Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Publication year range
1.
Cell Commun Signal ; 22(1): 443, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285292

ABSTRACT

BACKGROUND: Epithelial ovarian cancer (EOC) is the deadliest gynaecological cancer with high mortality rates driven by the common development of resistance to chemotherapy. EOC frequently invades the omentum, an adipocyte-rich organ of the peritoneum and omental adipocytes have been implicated in promoting disease progression, metastasis and chemoresistance. The signalling mechanisms underpinning EOC omentum tropism have yet to be elucidated. METHODS: Three-dimensional co-culture models were used to explore adipocyte-EOC interactions. The impact of adipocytes on EOC proliferation, response to therapy and invasive capacity was assessed. Primary adipocytes and omental tissue were isolated from patients with ovarian malignancies and benign ovarian neoplasms. Exosomes were isolated from omentum tissue conditioned media and the effect of omentum-derived exosomes on EOC evaluated. Exosomal microRNA (miRNA) sequencing was used to identify miRNAs abundant in omental exosomes and EOC cells were transfected with highly abundant miRNAs miR-21, let-7b, miR-16 and miR-92a. RESULTS: We demonstrate the capacity of adipocytes to induce an invasive phenotype in EOC populations through driving epithelial-to-mesenchymal transition (EMT). Exosomes secreted by omental tissue of ovarian cancer patients, as well as patients without malignancies, induced proliferation, upregulated EMT markers and reduced response to paclitaxel therapy in EOC cell lines and HGSOC patient samples. Analysis of the omentum-derived exosomes from cancer patients revealed highly abundant miRNAs that included miR-21, let-7b, miR-16 and miR-92a that promoted cancer cell proliferation and protection from chemotherapy when transfected in ovarian cancer cells. CONCLUSIONS: These observations highlight the capacity of omental adipocytes to generate a pro-tumorigenic and chemoprotective microenvironment in ovarian cancer and other adipose-related malignancies.


Subject(s)
Adipocytes , Exosomes , MicroRNAs , Neoplasm Invasiveness , Ovarian Neoplasms , Paclitaxel , Female , Exosomes/metabolism , Humans , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Adipocytes/metabolism , Adipocytes/drug effects , Adipocytes/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Omentum/pathology , Omentum/metabolism , Cell Proliferation/drug effects , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/metabolism , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/drug effects
2.
Cell Mol Biol (Noisy-le-grand) ; 69(4): 179-187, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37329528

ABSTRACT

The expression of six transmembrane epithelial antigen of the prostate (STEAP2) is increased in prostate cancer when compared to normal tissue, suggesting a role for STEAP2 in disease progression. This study aimed to determine whether targeting STEAP2 with an anti-STEAP2 polyclonal antibody (pAb) or CRISPR/Cas9 knockout influenced aggressive prostate cancer traits. Gene expression analysis of the STEAP gene family was performed in a panel of prostate cancer cell lines; C4-2B, DU145, LNCaP and PC3. The highest increases in STEAP2 gene expression were observed in C4-2B and LNCaP cells (p<0.001 and p<0.0001 respectively) when compared to normal prostate epithelial PNT2 cells. These cell lines were treated with an anti-STEAP2 pAb and their viability assessed. CRISPR/Cas9 technology was used to knockout STEAP2 from C4-2B and LNCaP cells and viability, proliferation, migration and invasion assessed. When exposed to an anti-STEAP2 pAb, cell viability significantly decreased (p<0.05). When STEAP2 was knocked out, cell viability and proliferation was significantly decreased when compared to wild-type cells (p<0.001). The migratory and invasive potential of knockout cells were also decreased. These data suggest that STEAP2 has a functional role in driving aggressive prostate cancer traits and could provide a novel therapeutic target for the treatment of prostate cancer.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/metabolism , Prostatic Neoplasms/metabolism , Gene Expression Profiling , Cell Line, Tumor
3.
J Nanobiotechnology ; 19(1): 50, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33596915

ABSTRACT

BACKGROUND: Sialyl-Lewis X/L-selectin high affinity binding interactions between transmembrane O-glycosylated mucins proteins and the embryo have been implicated in implantation processes within the human reproductive system. However, the adhesive properties of these mucins at the endometrial cell surface are difficult to resolve due to known discrepancies between in vivo models and the human reproductive system and a lack of sensitivity in current in vitro models. To overcome these limitations, an in vitro model of the human endometrial epithelial was interrogated with single molecule force spectroscopy (SMFS) to delineate the molecular configurations of mucin proteins that mediate the high affinity L-selectin binding required for human embryo implantation. RESULTS: This study reveals that MUC1 contributes to both the intrinsic and extrinsic adhesive properties of the HEC-1 cellular surface. High expression of MUC1 on the cell surface led to a significantly increased intrinsic adhesion force (148 pN vs. 271 pN, p < 0.001), whereas this adhesion force was significantly reduced (271 pN vs. 118 pN, p < 0.001) following siRNA mediated MUC1 ablation. Whilst high expression of MUC1 displaying elevated glycosylation led to strong extrinsic (> 400 pN) L-selectin binding at the cell surface, low expression of MUC1 with reduced glycosylation resulted in significantly less (≤200 pN) binding events. CONCLUSIONS: An optimal level of MUC1 together with highly glycosylated decoration of the protein is critical for high affinity L-selectin binding. This study demonstrates that MUC1 contributes to cellular adhesive properties which may function to facilitate trophoblast binding to the endometrial cell surface through the L-selectin/sialyl-Lewis x adhesion system subsequent to implantation.


Subject(s)
L-Selectin/chemistry , L-Selectin/metabolism , Mucin-1/chemistry , Mucin-1/metabolism , Biophysics , Cell Adhesion , Cell Line , Epithelial Cells , Glycosylation , Humans , Mucins/metabolism , Single Molecule Imaging
4.
Carcinogenesis ; 41(10): 1432-1443, 2020 10 15.
Article in English | MEDLINE | ID: mdl-31957805

ABSTRACT

A key challenge in the implementation of anti-metastatics as cancer therapies is the multi-modal nature of cell migration, which allows tumour cells to evade the targeted inhibition of specific cell motility pathways. The nuclear factor-kappaB (NF-κB) co-factor B-cell lymphoma 3 (Bcl-3) has been implicated in breast cancer cell migration and metastasis, yet it remains to be determined exactly which cell motility pathways are controlled by Bcl-3 and whether migrating tumour cells are able to evade Bcl-3 intervention. Addressing these questions and the mechanism underpinning Bcl-3's role in this process would help determine its potential as a therapeutic target. Here we identify Bcl-3 as an upstream regulator of the two principal forms of breast cancer cell motility, involving collective and single-cell migration. This was found to be mediated by the master regulator Cdc42 through binding of the NF-κB transcription factor p50 to the Cdc42 promoter. Notably, Bcl-3 depletion inhibited both stable and transitory motility phenotypes in breast cancer cells with no evidence of migratory adaptation. Overexpression of Bcl-3 enhanced migration and increased metastatic tumour burden of breast cancer cells in vivo, whereas overexpression of a mutant Bcl-3 protein, which is unable to bind p50, suppressed cell migration and metastatic tumour burden suggesting that disruption of Bcl-3/NF-κB complexes is sufficient to inhibit metastasis. These findings identify a novel role for Bcl-3 in intrinsic and adaptive multi-modal cell migration mediated by its direct regulation of the Rho GTPase Cdc42 and identify the upstream Bcl-3:p50 transcription complex as a potential therapeutic target for metastatic disease.


Subject(s)
B-Cell Lymphoma 3 Protein/physiology , Breast Neoplasms/pathology , Cell Movement , NF-kappa B p50 Subunit/metabolism , cdc42 GTP-Binding Protein/metabolism , Animals , B-Cell Lymphoma 3 Protein/genetics , Cell Line, Tumor , Female , Humans , Mice , NF-kappa B p50 Subunit/genetics
5.
Nanomedicine ; 29: 102258, 2020 10.
Article in English | MEDLINE | ID: mdl-32615338

ABSTRACT

High dose selenium acts as a cytotoxic agent, with potential applications in cancer treatment. However, clinical trials have failed to show any chemotherapeutic value of selenium at safe and tolerated doses (<90 µg/day). To enable the successful exploitation of selenium for cancer treatment, we evaluated inorganic selenium nanoparticles (SeNP), and found them effective in inhibiting ovarian cancer cell growth. In both SKOV-3 and OVCAR-3 ovarian cancer cell types SeNP treatment resulted in significant cytotoxicity. The two cell types displayed contrasting nanomechanical responses to SeNPs, with decreased surface roughness and membrane stiffness, characteristics of OVCAR-3 cell death. In SKOV-3, cell membrane surface roughness and stiffness increased, both properties associated with decreased metastatic potential. The beneficial effects of SeNPs on ovarian cancer cell death appear cell type dependent, and due to their low in vivo toxicity offer an exciting opportunity for future cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Metal Nanoparticles/chemistry , Ovarian Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biomechanical Phenomena , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Selenium/chemistry , Selenium/pharmacology
6.
Biomed Microdevices ; 21(2): 36, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30923927

ABSTRACT

Infections of the female reproductive tract are a major cause of morbidity and mortality in humans, requiring significant investment to sustain treatment and representing a major challenge to health. The increasing prevalence of bacterial resistance, and an almost complete absence of new antibiotic therapies for the past five decades, mean there is a desperate need for novel approaches to the treatment of bacterial infections. Within the present study, we demonstrate the effective ex vivo treatment of bacterial infection of the female reproductive tract using a controlled-release, liquid crystal-based platform. Liquid crystal encapsulation of ciprofloxacin significantly enhanced its bactericidal efficacy and reduced cell toxicity. Liquid crystal structures are low-cost, simple to manufacture and provide a sustained-release profile of encapsulated ciprofloxacin. Treatment of Escherichia coli infected reproductive tract epithelial cells and whole organ cultures with liquid crystal encapsulated ciprofloxacin proved to be an effective strategy for reducing bacterial load and reproductive tract inflammatory responses to infection. These data suggest that such an approach could provide an efficacious treatment modality for enhancing the effectiveness of current antibiotic therapies.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacology , Drug Carriers/chemistry , Liquid Crystals/chemistry , Reproductive Tract Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Cell Survival/drug effects , Ciprofloxacin/therapeutic use , Drug Carriers/toxicity , Epithelial Cells/cytology , Epithelial Cells/drug effects , Escherichia coli/drug effects , Escherichia coli/physiology , Female , HeLa Cells , Humans , Liquid Crystals/toxicity , Microbial Sensitivity Tests
7.
Nanomedicine ; 17: 254-265, 2019 04.
Article in English | MEDLINE | ID: mdl-30759370

ABSTRACT

New approaches to treat ovarian cancer, the fifth leading cause of cancer mortality among women, are being sought, with the targeting of epigenetic modulators now receiving much attention. The histone acetyltransferase HBO1 functions in regulating diverse molecular processes, including DNA repair, transcription and replication, and is highly expressed in primary ovarian cancer. Here we define both the molecular function and a role in cell biomechanics for HBO1 in ovarian cancer. HBO1 preferentially acetylates histone H4 through the concomitant overexpression of co-regulator JADE2, and is required for the expression of YAP1, an ovarian cancer oncogene and mechano-transductor signaling factor. HBO1 appears therefore to have a role in determining the mechano-phenotype in ovarian cancer cells, through both signal transduction processes, and the modulation of cell elasticity as observed using direct measurements on live cells via atomic force microscopy.


Subject(s)
Histone Acetyltransferases/metabolism , Histones/metabolism , Ovarian Neoplasms/metabolism , Acetylation , Biomechanical Phenomena , Cell Line, Tumor , Cell Membrane/metabolism , Cell Membrane/pathology , Elasticity , Female , Humans , Mechanotransduction, Cellular , Ovarian Neoplasms/pathology
8.
Anal Biochem ; 548: 102-108, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29501648

ABSTRACT

There is a growing interest in the possible environmental health impact posed by endocrine-disrupting chemicals (EDCs). A challenge to the field of endocrine disruption is that these substances are diverse and may not appear to share any structural similarity other than usually being low molecular mass (<1000 Da) compounds. Here we demonstrate the effectiveness of sensor device for the detection of low molecular weight, poorly water soluble, estrogenic compounds E1, E2 and EE2, fabricated by electropolymerization over graphene screen printed electrode (SPE). The PANI/Gr-SPE-devices displayed linear responses to estrogenic substances, in EIS assays, from 0.0975 ng/L to 200 ng/L in water samples, with a detection limit of 0.043 pg/L for E1, 0.19 ng/L for E2 and 0.070 pg/L for EE2 which is lower than other current biosensing techniques. This portable, disposable immunosensor offers a solution for immediate measurement at sample collection sites, due to its excellent sensitivity and selectivity when testing water samples obtained directly from rivers and waste water treatment facilities. The simple screen printing production method will enable the low cost, high volume production required for this type of environmental analysis.


Subject(s)
Estrogens/analysis , Graphite/chemistry , Water Pollution, Chemical/analysis , Water/analysis , Immunoassay/methods , Sensitivity and Specificity
9.
Proc Natl Acad Sci U S A ; 111(7): 2500-5, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24550274

ABSTRACT

Mediator, an evolutionary conserved large multisubunit protein complex with a central role in regulating RNA polymerase II-transcribed genes, serves as a molecular switchboard at the interface between DNA binding transcription factors and the general transcription machinery. Mediator subunits include the Cdk8 module, which has both positive and negative effects on activator-dependent transcription through the activity of the cyclin-dependent kinase Cdk8, and the tail module, which is required for positive and negative regulation of transcription, correct preinitiation complex formation in basal and activated transcription, and Mediator recruitment. Currently, the molecular mechanisms governing Mediator function remain largely undefined. Here we demonstrate an autoregulatory mechanism used by Mediator to repress transcription through the activity of distinct components of different modules. We show that the function of the tail module component Med3, which is required for transcription activation, is suppressed by the kinase activity of the Cdk8 module. Med3 interacts with, and is phosphorylated by, Cdk8; site-specific phosphorylation triggers interaction with and degradation by the Grr1 ubiquitin ligase, thereby preventing transcription activation. This active repression mechanism involving Grr1-dependent ubiquitination of Med3 offers a rationale for the substoichiometric levels of the tail module that are found in purified Mediator and the corresponding increase in tail components seen in cdk8 mutants.


Subject(s)
Cyclin-Dependent Kinase 8/metabolism , F-Box Proteins/metabolism , Gene Expression Regulation/genetics , Mediator Complex/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Transcription, Genetic/physiology , Ubiquitin-Protein Ligases/metabolism , Chromatin Immunoprecipitation , Chromatography, Liquid , Immunoblotting , Mass Spectrometry , Mediator Complex/genetics , Microarray Analysis , Phosphorylation , Real-Time Polymerase Chain Reaction , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic/genetics , Two-Hybrid System Techniques
10.
Front Endocrinol (Lausanne) ; 15: 1368494, 2024.
Article in English | MEDLINE | ID: mdl-38745948

ABSTRACT

Decidualisation, the process whereby endometrial stromal cells undergo morphological and functional transformation in preparation for trophoblast invasion, is often disrupted in women with polycystic ovary syndrome (PCOS) resulting in complications with pregnancy and/or infertility. The transcription factor Wilms tumour suppressor 1 (WT1) is a key regulator of the decidualization process, which is reduced in patients with PCOS, a complex condition characterized by increased expression of androgen receptor in endometrial cells and high presence of circulating androgens. Using genome-wide chromatin immunoprecipitation approaches on primary human endometrial stromal cells, we identify key genes regulated by WT1 during decidualization, including homeobox transcription factors which are important for regulating cell differentiation. Furthermore, we found that AR in PCOS patients binds to the same DNA regions as WT1 in samples from healthy endometrium, suggesting dysregulation of genes important to decidualisation pathways in PCOS endometrium due to competitive binding between WT1 and AR. Integrating RNA-seq and H3K4me3 and H3K27ac ChIP-seq metadata with our WT1/AR data, we identified a number of key genes involved in immune response and angiogenesis pathways that are dysregulated in PCOS patients. This is likely due to epigenetic alterations at distal enhancer regions allowing AR to recruit cofactors such as MAGEA11, and demonstrates the consequences of AR disruption of WT1 in PCOS endometrium.


Subject(s)
Endometrium , Polycystic Ovary Syndrome , Receptors, Androgen , WT1 Proteins , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Endometrium/metabolism , Endometrium/pathology , WT1 Proteins/metabolism , WT1 Proteins/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Adult , Regulatory Sequences, Nucleic Acid
12.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38063696

ABSTRACT

Selenium 0 (Se0) is a powerful anti-proliferative agent in cancer research. We investigated the impact of sub-toxic concentrations of Se0 functionalized nanoparticles (SeNPs) on prostate cancer PC-3 cells and determined their intracellular localization and fate. An in-depth characterization of functionalized selenium nanoparticles composition is proposed to certify that no chemical bias relative to synthesis issues might have impacted the study. Selenium is an extremely diluted element in the biological environment and therefore requires high-performance techniques with a very low detection limit and high spatial resolution for intracellular imaging. This was explored with state-of-the-art techniques, but also with cryopreparation to preserve the chemical and structural integrity of the cells for spatially resolved and speciation techniques. Monodisperse solutions of SeNPs capped with bovine serum albumin (BSA) were shown to slow down the migration capacity of aggressive prostate cancer cells compared to polydisperse solutions of SeNPs capped with chitosan. BSA coating could prevent interactions between the reactive surface of the nanoparticles and the plasma membrane, mitigating the generation of reactive oxygen species. The intracellular localization showed interaction with mitochondria and also a localization in the lysosome-related organelle. The SeNPs-BSA localization in mitochondria constitute a possible explanation for our result showing a very significant dampening of the PC-3 cell proliferation capabilities. The purpose of the use of sublethal compound concentrations was to limit adverse effects resulting from high cell death to best evaluate some cellular changes and the fate of these SeNPs on PC-3. Our findings provide new insight to further study the various mechanisms of cytotoxicity of SeNPs.

13.
Redox Biol ; 61: 102641, 2023 05.
Article in English | MEDLINE | ID: mdl-36842241

ABSTRACT

At physiological levels, the trace element selenium plays a key role in redox reactions through the incorporation of selenocysteine in antioxidant enzymes. Selenium has also been evaluated as a potential anti-cancer agent, where selenium nanoparticles have proven effective, and are well tolerated in vivo at doses that are toxic as soluble Se. The use of such nanoparticles, coated with either serum albumin or the naturally occurring alkaline polysaccharide chitosan, also serves to enhance biocompatibility and bioavailability. Here we demonstrate a novel role for selenium in regulating histone methylation in ovarian cancer cell models treated with inorganic selenium nanoparticles coated with serum albumin or chitosan. As well as inducing thioredoxin reductase expression, ROS activity and cancer cell cytotoxicity, coated nanoparticles caused significant increases in histone methylation. Specifically, selenium nanoparticles triggered an increase in the methylation of histone 3 at lysines K9 and K27, histone marks involved in both the activation and repression of gene expression, thus suggesting a fundamental role for selenium in these epigenetic processes. This direct function was confirmed using chemical inhibitors of the histone lysine methyltransferases EZH2 (H3K27) and G9a/EHMT2 (H3K9), both of which blocked the effect of selenium on histone methylation. This novel role for selenium supports a distinct function in histone methylation that occurs due to a decrease in S-adenosylhomocysteine, an endogenous inhibitor of lysine methyltransferases, the metabolic product of methyl-group transfer from S-adenosylmethionine in the one-carbon metabolism pathway. These observations provide important new insights into the action of selenium nanoparticles. It is now important to consider both the classic antioxidant and novel histone methylation effects of this key redox element in its development in cancer therapy and other applications.


Subject(s)
Chitosan , Selenium , Histones/metabolism , Methylation , Selenium/metabolism , Lysine/metabolism , S-Adenosylhomocysteine/metabolism , Antioxidants/metabolism , Chitosan/metabolism , Histone-Lysine N-Methyltransferase/genetics
14.
Clin Epigenetics ; 15(1): 63, 2023 04 15.
Article in English | MEDLINE | ID: mdl-37060086

ABSTRACT

BACKGROUND: Ovarian cancer has a specific unmet clinical need, with a persistently poor 5-year survival rate observed in women with advanced stage disease warranting continued efforts to develop new treatment options. The amplification of BRD4 in a significant subset of high-grade serous ovarian carcinomas (HGSC) has led to the development of BET inhibitors (BETi) as promising antitumour agents that have subsequently been evaluated in phase I/II clinical trials. Here, we describe the molecular effects and ex vivo preclinical activities of i-BET858, a bivalent pan-BET inhibitor with proven in vivo BRD inhibitory activity. RESULTS: i-BET858 demonstrates enhanced cytotoxic activity compared with earlier generation BETis both in cell lines and primary cells derived from clinical samples of HGSC. At molecular level, i-BET858 triggered a bipartite transcriptional response, comprised of a 'core' network of genes commonly associated with BET inhibition in solid tumours, together with a unique i-BET858 gene signature. Mechanistically, i-BET858 elicited enhanced DNA damage, cell cycle arrest and apoptotic cell death compared to its predecessor i-BET151. CONCLUSIONS: Overall, our ex vivo and in vitro studies indicate that i-BET858 represents an optimal candidate to pursue further clinical validation for the treatment of HGSC.


Subject(s)
Antineoplastic Agents , Carcinoma , Ovarian Neoplasms , Female , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA Methylation , Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Cell Cycle Checkpoints , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma/genetics , Apoptosis , DNA Damage
15.
Langmuir ; 28(25): 9878-84, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22616757

ABSTRACT

Antibodies were patterned onto flexible plastic films using the flexographic printing process. An ink formulation was developed using high molecular weight polyvinyl alcohol in carbonate-bicarbonate buffer. In order to aid both antibody adhesion and the quality of definition in the printed features, a nitrocellulose coating was developed that was capable of being discretely patterned, thus increasing the signal-to-noise ratio of an antibody array. Printing antibody features such as dots, squares, text, and fine lines were reproduced effectively. Furthermore, this process could be easily adapted for printing of other biological materials, including, but not limited to, enzymes, DNA, proteins, aptamers, and cells.


Subject(s)
Antibodies, Immobilized/chemistry , Printing/methods , Animals , Antibodies, Immobilized/metabolism , Collodion/chemistry , Coloring Agents/chemistry , Peroxidase/metabolism , Rheology
16.
Front Oncol ; 12: 1014280, 2022.
Article in English | MEDLINE | ID: mdl-36505806

ABSTRACT

Background: Ovarian cancer (OC) is amongst the most lethal of common cancers in women. Lacking in specific symptoms in the early stages, OC is predominantly diagnosed late when the disease has undergone metastatic spread and chemotherapy is relied on to prolong life. Platinum-based therapies are preferred and although many tumors respond initially, the emergence of platinum-resistance occurs in the majority of cases after which prognosis is very poor. Upregulation of DNA damage pathways is a common feature of platinum resistance in OC with cyclin dependent kinases (CDKs) serving as key regulators of this process and suggesting that CDK inhibitors (CDKis) could be effective tools in the treatment of platinum resistant and refractory OC. Aim: The aim of this study was to evaluate the efficacy of CDKis in platinum resistant OC models and serve as a predictor of potential clinical utility. Methods: The efficacy of CDKi, dinaciclib, was determined in wildtype and platinum resistant cell line pairs representing different OC subtypes. In addition, dinaciclib was evaluated in primary cells isolated from platinum-sensitive and platinum-refractory tumors to increase the clinical relevance of the study. Results and conclusions: Dinaciclib proved highly efficacious in OC cell lines and primary cells, which were over a thousand-fold more sensitive to the CDKi than to cisplatin. Furthermore, cisplatin resistance in these cells did not influence sensitivity to dinaciclib and the two drugs combined additively in both platinum-sensitive and platinum-resistant OC cells suggesting a potential role for pan-CDKis (CDKis targeting multiple CDKs), such as dinaciclib, in the treatment of advanced and platinum-resistant OC.

17.
Cancers (Basel) ; 13(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34572854

ABSTRACT

Functional genomics is the study of how the genome and its products, including RNA and proteins, function and interact to affect different biological processes. The field of functional genomics includes transcriptomics, proteomics, metabolomics and epigenomics, as these all relate to controlling the genome leading to expression of particular phenotypes. By studying whole genomes-clinical genomics, transcriptomes and epigenomes-functional genomics allows the exploration of the diverse relationship between genotype and phenotype, not only for humans as a species but also in individuals, allowing an understanding and evaluation of how the functional genome 'contributes' to different diseases. Functional variation in disease can help us better understand that disease, although it is currently limited in terms of ethnic diversity, and will ultimately give way to more personalized treatment plans.

18.
Pharmaceutics ; 13(10)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34684000

ABSTRACT

Following oral administration, the bioavailability of progesterone is low and highly variable. As a result, no clinically relevant, natural progesterone oral formulation is available. After oral delivery, first-pass metabolism initially occurs in the intestines; however, very little information on progesterone metabolism in this organ currently exists. The aim of this study is to investigate the contributions of liver and intestine to progesterone clearance. In the presence of NADPH, a rapid clearance of progesterone was observed in human and rat liver samples (t1/2 2.7 and 2.72 min, respectively). The rate of progesterone depletion in intestine was statistically similar between rat and human (t1/2 197.6 min in rat and 157.2 min in human). However, in the absence of NADPH, progesterone was depleted at a significantly lower rate in rat intestine compared to human. The roles of aldo keto reductases (AKR), xanthine oxidase (XAO) and aldehyde oxidase (AOX) in progesterone metabolism were also investigated. The rate of progesterone depletion was found to be significantly reduced by AKR1C, 1D1 and 1B1 in human liver and by AKR1B1 in human intestine. The inhibition of AOX also caused a significant reduction in progesterone degradation in human liver, whereas no change was observed in the presence of an XAO inhibitor. Understanding the kinetics of intestinal as well as liver metabolism is important for the future development of progesterone oral formulations. This novel information can inform decisions on the development of targeted formulations and help predict dosage regimens.

19.
Cancers (Basel) ; 13(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34439185

ABSTRACT

Histone Deacetylase (HDAC) enzymes are upregulated in cancer leading to the development of HDAC inhibiting compounds, several of which are currently in clinical trials. Side effects associated with toxicity and non-specific targeting indicate the need for efficient drug delivery approaches and tumor specific targeting to enhance HDAC efficacy in solid tumor cancers. SAHA encapsulation within F127 micelles functionalized with a surface hyaluronic acid moiety, was developed to target endometrial cancer cells expressing elevated levels of CD44. In vitro viability and morphology analyses was conducted in both 2D and 3D models to assess the translational potential of this approach. Encapsulation enhanced SAHA delivery and activity, demonstrating increased cytotoxic efficacy in 2D and 3D endometrial cancer models. High-content imaging showed improved nanoparticle internalization in 2D and CD44 enhanced penetration in 3D models. In addition, the nano-delivery system enhanced spheroid penetration resulting in cell growth suppression, p21 associated cell cycle arrest, as well as overcoming the formation of an EMT associated phenotype observed in free drug treated type II endometrial cancer cells. This study demonstrates that targeted nanoparticle delivery of SAHA could provide the basis for improving its efficacy in endometrial cancer. Using 3D models for endometrial cancer allows the elucidation of nanoparticle performance and CD44 targeting, likely through penetration and retention within the tumor model.

20.
Nanoscale ; 13(12): 6129-6141, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33729236

ABSTRACT

Extracellular vesicles (EVs) are studied extensively as natural biomolecular shuttles and for their diagnostic and therapeutic potential. This exponential rise in interest has highlighted the need for highly robust and reproducible approaches for EV characterisation. Here we optimise quantitative nanomechanical tools and demonstrate the advantages of EV population screening by atomic force microscopy (AFM). Our high-content informatics analytical tools are made available for use by the EV community for widespread, standardised determination of structural stability. Ultracentrifugation (UC) and sonication, the common mechanical techniques used for EV isolation and loading respectively, are used to demonstrate the utility of optimised PeakForce-Quantitative Nano Mechanics (PF-QNM) analysis. EVs produced at an industrial scale exhibited biochemical and biomechanical alterations after exposure to these common techniques. UC resulted in slight increases in physical dimensions, and decreased EV adhesion concurrent with a decrease in CD63 content. Sonicated EVs exhibited significantly reduced levels of CD81, a decrease in size, increased Young's modulus and decreased adhesive force. These biomechanical and biochemical changes highlight the effect of EV sample preparation techniques on critical properties linked to EV cellular uptake and biological function. PF-QNM offers significant additional information about the structural information of EVs following their purification and downstream processing, and the analytical tools will ensure consistency of analysis of AFM data by the EV community, as this technique continues to become more widely implemented.


Subject(s)
Extracellular Vesicles , Elastic Modulus , Mechanical Phenomena , Microscopy, Atomic Force , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL