Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cell ; 187(3): 676-691.e16, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306983

ABSTRACT

Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.


Subject(s)
Movement , Neurons , Brain/physiology , Movement/physiology , Neurons/physiology , Thalamus/physiology , Memory
2.
Nat Methods ; 14(7): 703-706, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28581495

ABSTRACT

We describe a fluorescence in situ hybridization method that permits detection of the localization and abundance of single mRNAs (smFISH) in cleared whole-mount adult Drosophila brains. The approach is rapid and multiplexable and does not require molecular amplification; it allows facile quantification of mRNA expression with subcellular resolution on a standard confocal microscope. We further demonstrate single-mRNA detection across the entire brain using a custom Bessel beam structured illumination microscope (BB-SIM).


Subject(s)
Brain/metabolism , Drosophila/metabolism , In Situ Hybridization, Fluorescence/methods , Microscopy/methods , RNA, Messenger/metabolism , Animals , Drosophila/anatomy & histology , Microscopy/instrumentation
3.
Elife ; 122024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985568

ABSTRACT

Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high-density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here, we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike-sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from 1 to 47 days, with an 84% average recovery rate.


Subject(s)
Neurons , Animals , Neurons/physiology , Mice , Electrophysiology/methods , Electrophysiological Phenomena , Action Potentials/physiology , Cell Tracking/methods
4.
bioRxiv ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38260339

ABSTRACT

Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from one to 47 days, with an 84% average recovery rate.

5.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-37662298

ABSTRACT

To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device samples neuronal activity at ultra-high spatial density (~10 times higher than previous probes) with low noise levels, while trading off recording span. NP Ultra is effectively an implantable voltage-sensing camera that captures a planar image of a neuron's electrical field. We use a spike sorting algorithm optimized for these probes to demonstrate that the yield of visually-responsive neurons in recordings from mouse visual cortex improves up to ~3-fold. We show that NP Ultra can record from small neuronal structures including axons and dendrites. Recordings across multiple brain regions and four species revealed a subset of extracellular action potentials with unexpectedly small spatial spread and axon-like features. We share a large-scale dataset of these brain-wide recordings in mice as a resource for studies of neuronal biophysics. Finally, using ground-truth identification of three major inhibitory cortical cell types, we found that these cell types were discriminable with approximately 75% success, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, detection of subcellular compartments, and cell type classification to enable more powerful dissection of neural circuit activity during behavior.

6.
bioRxiv ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37205406

ABSTRACT

High-density, integrated silicon electrodes have begun to transform systems neuroscience, by enabling large-scale neural population recordings with single cell resolution. Existing technologies, however, have provided limited functionality in nonhuman primate species such as macaques, which offer close models of human cognition and behavior. Here, we report the design, fabrication, and performance of Neuropixels 1.0-NHP, a high channel count linear electrode array designed to enable large-scale simultaneous recording in superficial and deep structures within the macaque or other large animal brain. These devices were fabricated in two versions: 4416 electrodes along a 45 mm shank, and 2496 along a 25 mm shank. For both versions, users can programmatically select 384 channels, enabling simultaneous multi-area recording with a single probe. We demonstrate recording from over 3000 single neurons within a session, and simultaneous recordings from over 1000 neurons using multiple probes. This technology represents a significant increase in recording access and scalability relative to existing technologies, and enables new classes of experiments involving fine-grained electrophysiological characterization of brain areas, functional connectivity between cells, and simultaneous brain-wide recording at scale.

7.
Biophys J ; 102(4): 934-44, 2012 Feb 22.
Article in English | MEDLINE | ID: mdl-22385865

ABSTRACT

Two-photon probe excitation data are commonly presented as absorption cross section or molecular brightness (the detected fluorescence rate per molecule). We report two-photon molecular brightness spectra for a diverse set of organic and genetically encoded probes with an automated spectroscopic system based on fluorescence correlation spectroscopy. The two-photon action cross section can be extracted from molecular brightness measurements at low excitation intensities, while peak molecular brightness (the maximum molecular brightness with increasing excitation intensity) is measured at higher intensities at which probe photophysical effects become significant. The spectral shape of these two parameters was similar across all dye families tested. Peak molecular brightness spectra, which can be obtained rapidly and with reduced experimental complexity, can thus serve as a first-order approximation to cross-section spectra in determining optimal wavelengths for two-photon excitation, while providing additional information pertaining to probe photostability. The data shown should assist in probe choice and experimental design for multiphoton microscopy studies. Further, we show that, by the addition of a passive pulse splitter, nonlinear bleaching can be reduced--resulting in an enhancement of the fluorescence signal in fluorescence correlation spectroscopy by a factor of two. This increase in fluorescence signal, together with the observed resemblance of action cross section and peak brightness spectra, suggests higher-order photobleaching pathways for two-photon excitation.


Subject(s)
Photons , Spectrometry, Fluorescence/methods , Absorption , Calcium/chemistry , Fluorescent Dyes/chemistry , Rhodamines/chemistry
8.
Elife ; 112022 Oct 26.
Article in English | MEDLINE | ID: mdl-36286237

ABSTRACT

Brain function is mediated by the physiological coordination of a vast, intricately connected network of molecular and cellular components. The physiological properties of neural network components can be quantified with high throughput. The ability to assess many animals per study has been critical in relating physiological properties to behavior. By contrast, the synaptic structure of neural circuits is presently quantifiable only with low throughput. This low throughput hampers efforts to understand how variations in network structure relate to variations in behavior. For neuroanatomical reconstruction, there is a methodological gulf between electron microscopic (EM) methods, which yield dense connectomes at considerable expense and low throughput, and light microscopic (LM) methods, which provide molecular and cell-type specificity at high throughput but without synaptic resolution. To bridge this gulf, we developed a high-throughput analysis pipeline and imaging protocol using tissue expansion and light sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many animals with single-synapse resolution and molecular contrast. Using Drosophila to validate this approach, we demonstrate that it yields synaptic counts similar to those obtained by EM, enables synaptic connectivity to be compared across sex and experience, and can be used to correlate structural connectivity, functional connectivity, and behavior. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.


Subject(s)
Connectome , Microscopy , Animals , Connectome/methods , Synapses/physiology , Drosophila , Tissue Expansion
9.
Nat Commun ; 12(1): 5245, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34475396

ABSTRACT

State-of-the-art silicon probes for electrical recording from neurons have thousands of recording sites. However, due to volume limitations there are typically many fewer wires carrying signals off the probe, which restricts the number of channels that can be recorded simultaneously. To overcome this fundamental constraint, we propose a method called electrode pooling that uses a single wire to serve many recording sites through a set of controllable switches. Here we present the framework behind this method and an experimental strategy to support it. We then demonstrate its feasibility by implementing electrode pooling on the Neuropixels 1.0 electrode array and characterizing its effect on signal and noise. Finally we use simulations to explore the conditions under which electrode pooling saves wires without compromising the content of the recordings. We make recommendations on the design of future devices to take advantage of this strategy.


Subject(s)
Electrodes, Implanted , Electrophysiology/methods , Extracellular Space/physiology , Silicon/chemistry , Action Potentials , Animals , Brain/physiology , Electrophysiology/instrumentation , Equipment Design , Mice , Nerve Net/physiology , Neurons/physiology , Signal Processing, Computer-Assisted
10.
Science ; 372(6539)2021 04 16.
Article in English | MEDLINE | ID: mdl-33859006

ABSTRACT

Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.


Subject(s)
Brain/physiology , Electrodes, Implanted , Electrophysiology/instrumentation , Microelectrodes , Neurons/physiology , Action Potentials , Algorithms , Animals , Electrophysiology/methods , Male , Mice , Mice, Inbred C57BL , Miniaturization , Rats
11.
PLoS One ; 15(12): e0236495, 2020.
Article in English | MEDLINE | ID: mdl-33382698

ABSTRACT

The fruit fly Drosophila melanogaster is an important model organism for neuroscience with a wide array of genetic tools that enable the mapping of individual neurons and neural subtypes. Brain templates are essential for comparative biological studies because they enable analyzing many individuals in a common reference space. Several central brain templates exist for Drosophila, but every one is either biased, uses sub-optimal tissue preparation, is imaged at low resolution, or does not account for artifacts. No publicly available Drosophila ventral nerve cord template currently exists. In this work, we created high-resolution templates of the Drosophila brain and ventral nerve cord using the best-available technologies for imaging, artifact correction, stitching, and template construction using groupwise registration. We evaluated our central brain template against the four most competitive, publicly available brain templates and demonstrate that ours enables more accurate registration with fewer local deformations in shorter time.


Subject(s)
Brain/anatomy & histology , Drosophila melanogaster/anatomy & histology , Nerve Tissue/anatomy & histology , Neurons/ultrastructure , Animals , Brain/ultrastructure , Drosophila melanogaster/ultrastructure , Female , Image Processing, Computer-Assisted/statistics & numerical data , Male , Microscopy, Confocal , Microscopy, Electron , Nerve Tissue/ultrastructure
12.
Science ; 363(6424)2019 01 18.
Article in English | MEDLINE | ID: mdl-30655415

ABSTRACT

Optical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire Drosophila brain. These included synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly brain region. The technology should enable statistically rich, large-scale studies of neural development, sexual dimorphism, degree of stereotypy, and structural correlations to behavior or neural activity, all with molecular contrast.


Subject(s)
Brain/diagnostic imaging , Nanotechnology , Neuroimaging/methods , Optical Imaging/methods , Animals , Axons , Dendritic Spines , Drosophila , Female , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Kidney/diagnostic imaging , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence , Phantoms, Imaging , Somatosensory Cortex/diagnostic imaging , Synapses
13.
Nat Neurosci ; 21(3): 353-363, 2018 03.
Article in English | MEDLINE | ID: mdl-29459763

ABSTRACT

CA1 pyramidal neurons are a major output of the hippocampus and encode features of experience that constitute episodic memories. Feature-selective firing of these neurons results from the dendritic integration of inputs from multiple brain regions. While it is known that synchronous activation of spatially clustered inputs can contribute to firing through the generation of dendritic spikes, there is no established mechanism for spatiotemporal synaptic clustering. Here we show that single presynaptic axons form multiple, spatially clustered inputs onto the distal, but not proximal, dendrites of CA1 pyramidal neurons. These compound connections exhibit ultrastructural features indicative of strong synapses and occur much more commonly in entorhinal than in thalamic afferents. Computational simulations revealed that compound connections depolarize dendrites in a biophysically efficient manner, owing to their inherent spatiotemporal clustering. Our results suggest that distinct afferent projections use different connectivity motifs that differentially contribute to dendritic integration.


Subject(s)
Axons/physiology , CA1 Region, Hippocampal/physiology , Dendrites/physiology , Pyramidal Cells/pathology , Synapses/physiology , Animals , Axons/ultrastructure , CA1 Region, Hippocampal/ultrastructure , Computer Simulation , Dendrites/ultrastructure , Excitatory Postsynaptic Potentials , Male , Mice , Mice, Inbred C57BL , Neurons, Afferent/physiology , Neurons, Afferent/ultrastructure , Presynaptic Terminals/physiology , Presynaptic Terminals/ultrastructure , Pyramidal Cells/ultrastructure , Synapses/ultrastructure , Thalamus/cytology , Thalamus/physiology
14.
Neuron ; 89(5): 1016-30, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26898780

ABSTRACT

Neuronal circuit function is governed by precise patterns of connectivity between specialized groups of neurons. The diversity of GABAergic interneurons is a hallmark of cortical circuits, yet little is known about their targeting to individual postsynaptic dendrites. We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branch-selective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation.


Subject(s)
CA1 Region, Hippocampal/cytology , Dendrites/physiology , Neural Inhibition/physiology , Neurons/cytology , Neurons/physiology , Action Potentials/drug effects , Action Potentials/genetics , Action Potentials/physiology , Animals , Computer Simulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Models, Neurological , Neural Inhibition/drug effects , Neural Inhibition/genetics , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Parvalbumins/genetics , Parvalbumins/metabolism , Somatostatin/genetics , Somatostatin/metabolism , Synapses/metabolism , Synapses/physiology , Synapses/ultrastructure , Vesicular Inhibitory Amino Acid Transport Proteins/genetics , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
15.
Front Neural Circuits ; 7: 177, 2013.
Article in English | MEDLINE | ID: mdl-24273494

ABSTRACT

The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT), a high-resolution optical microscopy method, to examine thalamocortical (TC) input onto layer 5 pyramidal neurons. We first verified the ability of AT to identify synapses using parallel electron microscopic analysis of TC synapses in layer 4. We then use large-scale array tomography (LSAT) to measure TC synapse distribution on L5 pyramidal neurons in a 1.00 × 0.83 × 0.21 mm(3) volume of mouse somatosensory cortex. We found that TC synapses primarily target basal dendrites in layer 5, but also make a considerable input to proximal apical dendrites in L4, consistent with previous work. Our analysis further suggests that TC inputs are biased toward certain branches and, within branches, synapses show significant clustering with an excess of TC synapse nearest neighbors within 5-15 µm compared to a random distribution. Thus, we show that AT is a sensitive and quantitative method to map specific types of synaptic input on the dendrites of entire neurons. We anticipate that this technique will be of wide utility for mapping functionally-relevant anatomical connectivity in neural circuits.


Subject(s)
Cerebral Cortex/physiology , Pyramidal Cells/physiology , Synapses/physiology , Thalamus/physiology , Tomography/methods , Animals , Dendrites/physiology , Mice , Microscopy, Electron/methods , Microscopy, Fluorescence/methods , Neural Pathways/physiology
16.
Science ; 320(5872): 106-9, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18388294

ABSTRACT

The full promise of human genomics will be realized only when the genomes of thousands of individuals can be sequenced for comparative analysis. A reference sequence enables the use of short read length. We report an amplification-free method for determining the nucleotide sequence of more than 280,000 individual DNA molecules simultaneously. A DNA polymerase adds labeled nucleotides to surface-immobilized primer-template duplexes in stepwise fashion, and the asynchronous growth of individual DNA molecules was monitored by fluorescence imaging. Read lengths of >25 bases and equivalent phred software program quality scores approaching 30 were achieved. We used this method to sequence the M13 virus to an average depth of >150x and with 100% coverage; thus, we resequenced the M13 genome with high-sensitivity mutation detection. This demonstrates a strategy for high-throughput low-cost resequencing.


Subject(s)
Bacteriophage M13/genetics , DNA, Viral/genetics , Genome, Viral , Sequence Analysis, DNA/methods , Algorithms , Computational Biology/methods , DNA Primers , DNA, Viral/chemistry , Mutation , Sequence Alignment , Software , Templates, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL