Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Biomedicines ; 12(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38397906

ABSTRACT

Bruxism is a worldwide oral health problem. Although there is a consensus about its multifactorial nature, its precise etiopathogenetic mechanisms are unclear. This study, taking advantage of a deeply characterized cohort of 769 individuals (aged 6-89 years) coming from Northern Italy's genetically isolated populations, aims to epidemiologically describe environmental risk factors for bruxism development and identify genes potentially involved through a Genome-Wide Association Study (GWAS) approach. Logistic mixed models adjusted for age and sex were performed to evaluate associations between bruxism and possible risk factors, e.g., anxiety, smoking, and alcohol and caffeine intake. A case-control GWAS (135 cases, 523 controls), adjusted for age, sex, and anxiety, was conducted to identify new candidate genes. The GTEx data analysis was performed to evaluate the identified gene expression in human body tissues. Statistical analyses determined anxiety as a bruxism risk factor (OR = 2.54; 95% CI: 1.20-5.38; p-value = 0.015), and GWAS highlighted three novel genes potentially associated with bruxism: NLGN1 (topSNP = rs2046718; p-value = 2.63 × 10-7), RIMBP2 (topSNP = rs571497947; p-value = 4.68 × 10-7), and LHFP (topSNP = rs2324342; p-value = 7.47 × 10-6). The GTEx data analysis showed their expression in brain tissues. Overall, this work provided a deeper understanding of bruxism etiopathogenesis with the long-term perspective of developing personalized therapeutic approaches for improving affected individuals' quality of life.

2.
Life (Basel) ; 14(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38398728

ABSTRACT

The innate immune system is crucial in fighting SARS-CoV-2 infection, which is responsible for coronavirus disease 2019 (COVID-19). Therefore, deepening our understanding of the underlying immune response mechanisms is fundamental for the development of novel therapeutic strategies. The role of extra-oral bitter (TAS2Rs) and sweet (TAS1Rs) taste receptors in immune response regulation has yet to be fully understood. However, a few studies have investigated the association between taste receptor genes and COVID-19 symptom severity, with controversial results. Therefore, this study aims to deepen the relationship between COVID-19 symptom presence/severity and TAS1R and TAS2R38 (TAS2Rs member) genetic variations in a cohort of 196 COVID-19 patients. Statistical analyses detected significant associations between rs307355 of the TAS1R3 gene and the following COVID-19-related symptoms: chest pain and shortness of breath. Specifically, homozygous C/C patients are exposed to an increased risk of manifesting severe forms of chest pain (OR 8.11, 95% CI 2.26-51.99) and shortness of breath (OR 4.83, 95% CI 1.71-17.32) in comparison with T/C carriers. Finally, no significant associations between the TAS2R38 haplotype and the presence/severity of COVID-19 symptoms were detected. This study, taking advantage of a clinically and genetically characterised cohort of COVID-19 patients, revealed TAS1R3 gene involvement in determining COVID-19 symptom severity independently of TAS2R38 activity, thus providing novel insights into the role of TAS1Rs in regulating the immune response to viral infections.

3.
Nat Commun ; 15(1): 888, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291025

ABSTRACT

To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.


Subject(s)
Thyroid Gland , Thyroxine , Humans , Thyroid Gland/metabolism , Thyroxine/metabolism , Genome-Wide Association Study , Triiodothyronine/metabolism , Thyrotropin/metabolism
4.
Nat Genet ; 56(7): 1397-1411, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951643

ABSTRACT

Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease.


Subject(s)
Gene Frequency , Menarche , Puberty , Humans , Female , Menarche/genetics , Puberty/genetics , Animals , Multifactorial Inheritance/genetics , Mice , Genome-Wide Association Study , Adolescent , Puberty, Precocious/genetics , Polymorphism, Single Nucleotide , Receptors, G-Protein-Coupled/genetics , Puberty, Delayed/genetics , Child
SELECTION OF CITATIONS
SEARCH DETAIL