Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Exp Bot ; 75(5): 1252-1264, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38015983

ABSTRACT

Roses have been domesticated since antiquity for their therapeutic, cosmetic, and ornamental properties. Their floral fragrance has great economic value, which has influenced the production of rose varieties. The production of rose water and essential oil is one of the most lucrative activities, supplying bioactive molecules to the cosmetic, pharmaceutical, and therapeutic industries. In recent years, major advances in molecular genetics, genomic, and biochemical tools have paved the way for the identification of molecules that make up the specific fragrance of various rose cultivars. The aim of this review is to highlight current knowledge on metabolite profiles, and more specifically on fragrance compounds, as well as the specificities and differences between rose species and cultivars belonging to different rose sections and how they contribute to modern roses fragrance.


Subject(s)
Genomics , Odorants , Flowers/genetics
2.
J Integr Plant Biol ; 62(2): 228-246, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30920733

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR), whose growth is stimulated by root exudates, are able to improve plant growth and health. Among those, bacteria of the genus Azospirillum were shown to affect root secondary metabolite content in rice and maize, sometimes without visible effects on root architecture. Transcriptomic studies also revealed that expression of several genes involved in stress and plant defense was affected, albeit with fewer genes when a strain was inoculated onto its original host cultivar. Here, we investigated, via a metabolic profiling approach, whether rice roots responded differently and with gradual intensity to various PGPR, isolated from rice or not. A common metabolomic signature of nine compounds was highlighted, with the reduced accumulation of three alkylresorcinols and increased accumulation of two hydroxycinnamic acid amides (HCAA), identified as N-p-coumaroylputrescine and N-feruloylputrescine. This was accompanied by the increased transcription of two genes involved in the N-feruloylputrescine biosynthetic pathway. Interestingly, exposure to a rice bacterial pathogen triggered a reduced accumulation of these HCAA in roots, a result contrasting with previous reports of increased HCAA content in leaves upon pathogen infection. Accumulation of HCAA, that are potential antimicrobial compounds, might be considered as a primary reaction of plant to bacterial perception.


Subject(s)
Metabolomics/methods , Oryza/genetics , Plant Leaves/metabolism , Plant Roots/metabolism , Coumaric Acids/metabolism , Plant Leaves/genetics , Plant Roots/genetics , Putrescine/analogs & derivatives , Putrescine/metabolism
3.
J Biol Chem ; 293(21): 7930-7941, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29602905

ABSTRACT

The bacterial plant pathogen Agrobacterium fabrum uses periplasmic-binding proteins (PBPs) along with ABC transporters to import a wide variety of plant molecules as nutrients. Nonetheless, how A. fabrum acquires plant metabolites is incompletely understood. Using genetic approaches and affinity measurements, we identified here the PBP MelB and its transporter as being responsible for the uptake of the raffinose family of oligosaccharides (RFO), which are the most widespread d-galactose-containing oligosaccharides in higher plants. We also found that the RFO precursor galactinol, recently described as a plant defense molecule, is imported into Agrobacterium via MelB with nanomolar range affinity. Structural analyses and binding mode comparisons of the X-ray structures of MelB in complex with raffinose, stachyose, galactinol, galactose, and melibiose (a raffinose degradation product) revealed how MelB recognizes the nonreducing end galactose common to all these ligands and that MelB has a strong preference for a two-unit sugar ligand. Of note, MelB conferred a competitive advantage to A. fabrum in colonizing the rhizosphere of tomato plants. Our integrative work highlights the structural and functional characteristics of melibiose and galactinol assimilation by A. fabrum, leading to a competitive advantage for these bacteria in the rhizosphere. We propose that the PBP MelB, which is highly conserved among both symbionts and pathogens from Rhizobiace family, is a major trait in these bacteria required for early steps of plant colonization.


Subject(s)
Agrobacterium tumefaciens/metabolism , Bacterial Proteins/metabolism , Disaccharides/metabolism , Nutrients/metabolism , Plants/microbiology , Agrobacterium tumefaciens/growth & development , Agrobacterium tumefaciens/isolation & purification , Bacterial Proteins/chemistry , Crystallography, X-Ray , Protein Conformation
4.
Mol Microbiol ; 108(6): 683-696, 2018 06.
Article in English | MEDLINE | ID: mdl-29624763

ABSTRACT

Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia. In our previous work, we reconstructed the metabolic models of this species along with two other mycoplasmas from the respiratory tract of swine: Mycoplasma hyorhinis, considered less pathogenic but which nonetheless causes disease and Mycoplasma flocculare, a commensal bacterium. We identified metabolic differences that partially explained their different levels of pathogenicity. One important trait was the production of hydrogen peroxide from the glycerol metabolism only in the pathogenic species. Another important feature was a pathway for the metabolism of myo-inositol in M. hyopneumoniae. Here, we tested these traits to understand their relation to the different levels of pathogenicity, comparing not only the species but also pathogenic and attenuated strains of M. hyopneumoniae. Regarding the myo-inositol metabolism, we show that only M. hyopneumoniae assimilated this carbohydrate and remained viable when myo-inositol was the primary energy source. Strikingly, only the two pathogenic strains of M. hyopneumoniae produced hydrogen peroxide in complex medium. We also show that this production was dependent on the presence of glycerol. Although further functional tests are needed, we present in this work two interesting metabolic traits of M. hyopneumoniae that might be directly related to its enhanced virulence.


Subject(s)
Hydrogen Peroxide/metabolism , Inositol/metabolism , Mycoplasma hyopneumoniae/metabolism , Mycoplasma hyopneumoniae/pathogenicity , Pneumonia of Swine, Mycoplasmal/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mycoplasma hyopneumoniae/genetics , Species Specificity , Swine , Virulence
5.
Environ Microbiol ; 21(12): 4662-4674, 2019 12.
Article in English | MEDLINE | ID: mdl-31464044

ABSTRACT

Aedes albopictus is a vector of arboviruses and filarial nematodes. Originating from Asia, this mosquito has rapidly expanded its geographical distribution and colonized areas across both temperate and tropical regions. Due to the increase in insecticide resistance, the use of environmentally friendly vector control methods is encouraged worldwide. Using methods based on semiochemicals in baited traps are promising for management of mosquito populations. Interestingly, human skin microbiota was shown to generate volatile compounds that attract the mosquito species Anopheles gambiae and Aedes aegypti. Here, we investigated the composition of skin bacteria from different volunteers and the attractive potential of individual isolates to nulliparous Ae. albopictus females. We showed that three out of 16 tested isolates were more attractive and two were more repulsive. We identified dodecenol as being preferentially produced by attractive isolates and 2-methyl-1-butanol (and to a lesser extent 3-methyl-1-butanol) as being overproduced by these isolates compared with the other ones. Those bacterial volatile organic compounds represent promising candidates but further studies are needed to evaluate their potential application for baited traps improvement.


Subject(s)
Aedes/physiology , Anopheles/physiology , Bacteria/isolation & purification , Skin/microbiology , Skin/parasitology , Adult , Animals , Bacteria/chemistry , Bacteria/classification , Bacteria/metabolism , Feeding Behavior , Female , Humans , Insecticide Resistance , Male , Microbiota , Mosquito Vectors/physiology , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism
6.
Int J Mol Sci ; 20(22)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744149

ABSTRACT

Phenolic compounds are implied in plant-microorganisms interaction and may be induced in response to plant growth-promoting rhizobacteria (PGPRs). Among PGPR, the beneficial bacterium Paraburkholderia phytofirmans PsJN was previously described to stimulate the growth of plants and to induce a better adaptation to both abiotic and biotic stresses. This study aimed to investigate the impact of PsJN on grapevine secondary metabolism. For this purpose, gene expression (qRT-PCR) and profiling of plant secondary metabolites (UHPLC-UV/DAD-MS QTOF) from both grapevine root and leaves were compared between non-bacterized and PsJN-bacterized grapevine plantlets. Our results showed that PsJN induced locally (roots) and systemically (leaves) an overexpression of PAL and STS and specifically in leaves the overexpression of all the genes implied in phenylpropanoid and flavonoid pathways. Moreover, the metabolomic approach revealed that relative amounts of 32 and 17 compounds in roots and leaves, respectively, were significantly modified by PsJN. Once identified to be accumulated in response to PsJN by the metabolomic approach, antifungal properties of purified molecules were validated in vitro for their antifungal effect on Botrytis cinerea spore germination. Taking together, our findings on the impact of PsJN on phenolic metabolism allowed us to identify a supplementary biocontrol mechanism developed by this PGPR to induce plant resistance against pathogens.


Subject(s)
Burkholderiaceae/physiology , Polyphenols/metabolism , Vitis/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Botrytis/physiology , Chromatography, High Pressure Liquid , Discriminant Analysis , Flavonoids/analysis , Flavonoids/metabolism , Flavonoids/pharmacology , Gene Expression Regulation, Plant , Mass Spectrometry , Metabolome , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Plant Roots/microbiology , Polyphenols/analysis , Polyphenols/pharmacology , Principal Component Analysis , Spores, Fungal/drug effects , Vitis/chemistry , Vitis/growth & development
7.
Mol Plant Microbe Interact ; 31(8): 814-822, 2018 08.
Article in English | MEDLINE | ID: mdl-29460677

ABSTRACT

Regulatory factors are key components for the transition between different lifestyles to ensure rapid and appropriate gene expression upon perceiving environmental cues. Agrobacterium fabrum C58 (formerly called A. tumefaciens C58) has two contrasting lifestyles: it can interact with plants as either a rhizosphere inhabitant (rhizospheric lifestyle) or a pathogen that creates its own ecological niche in a plant tumor via its tumor-inducing plasmid (pathogenic lifestyle). Hydroxycinnamic acids are known to play an important role in the pathogenic lifestyle of Agrobacterium spp. but can be degraded in A. fabrum species. We investigated the molecular and ecological mechanisms involved in the regulation of A. fabrum species-specific genes responsible for hydroxycinnamic acid degradation. We characterized the effectors (feruloyl-CoA and p-coumaroyl-CoA) and the DNA targets of the MarR transcriptional repressor, which we named HcaR, which regulates hydroxycinnamic acid degradation. Using an hcaR-deleted strain, we further revealed that hydroxycinnamic acid degradation interfere with virulence gene expression. The HcaR deletion mutant shows a contrasting competitive colonization ability, being less abundant than the wild-type strain in tumors but more abundant in the rhizosphere. This supports the view that A. fabrum C58 HcaR regulation through ferulic and p-coumaric acid perception is important for the transition between lifestyles.


Subject(s)
Agrobacterium/physiology , Coumaric Acids/metabolism , Agrobacterium/genetics , Bacterial Proteins , Coumaric Acids/chemistry , DNA , Extinction, Biological , Gene Deletion , Gene Expression Regulation, Bacterial , Molecular Structure , Protein Binding
8.
J Chem Ecol ; 44(12): 1146-1157, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30294748

ABSTRACT

Sphagnum mosses mediate long-term carbon accumulation in peatlands. Given their functional role as keystone species, it is important to consider their responses to ecological gradients and environmental changes through the production of phenolics. We compared the extent to which Sphagnum phenolic production was dependent on species, microhabitats and season, and how surrounding dwarf shrubs responded to Sphagnum phenolics. We evaluated the phenolic profiles of aqueous extracts of Sphagnum fallax and Sphagnum magellanicum over a 6-month period in two microhabitats (wet lawns versus dry hummocks) in a French peatland. Phenolic profiles of water-soluble extracts were measured by UHPLC-QTOF-MS. Andromeda polifolia mycorrhizal colonization was quantified by assessing the intensity of global root cortex colonization. Phenolic profiles of both Sphagnum mosses were species-, season- and microhabitat- dependant. Sphagnum-derived acids were the phenolics mostly recovered; relative quantities were 2.5-fold higher in S. fallax than in S. magellanicum. Microtopography and vascular plant cover strongly influenced phenolic profiles, especially for minor metabolites present in low abundance. Higher mycorrhizal colonization of A. polifolia was found in lawns as compared to hummocks. Mycorrhizal abundance, in contrast to environmental parameters, was correlated with production of minor phenolics in S. fallax. Our results highlight the close interaction between mycorrhizae such as those colonizing A. polifolia and the release of Sphagnum phenolic metabolites and suggest that Sphagnum-derived acids and minor phenolics play different roles in this interaction. This work provides new insight into the ecological role of Sphagnum phenolics by proposing a strong association with mycorrhizal colonization of shrubs.


Subject(s)
Ericaceae/growth & development , Mycorrhizae/growth & development , Sphagnopsida/chemistry , Chromatography, High Pressure Liquid , Ecosystem , Ericaceae/microbiology , Phenols/analysis , Phenols/chemistry , Plant Roots/metabolism , Plant Roots/microbiology , Principal Component Analysis , Seasons , Soil/chemistry , Spectrometry, Mass, Electrospray Ionization , Sphagnopsida/metabolism , Water/chemistry
9.
Environ Microbiol ; 18(2): 644-55, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26411284

ABSTRACT

Nitrogen (N) is considered as a main limiting factor in plant growth, and nitrogen losses through denitrification can be responsible for severe decreases in plant productivity. Recently, it was demonstrated that Fallopia spp. is responsible for biological denitrification inhibition (BDI) through the release of unknown secondary metabolites. Here, we investigate the secondary metabolites involved in the BDI of Fallopia spp. The antioxidant, protein precipitation capability of Fallopia spp. extracts was measured in relation to the aerobic respiration and denitrification of two bacteria (Gram positive and Gram negative). Proanthocyanidin concentrations were estimated. Proanthocyanidins in extracts were characterized by chromatographic analysis, purified and tested on the bacterial denitrification and aerobic respiration of two bacterial strains. The effect of commercial procyanidins on denitrification was tested on two different soil types. Denitrification and aerobic respiration inhibition were correlated with protein precipitation capacity and concentration of proanthocyanidins but not to antioxidant capacity. These proanthocyanidins were B-type procyanidins that inhibited denitrification more than the aerobic respiration of bacteria. In addition, procyanidins also inhibited soil microbial denitrification. We demonstrate that procyanidins are involved in the BDI of Fallopia spp. Our results pave the way to a better understanding of plant-microbe interactions and highlight future applications for a more sustainable agriculture.


Subject(s)
Biflavonoids/metabolism , Catechin/metabolism , Denitrification/physiology , Fallopia/metabolism , Nitrogen/metabolism , Proanthocyanidins/metabolism , Agriculture , Antioxidants/physiology , Biflavonoids/pharmacology , Catechin/pharmacology , Fallopia/genetics , Proanthocyanidins/pharmacology , Soil/chemistry , Soil Microbiology
10.
Planta ; 242(6): 1439-52, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26303982

ABSTRACT

MAIN CONCLUSION: Profiling of plant secondary metabolite allows to differentiate the different types of ecological interactions established between rice and bacteria. Rice responds to ecologically distinct bacteria by altering its content of flavonoids and hydroxycinnamic acid derivatives. Plants' growth and physiology are strongly influenced by the biotic interactions that plants establish with soil bacterial populations. Plants are able to sense and to respond accordingly to ecologically distinct bacteria, by inducing defense pathways against pathogens to prevent parasitic interactions, and by stimulating the growth of root-associated beneficial or commensal bacteria through root exudation. Plant secondary metabolism is expected to play a major role in this control. However, secondary metabolite responses of a same plant to cooperative, commensal and deleterious bacteria have so far never been compared. The impact of the plant growth-promoting rhizobacteria (PGPR) Azospirillum lipoferum 4B on the secondary metabolite profiles of two Oryza sativa L. cultivars (Cigalon and Nipponbare) was compared to that of a rice pathogen Burkholderia glumae AU6208, the causing agent of bacterial panicle blight and of a commensal environmental bacteria Escherichia coli B6. Root and shoot rice extracts were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC). Principal component analyses (PCAs) pinpointed discriminant secondary metabolites, which were characterized by mass spectrometry. Direct comparison of metabolic profiles evidenced that each bacterial ecological interaction induced distinct qualitative and quantitative modifications of rice secondary metabolism, by altering the content of numerous flavonoid compounds and hydroxycinnamic acid (HCA) derivatives. Secondary metabolism varied according to the cultivars and the interaction types, demonstrating the relevance of secondary metabolic profiling for studying plant-bacteria biotic interactions.


Subject(s)
Bacterial Physiological Phenomena , Oryza/metabolism , Oryza/microbiology , Azospirillum lipoferum/physiology , Burkholderia/physiology , Escherichia coli/physiology , Gene Expression Regulation, Plant , Plant Roots/metabolism , Plant Roots/microbiology , Secondary Metabolism
11.
Appl Environ Microbiol ; 80(11): 3341-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24657856

ABSTRACT

The soil- and rhizosphere-inhabiting bacterium Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to have species-specific genes involved in ferulic acid degradation. Here, we characterized, by genetic and analytical means, intermediates of degradation as feruloyl coenzyme A (feruloyl-CoA), 4-hydroxy-3-methoxyphenyl-ß-hydroxypropionyl-CoA, 4-hydroxy-3-methoxyphenyl-ß-ketopropionyl-CoA, vanillic acid, and protocatechuic acid. The genes atu1416, atu1417, and atu1420 have been experimentally shown to be necessary for the degradation of ferulic acid. Moreover, the genes atu1415 and atu1421 have been experimentally demonstrated to be essential for this degradation and are proposed to encode a phenylhydroxypropionyl-CoA dehydrogenase and a 4-hydroxy-3-methoxyphenyl-ß-ketopropionic acid (HMPKP)-CoA ß-keto-thiolase, respectively. We thus demonstrated that the A. fabrum hydroxycinnamic degradation pathway is an original coenzyme A-dependent ß-oxidative deacetylation that could also transform p-coumaric and caffeic acids. Finally, we showed that this pathway enables the metabolism of toxic compounds from plants and their use for growth, likely providing the species an ecological advantage in hydroxycinnamic-rich environments, such as plant roots or decaying plant materials.


Subject(s)
Agrobacterium/metabolism , Coenzyme A/metabolism , Coumaric Acids/metabolism , Metabolic Networks and Pathways/genetics , Agrobacterium/genetics , Biotransformation , Hydroxybenzoates/metabolism , Plants/microbiology
12.
New Phytol ; 204(3): 620-630, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25059468

ABSTRACT

Previous studies on the effect of secondary metabolites on the functioning of rhizosphere microbial communities have often focused on aspects of the nitrogen (N) cycle but have overlooked biological denitrification inhibition (BDI), which can affect plant N-nutrition. Here, we investigated the BDI by the compounds of Fallopia spp., an invasive weed shown to be associated with a low potential denitrification of the soil. Fallopia spp. extracts were characterized by chromatographic analysis and were used to test the BDI effects on the metabolic and respiratory activities of denitrifying bacteria, under aerobic and anaerobic (denitrification) conditions. The BDI of Fallopia spp. extracts was tested on a complex soil community by measuring denitrification enzyme activity (DEA), substrate induced respiration (SIR), as well as abundances of denitrifiers and total bacteria. In 15 strains of denitrifying bacteria, extracts led to a greater BDI (92%) than respiration inhibition (50%). Anaerobic metabolic activity reduction was correlated with catechin concentrations and the BDI was dose dependent. In soil, extracts reduced the DEA/SIR ratio without affecting the denitrifiers: total bacteria ratio. We show that secondary metabolite(s) from Fallopia spp. inhibit denitrification. This provides new insight into plant-soil interactions and improves our understanding of a plant's ability to shape microbial soil functioning.


Subject(s)
Denitrification/physiology , Plant Extracts/chemistry , Polygonaceae/metabolism , Pseudomonas/drug effects , Aerobiosis , Anaerobiosis , Biological Assay , Introduced Species , Kinetics , Molecular Structure , Oxygen Consumption , Plant Weeds , Pseudomonas/classification , Pseudomonas/genetics , Soil/chemistry
13.
Plant Cell Environ ; 37(5): 1114-29, 2014 May.
Article in English | MEDLINE | ID: mdl-24131360

ABSTRACT

Secondary metabolism plant glycosyltransferases (UGTs) ensure conjugation of sugar moieties to secondary metabolites (SMs) and glycosylation contributes to the great diversity, reactivity and regulation of SMs. UGT73B3 and UGT73B5, two UGTs of Arabidopsis thaliana (Arabidopsis), are involved in the hypersensitive response (HR) to the avirulent bacteria Pseudomonas syringae pv. tomato (Pst-AvrRpm1), but their function in planta is unknown. Here, we report that ugt73b3, ugt73b5 and ugt73b3 ugt73b5 T-DNA insertion mutants exhibited an accumulation of reactive oxygen species (ROS), an enhanced cell death during the HR to Pst-AvrRpm1, whereas glutathione levels increased in the single mutants. In silico analyses indicate that UGT73B3 and UGT73B5 belong to the early salicylic acid (SA)-induced genes whose pathogen-induced expression is co-regulated with genes related to cellular redox homeostasis and general detoxification. Analyses of metabolic alterations in ugt mutants reveal modification of SA and scopoletin contents which correlate with redox perturbation, and indicate quantitative modifications in the pattern of tryptophan-derived SM accumulation after Pst-AvrRpm1 inoculation. Our data suggest that UGT73B3 and UGT73B5 participate in regulation of redox status and general detoxification of ROS-reactive SMs during the HR to Pst-AvrRpm1, and that decreased resistance to Pst-AvrRpm1 in ugt mutants is tightly linked to redox perturbation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/microbiology , Disease Resistance/immunology , Glucosyltransferases/metabolism , Pseudomonas syringae/physiology , Secondary Metabolism , Arabidopsis/cytology , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Ascorbic Acid/metabolism , Base Sequence , Cell Death , Computer Simulation , Disease Resistance/drug effects , Electrolytes/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Glucosyltransferases/genetics , Glutathione/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Indoles/metabolism , Molecular Sequence Data , Mutation/genetics , Nucleotide Motifs/genetics , Oxidation-Reduction/drug effects , Plant Diseases/immunology , Plant Diseases/microbiology , Promoter Regions, Genetic/genetics , Pseudomonas syringae/drug effects , Pseudomonas syringae/growth & development , Reactive Oxygen Species/metabolism , Salicylic Acid/pharmacology , Scopoletin/metabolism , Secondary Metabolism/drug effects , Secondary Metabolism/genetics , Thiazoles/metabolism
14.
Mol Plant Microbe Interact ; 26(5): 495-502, 2013 May.
Article in English | MEDLINE | ID: mdl-23360460

ABSTRACT

Plant-beneficial effects of bacteria are often underestimated, especially for well-studied strains associated with pathogenicity or originating from other environments. We assessed the impact of seed inoculation with the emblematic bacterial models Agrobacterium tumefaciens C58 (plasmid-cured) or Escherichia coli K-12 on maize seedlings in nonsterile soil. Compared with the noninoculated control, root biomass (with A. tumefaciens or E. coli) and shoot biomass (with A. tumefaciens) were enhanced at 10 days for 'PR37Y15' but not 'DK315', as found with the phytostimulator Azospirillum brasilense UAP-154 (positive control). In roots as well as in shoots, Agrobacterium tumefaciens and E. coli triggered similar (in PR37Y15) or different (in DK315) changes in the high-performance liquid chromatography profiles of secondary metabolites (especially benzoxazinoids), distinct from those of Azospirillum brasilense UAP-154. Genome sequence analysis revealed homologs of nitrite reductase genes nirK and nirBD and siderophore synthesis genes for Agrobacterium tumefaciens, as well as homologs of nitrite reductase genes nirBD and phosphatase genes phoA and appA in E. coli, whose contribution to phytostimulation will require experimental assessment. In conclusion, the two emblematic bacterial models had a systemic impact on maize secondary metabolism and resulted in unexpected phytostimulation of seedlings in the Azospirillum sp.-responsive cultivar.


Subject(s)
Agrobacterium tumefaciens/physiology , Escherichia coli/physiology , Seeds/microbiology , Zea mays/microbiology , Biomass , Nitrite Reductases/metabolism , Plant Roots/microbiology , Plant Shoots/microbiology , Seedlings/microbiology
15.
Appl Microbiol Biotechnol ; 97(10): 4639-49, 2013 May.
Article in English | MEDLINE | ID: mdl-22805783

ABSTRACT

Azospirillum are prominent plant growth-promoting rhizobacteria (PGPR) extensively used as phytostimulatory crop inoculants, but only few studies are dealing with Azospirillum-containing mixed inocula involving more than two microorganisms. We compared here three prominent Azospirillum strains as part of three-component consortia including also the PGPR Pseudomonas fluorescens F113 and a mycorrhizal inoculant mix composed of three Glomus strains. Inoculant colonization of maize was assessed by quantitative PCR, transcription of auxin synthesis gene ipdC (involved in phytostimulation) in Azospirillum by RT-PCR, and effects on maize by secondary metabolic profiling and shoot biomass measurements. Results showed that phytostimulation by all the three-component consortia was comparable, despite contrasted survival of the Azospirillum strains and different secondary metabolic responses of maize to inoculation. Unexpectedly, the presence of Azospirillum in the inoculum resulted in lower phytostimulation in comparison with the Pseudomonas-Glomus two-component consortium, but this effect was transient. Azospirillum's ipdC gene was transcribed in all treatments, especially with three-component consortia, but not with all plants and samplings. Inoculation had no negative impact on the prevalence of mycorrhizal taxa in roots. In conclusion, this study brought new insights in the functioning of microbial consortia and showed that Azospirillum-Pseudomonas-Glomus three-component inoculants may be useful in environmental biotechnology for maize growth promotion.


Subject(s)
Azospirillum/physiology , Glomeromycota/physiology , Pseudomonas/physiology , Zea mays/growth & development , Azospirillum/isolation & purification , Real-Time Polymerase Chain Reaction , Zea mays/microbiology
16.
Metabolites ; 12(3)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35323679

ABSTRACT

Plant roots exude a wide variety of secondary metabolites able to attract and/or control a large diversity of microbial species. In return, among the root microbiota, some bacteria can promote plant development. Among these, Pseudomonas are known to produce a wide diversity of secondary metabolites that could have biological activity on the host plant and other soil microorganisms. We previously showed that wheat can interfere with Pseudomonas secondary metabolism production through its root metabolites. Interestingly, production of Pseudomonas bioactive metabolites, such as phloroglucinol, phenazines, pyrrolnitrin, or acyl homoserine lactones, are modified in the presence of wheat root extracts. A new cross metabolomic approach was then performed to evaluate if wheat metabolic interferences on Pseudomonas secondary metabolites production have consequences on wheat metabolome itself. Two different Pseudomonas strains were conditioned by wheat root extracts from two genotypes, leading to modification of bacterial secondary metabolites production. Bacterial cells were then inoculated on each wheat genotypes. Then, wheat root metabolomes were analyzed by untargeted metabolomic, and metabolites from the Adular genotype were characterized by molecular network. This allows us to evaluate if wheat differently recognizes the bacterial cells that have already been into contact with plants and highlights bioactive metabolites involved in wheat-Pseudomonas interaction.

17.
Microbiology (Reading) ; 157(Pt 6): 1694-1705, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21273247

ABSTRACT

Pseudomonads producing the antimicrobial metabolite 2,4-diacetylphloroglucinol (Phl) can control soil-borne phytopathogens, but their impact on other plant-beneficial bacteria remains poorly documented. Here, the effects of synthetic Phl and Phl(+) Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators were investigated. Most A. brasilense strains were moderately sensitive to Phl. In vitro, Phl induced accumulation of carotenoids and poly-ß-hydroxybutyrate-like granules, cytoplasmic membrane damage and growth inhibition in A. brasilense Cd. Experiments with P. fluorescens F113 and a Phl(-) mutant indicated that Phl production ability contributed to in vitro growth inhibition of A. brasilense Cd and Sp245. Under gnotobiotic conditions, each of the three strains, P. fluorescens F113 and A. brasilense Cd and Sp245, stimulated wheat growth. Co-inoculation of A. brasilense Sp245 and Pseudomonas resulted in the same level of phytostimulation as in single inoculations, whereas it abolished phytostimulation when A. brasilense Cd was used. Pseudomonas Phl production ability resulted in lower Azospirillum cell numbers per root system (based on colony counts) and restricted microscale root colonization of neighbouring Azospirillum cells (based on confocal microscopy), regardless of the A. brasilense strain used. Therefore, this work establishes that Phl(+) pseudomonads have the potential to interfere with A. brasilense phytostimulators on roots and with their plant growth promotion capacity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azospirillum brasilense/drug effects , Azospirillum brasilense/metabolism , Pest Control, Biological , Pseudomonas fluorescens/metabolism , Triticum/growth & development , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Azospirillum brasilense/growth & development , Carotenoids/metabolism , Carotenoids/pharmacology , Hydroxybutyrates/metabolism , Hydroxybutyrates/pharmacology , Phloroglucinol/analogs & derivatives , Phloroglucinol/chemical synthesis , Phloroglucinol/metabolism , Phloroglucinol/pharmacology , Plant Growth Regulators/metabolism , Plant Roots/growth & development , Plant Roots/microbiology , Polyesters/metabolism , Polyesters/pharmacology , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/growth & development , Triticum/drug effects , Triticum/microbiology
18.
New Phytol ; 189(2): 494-506, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20946131

ABSTRACT

Most Azospirillum plant growth-promoting rhizobacteria (PGPR) benefit plant growth through source effects related to free nitrogen fixation and/or phytohormone production, but little is known about their potential effects on plant physiology. These effects were assessed by comparing the early impacts of three Azospirillum inoculant strains on secondary metabolite profiles of two different maize (Zea mays) cultivars. After 10d of growth in nonsterile soil, maize methanolic extracts were analyzed by reverse-phase high-performance liquid chromatography (RP-HPLC) and secondary metabolites identified by liquid chromatography/mass spectrometry (LC/MS) and nuclear magnetic resonance (NMR). Seed inoculation resulted in increased shoot biomass (and also root biomass with one strain) of hybrid PR37Y15 but had no stimulatory effect on hybrid DK315. In parallel, Azospirillum inoculation led to major qualitative and quantitative modifications of the contents of secondary metabolites, especially benzoxazinoids, in the maize plants. These modifications depended on the PGPR strain×plant cultivar combination. Thus, Azospirillum inoculation resulted in early, strain-dependent modifications in the biosynthetic pathways of benzoxazine derivatives in maize in compatible interactions. This is the first study documenting a PGPR effect on plant secondary metabolite profiles, and suggests the establishment of complex interactions between Azospirillum PGPR and maize.


Subject(s)
Azospirillum/physiology , Metabolomics/methods , Zea mays/growth & development , Zea mays/microbiology , Biomass , Biosynthetic Pathways , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Magnetic Resonance Spectroscopy , Mass Spectrometry , Metabolome , Species Specificity , Zea mays/metabolism
19.
Molecules ; 16(3): 2323-33, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21394077

ABSTRACT

We report the identification of the allelochemical 3-(1-oxo-3-phenylpropyl)-1,1,5-trimethylcyclo-hexane-2,4,6-trione, known as myrigalone A, from the fruits and leaves of Myrica gale. The structure of the compound was confirmed by high-resolution techniques (UV, MS and NMR analysis). The compound is phytotoxic towards classical plant species used for allelochemical assays and also against Fallopia x bohemica, a highly invasive plant. Application of either powdered dry leaves or dry fruits of M. gale also showed in vitro phytotoxic activity. We hypothesize that M. gale could be used as a green allelopathic shield to control Fallopia x bohemica invasion, in addition to its potential use as an environmentally friendly herbicide.


Subject(s)
Fallopia japonica/drug effects , Myrica/chemistry , Pheromones/pharmacology , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Mass Spectrometry , Pheromones/chemistry
20.
Metabolites ; 11(2)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572622

ABSTRACT

Roots contain a wide variety of secondary metabolites. Some of them are exudated in the rhizosphere, where they are able to attract and/or control a large diversity of microbial species. In return, the rhizomicrobiota can promote plant health and development. Some rhizobacteria belonging to the Pseudomonas genus are known to produce a wide diversity of secondary metabolites that can exert a biological activity on the host plant and on other soil microorganisms. Nevertheless, the impact of the host plant on the production of bioactive metabolites by Pseudomonas is still poorly understood. To characterize the impact of plants on the secondary metabolism of Pseudomonas, a cross-metabolomic approach has been developed. Five different fluorescent Pseudomonas strains were thus cultivated in the presence of a low concentration of wheat root extracts recovered from three wheat genotypes. Analysis of our metabolomic workflow revealed that the production of several Pseudomonas secondary metabolites was significantly modulated when bacteria were cultivated with root extracts, including metabolites involved in plant-beneficial properties.

SELECTION OF CITATIONS
SEARCH DETAIL