2 protein formulated with adjuvant MF59 induced protective antibody responses in chimpanzees and was immunogenic in humans. To develop an HCV vaccine capable of inducing both T cell and antibody responses, we constructed adenoviral vectors expressing full-length and truncated E1E2 envelope glycoproteins from HCV genotype 1b. Heterologous prime-boost immunization regimens with adenovirus and recombinant E1E2 glycoprotein (genotype 1a) plus MF59 were evaluated in mice and guinea pigs. Adenovirus prime and protein boost induced broad HCV-specific CD8+ and CD4+ T cell responses and functional Th1-type IgG responses. Immune sera neutralized luciferase reporter pseudoparticles expressing HCV envelope glycoproteins (HCVpp) and a diverse panel of recombinant cell culture-derived HCV (HCVcc) strains and limited cell-to-cell HCV transmission. This study demonstrated that combining adenovirus vector with protein antigen can induce strong antibody and T cell responses that surpass immune responses achieved by either vaccine alone. IMPORTANCE: HCV infection is a major health problem. Despite the availability of new directly acting antiviral agents for treating chronic infection, an affordable preventive vaccine provides the best long-term goal for controlling the global epidemic. This report describes a new anti-HCV vaccine targeting the envelope viral proteins based on adenovirus vector and protein in adjuvant. Rodents primed with the adenovirus vaccine and boosted with the adjuvanted protein developed cross-neutralizing antibodies and potent T cell responses that surpassed immune responses achieved with either vaccine component alone. If combined with the adenovirus vaccine targeting the HCV NS antigens now under clinical testing, this new vaccine might lead to a stronger and broader immune response and to a more effective vaccine to prevent HCV infection. Importantly, the described approach represents a valuable strategy for other infectious diseases in which both T and B cell responses are essential for protection.


Subject(s)
Antibodies, Neutralizing/blood , Hepacivirus/immunology , Hepatitis C Antibodies/blood , T-Lymphocytes/immunology , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Adenoviridae/genetics , Adjuvants, Immunologic/administration & dosage , Animals , Female , Genetic Vectors , Guinea Pigs , Hepacivirus/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Polysorbates/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Squalene/administration & dosage , Vaccination/methods , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Envelope Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
8.
J Immunol ; 190(6): 2720-35, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23390298

ABSTRACT

Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8(+) T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. In this study we show low seroreactivity in humans against simian- (sAd11, sAd16) or chimpanzee-derived (chAd3, chAd63) compared with human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype, and protective capacity of CD8(+) T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 10(7)-10(9) particle units), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8(+) T cell responses, from most to least, as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFN-γ(+)TNF-α(+)IL-2(+) and KLRG1(+)CD127(-)CD8(+) T cells, but strikingly ∼30-80% of memory CD8(+) T cells coexpressed CD127 and KLRG1. To further optimize CD8(+) T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ∼60% of total CD8(+) T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8(+) T cell responses compared with prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8(+) T cells for rapid effector function or robust long-term memory, respectively.


Subject(s)
Adenoviridae/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Gene Products, gag/immunology , Genetic Vectors/administration & dosage , HIV-1/immunology , Quality Assurance, Health Care , Simian Immunodeficiency Virus/immunology , Adenoviridae/genetics , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Disease Models, Animal , Epitopes, T-Lymphocyte/administration & dosage , Epitopes, T-Lymphocyte/therapeutic use , Gene Products, gag/administration & dosage , Gene Products, gag/therapeutic use , Genetic Vectors/immunology , Genetic Vectors/therapeutic use , HEK293 Cells , HIV-1/genetics , Humans , Immunophenotyping/methods , Immunophenotyping/standards , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pan troglodytes , Quality Assurance, Health Care/standards , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Simian Immunodeficiency Virus/genetics
9.
Mol Ther ; 22(5): 1039-47, 2014 May.
Article in English | MEDLINE | ID: mdl-24476798

ABSTRACT

Despite viral vectors being potent inducers of antigen-specific T cells, strategies to further improve their immunogenicity are actively pursued. Of the numerous approaches investigated, fusion of the encoded antigen to major histocompatibility complex class II-associated invariant chain (Ii) has been reported to enhance CD8(+) T-cell responses. We have previously shown that adenovirus vaccine encoding nonstructural (NS) hepatitis C virus (HCV) proteins induces potent T-cell responses in humans. However, even higher T-cell responses might be required to achieve efficacy against different HCV genotypes or therapeutic effect in chronically infected HCV patients. In this study, we assessed fusion of the HCV NS antigen to murine and human Ii expressed by the chimpanzee adenovirus vector ChAd3 or recombinant modified vaccinia Ankara in mice and nonhuman primates (NHPs). A dramatic increase was observed in outbred mice in which vaccination with ChAd3 expressing the fusion antigen resulted in a 10-fold increase in interferon-γ(+) CD8(+) T cells. In NHPs, CD8(+) T-cell responses were enhanced and accelerated with vectors encoding the Ii-fused antigen. These data show for the first time that the enhancement induced by vector vaccines encoding li-fused antigen was not species specific and can be translated from mice to NHPs, opening the way for testing in humans.


Subject(s)
Antigens, Viral/immunology , Genes, MHC Class II/immunology , Hepacivirus/immunology , Hepatitis C/therapy , Recombinant Fusion Proteins/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Animals , Antigens, Differentiation, B-Lymphocyte/immunology , Antigens, Differentiation, B-Lymphocyte/therapeutic use , Antigens, Viral/genetics , Antigens, Viral/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Hepatitis C/immunology , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/therapeutic use , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice , Pan troglodytes , Recombinant Fusion Proteins/therapeutic use , Vaccines/immunology
10.
Mol Ther ; 22(2): 464-475, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24166483

ABSTRACT

Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4(+) cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8(+) T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro.


Subject(s)
AIDS Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , HIV-1/immunology , T-Lymphocytes/immunology , AIDS Vaccines/genetics , Adolescent , Adult , Amino Acid Sequence , Cells, Cultured , Conserved Sequence/immunology , Epitope Mapping , Epitopes, T-Lymphocyte/chemistry , Female , HIV Infections/prevention & control , HIV-1/genetics , Humans , Male , Middle Aged , Molecular Sequence Data , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocyte Subsets/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Virus Replication/immunology , Young Adult , gag Gene Products, Human Immunodeficiency Virus/immunology , pol Gene Products, Human Immunodeficiency Virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL