Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters

Affiliation country
Publication year range
1.
Cell Mol Biol Lett ; 28(1): 64, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550627

ABSTRACT

BACKGROUND: In plants, RNase III Dicer-like proteins (DCLs) act as sensors of dsRNAs and process them into short 21- to 24-nucleotide (nt) (s)RNAs. Plant DCL4 is involved in the biogenesis of either functional endogenous or exogenous (i.e. viral) short interfering (si)RNAs, thus playing crucial antiviral roles. METHODS: In this study we expressed plant DCL4 in Saccharomyces cerevisiae, an RNAi-depleted organism, in which we could highlight the role of dicing as neither Argonautes nor RNA-dependent RNA polymerase is present. We have therefore tested the DCL4 functionality in processing exogenous dsRNA-like substrates, such as a replicase-assisted viral replicon defective-interfering RNA and RNA hairpin substrates, or endogenous antisense transcripts. RESULTS: DCL4 was shown to be functional in processing dsRNA-like molecules in vitro and in vivo into 21- and 22-nt sRNAs. Conversely, DCL4 did not efficiently process a replicase-assisted viral replicon in vivo, providing evidence that viral RNAs are not accessible to DCL4 in membranes associated in active replication. Worthy of note, in yeast cells expressing DCL4, 21- and 22-nt sRNAs are associated with endogenous loci. CONCLUSIONS: We provide new keys to interpret what was studied so far on antiviral DCL4 in the host system. The results all together confirm the role of sense/antisense RNA-based regulation of gene expression, expanding the sense/antisense atlas of S. cerevisiae. The results described herein show that S. cerevisiae can provide insights into the functionality of plant dicers and extend the S. cerevisiae tool to new biotechnological applications.


Subject(s)
Plant Proteins , Saccharomyces cerevisiae , Plant Proteins/genetics , Plant Proteins/metabolism , RNA Interference , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , RNA, Double-Stranded/genetics , RNA, Small Interfering/metabolism
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37569667

ABSTRACT

Microcephalic Osteodysplastic Primordial Dwarfism type II (MOPDII) represents the most common form of primordial dwarfism. MOPD clinical features include severe prenatal and postnatal growth retardation, postnatal severe microcephaly, hypotonia, and an increased risk for cerebrovascular disease and insulin resistance. Autosomal recessive biallelic loss-of-function genomic variants in the centrosomal pericentrin (PCNT) gene on chromosome 21q22 cause MOPDII. Over the past decade, exome sequencing (ES) and massive RNA sequencing have been effectively employed for both the discovery of novel disease genes and to expand the genotypes of well-known diseases. In this paper we report the results both the RNA sequencing and ES of three patients affected by MOPDII with the aim of exploring whether differentially expressed genes and previously uncharacterized gene variants, in addition to PCNT pathogenic variants, could be associated with the complex phenotype of this disease. We discovered a downregulation of key factors involved in growth, such as IGF1R, IGF2R, and RAF1, in all three investigated patients. Moreover, ES identified a shortlist of genes associated with deleterious, rare variants in MOPDII patients. Our results suggest that Next Generation Sequencing (NGS) technologies can be successfully applied for the molecular characterization of the complex genotypic background of MOPDII.


Subject(s)
Dwarfism , Microcephaly , Osteochondrodysplasias , Humans , Female , Pregnancy , Microcephaly/genetics , Exome/genetics , Transcriptome , Fetal Growth Retardation/genetics , Dwarfism/genetics , Osteochondrodysplasias/genetics , Genotype , Mutation
3.
Nucleic Acids Res ; 48(W1): W200-W207, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32402076

ABSTRACT

High-Throughput Sequencing technologies are transforming many research fields, including the analysis of phage display libraries. The phage display technology coupled with deep sequencing was introduced more than a decade ago and holds the potential to circumvent the traditional laborious picking and testing of individual phage rescued clones. However, from a bioinformatics point of view, the analysis of this kind of data was always performed by adapting tools designed for other purposes, thus not considering the noise background typical of the 'interactome sequencing' approach and the heterogeneity of the data. InteractomeSeq is a web server allowing data analysis of protein domains ('domainome') or epitopes ('epitome') from either Eukaryotic or Prokaryotic genomic phage libraries generated and selected by following an Interactome sequencing approach. InteractomeSeq allows users to upload raw sequencing data and to obtain an accurate characterization of domainome/epitome profiles after setting the parameters required to tune the analysis. The release of this tool is relevant for the scientific and clinical community, because InteractomeSeq will fill an existing gap in the field of large-scale biomarkers profiling, reverse vaccinology, and structural/functional studies, thus contributing essential information for gene annotation or antigen identification. InteractomeSeq is freely available at https://InteractomeSeq.ba.itb.cnr.it/.


Subject(s)
Cell Surface Display Techniques , Epitopes , High-Throughput Nucleotide Sequencing , Protein Domains , Software , Bacteriophages/genetics , Internet
4.
J Integr Neurosci ; 22(1): 4, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36722235

ABSTRACT

BACKGROUND: In previous investigations of combined miRNAs/mRNAs expressions in neurodegenerative diseases like Multiple Sclerosis (MS) and Amyotrophic Lateral Sclerosis (ALS) we have targeted some interesting genes and molecular pathways that needed further confirmation. METHODS: By nanofluidic qPCR analysis, we aimed to verify the expression of genes that resulted differentially expressed in the previous analyses. Data from MS patients - either the pediatric and the adult occurrence of the disease (adMS and pedMS, respectively) - was compared to age-matched healthy groups. As neurological controls we recruited a cohort of ALS subjects, considering published searches of possible genetic similarities between the two diseases. RESULTS: The main results confirmed the involvement of most of the investigated genes in pedMS and adMS, like BACH2 and MICAL3. On the other hand, suggestive MS candidate genes like TNFSF13B showed an interesting trend possibly influenced by interfering factors, such as concomitant disease-modifying treatments; it is worth noting that TNFSF13B was one of the genes upregulated in ALS compared to age-matched adMS patients, together with the transcription factor TFDP1. CONCLUSIONS: Although with caution due to the small sample size, this study confirms the interest in transcriptomic analysis supported by integrated and educated bioinformatics evaluations, to shed further light in complex neurological diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , MicroRNAs , Multiple Sclerosis , Adult , Humans , Child , Multiple Sclerosis/genetics , Computational Biology , Gene Expression , B-Cell Activating Factor
5.
New Phytol ; 229(3): 1650-1664, 2021 02.
Article in English | MEDLINE | ID: mdl-32945560

ABSTRACT

Viral infections are accompanied by a massive production of small interfering RNAs (siRNAs) of plant origin, such as virus-activated (va)siRNAs, which drive the widespread silencing of host gene expression, and whose effects in plant pathogen interactions remain unknown. By combining phenotyping and molecular analyses, we characterized vasiRNAs that are associated with typical mosaic symptoms of cauliflower mosaic virus infection in two crops, turnip (Brassica rapa) and oilseed rape (Brassica napus), and the reference plant Arabidopsis thaliana. We identified 15 loci in the three infected plant species, whose transcripts originate vasiRNAs. These loci appear to be generally affected by virus infections in Brassicaceae and encode factors that are centrally involved in photosynthesis and stress response, such as Rubisco activase (RCA), senescence-associated protein, heat shock protein HSP70, light harvesting complex, and membrane-related protein CP5. During infection, the expression of these factors is significantly downregulated, suggesting that their silencing is a central component of the plant's response to virus infections. Further findings indicate an important role for 22 nt long vasiRNAs in the plant's endogenous RNA silencing response. Our study considerably enhances knowledge about the new class of vasiRNAs that are triggered in virus-infected plants and will help to advance strategies for the engineering of gene clusters involved in the development of crop diseases.


Subject(s)
Arabidopsis , Plant Viruses , Arabidopsis/genetics , Gene Expression Regulation, Plant , Photosynthesis , Plant Diseases/genetics , Plant Viruses/genetics , RNA, Small Interfering
6.
Hum Mol Genet ; 27(1): 66-79, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29087462

ABSTRACT

Multiple sclerosis (MS) is a complex disease of the CNS that usually affects young adults, although 3-5% of cases are diagnosed in childhood and adolescence (hence called pediatric MS, PedMS). Genetic predisposition, among other factors, seems to contribute to the risk of the onset, in pediatric as in adult ages, but few studies have investigated the genetic 'environmentally naïve' load of PedMS. The main goal of this study was to identify circulating markers (miRNAs), target genes (mRNAs) and functional pathways associated with PedMS; we also verified the impact of miRNAs on clinical features, i.e. disability and cognitive performances. The investigation was performed in 19 PedMS and 20 pediatric controls (PCs) using a High-Throughput Next-generation Sequencing (HT-NGS) approach followed by an integrated bioinformatics/biostatistics analysis. Twelve miRNAs were significantly upregulated (let-7a-5p, let-7b-5p, miR-25-3p, miR-125a-5p, miR-942-5p, miR-221-3p, miR-652-3p, miR-182-5p, miR-185-5p, miR-181a-5p, miR-320a, miR-99b-5p) and 1 miRNA was downregulated (miR-148b-3p) in PedMS compared with PCs. The interactions between the significant miRNAs and their targets uncovered predicted genes (i.e. TNFSF13B, TLR2, BACH2, KLF4) related to immunological functions, as well as genes involved in autophagy-related processes (i.e. ATG16L1, SORT1, LAMP2) and ATPase activity (i.e. ABCA1, GPX3). No significant molecular profiles were associated with any PedMS demographic/clinical features. Both miRNAs and mRNA expressions predicted the phenotypes (PedMS-PC) with an accuracy of 92% and 91%, respectively. In our view, this original strategy of contemporary miRNA/mRNA analysis may help to shed light in the genetic background of the disease, suggesting further molecular investigations in novel pathogenic mechanisms.


Subject(s)
Multiple Sclerosis/genetics , Sequence Analysis, RNA/methods , Adolescent , Biomarkers , Child , Child, Preschool , Computational Biology , Female , Gene Expression Regulation/genetics , Genetic Predisposition to Disease/genetics , Humans , Kruppel-Like Factor 4 , Male , MicroRNAs/genetics , RNA, Messenger/genetics , Transcriptome/genetics
7.
Int J Mol Sci ; 19(11)2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30463275

ABSTRACT

MicroRNAs (miRNAs) and transcription factors (TFs) play key roles in complex multifactorial diseases like multiple sclerosis (MS). Starting from the miRNomic profile previously associated with a cohort of pediatric MS (PedMS) patients, we applied a combined molecular and computational approach in order to verify published data in patients with adult-onset MS (AOMS). Six out of the 13 selected miRNAs (miR-320a, miR-125a-5p, miR-652-3p, miR-185-5p, miR-942-5p, miR-25-3p) were significantly upregulated in PedMS and AOMS patients, suggesting that they may be considered circulating biomarkers distinctive of the disease independently from age. A computational and unbiased miRNA-based screening of target genes not necessarily associated to MS was then performed in order to provide an extensive view of the genetic mechanisms underlying the disease. A comprehensive MS-specific miRNA-TF co-regulatory network was hypothesized; among others, SP1, RELA, NF-κB, TP53, AR, MYC, HDAC1, and STAT3 regulated the transcription of 61 targets. Interestingly, NF-κB and STAT3 cooperatively regulate the expression of immune response genes and control the cross-talk between inflammatory and immune cells. Further functional analysis will be performed on the identified critical hubs. Above all, in our view, this approach supports the need of multidisciplinary strategies for shedding light into the pathogenesis of MS.


Subject(s)
Gene Regulatory Networks , MicroRNAs/metabolism , Multiple Sclerosis/genetics , Transcription Factors/metabolism , Adult , Age of Onset , Base Sequence , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, Reporter , HEK293 Cells , Humans , Luciferases/metabolism , Male , MicroRNAs/genetics , ROC Curve , Reproducibility of Results
8.
BMC Bioinformatics ; 17(Suppl 12): 345, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-28185579

ABSTRACT

BACKGROUND: When the reads obtained from high-throughput RNA sequencing are mapped against a reference database, a significant proportion of them - known as multireads - can map to more than one reference sequence. These multireads originate from gene duplications, repetitive regions or overlapping genes. Removing the multireads from the mapping results, in RNA-Seq analyses, causes an underestimation of the read counts, while estimating the real read count can lead to false positives during the detection of differentially expressed sequences. RESULTS: We present an innovative approach to deal with multireads and evaluate differential expression events, entirely based on fuzzy set theory. Since multireads cause uncertainty in the estimation of read counts during gene expression computation, they can also influence the reliability of differential expression analysis results, by producing false positives. Our method manages the uncertainty in gene expression estimation by defining the fuzzy read counts and evaluates the possibility of a gene to be differentially expressed with three fuzzy concepts: over-expression, same-expression and under-expression. The output of the method is a list of differentially expressed genes enriched with information about the uncertainty of the results due to the multiread presence. We have tested the method on RNA-Seq data designed for case-control studies and we have compared the obtained results with other existing tools for read count estimation and differential expression analysis. CONCLUSIONS: The management of multireads with the use of fuzzy sets allows to obtain a list of differential expression events which takes in account the uncertainty in the results caused by the presence of multireads. Such additional information can be used by the biologists when they have to select the most relevant differential expression events to validate with laboratory assays. Our method can be used to compute reliable differential expression events and to highlight possible false positives in the lists of differentially expressed genes computed with other tools.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , RNA/genetics , High-Throughput Nucleotide Sequencing , Reproducibility of Results , Sequence Analysis, RNA/methods , Software
9.
BMC Genomics ; 17(1): 634, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27528257

ABSTRACT

BACKGROUND: The bottlenose dolphin (Tursiops truncatus) is a mammal that belongs to the Cetartiodactyla and have lived in marine ecosystems for nearly 60 millions years. Despite its popularity, our knowledge about its adaptive immunity and evolution is very limited. Furthermore, nothing is known about the genomics and evolution of dolphin antigen receptor immunity. RESULTS: Here we report a evolutionary and expression study of Tursiops truncatus T cell receptor gamma (TRG) and alpha/delta (TRA/TRD) genes. We have identified in silico the TRG and TRA/TRD genes and analyzed the relevant mature transcripts in blood and in skin from four subjects. The dolphin TRG locus is the smallest and simplest of all mammalian loci as yet studied. It shows a genomic organization comprising two variable (V1 and V2), three joining (J1, J2 and J3) and a single constant (C), genes. Despite the fragmented nature of the genome assemblies, we deduced the TRA/TRD locus organization, with the recent TRDV1 subgroup genes duplications, as it is expected in artiodactyls. Expression analysis from blood of a subject allowed us to assign unambiguously eight TRAV genes to those annotated in the genomic sequence and to twelve new genes, belonging to five different subgroups. All transcripts were productive and no relevant biases towards TRAV-J rearrangements are observed. Blood and skin from four unrelated subjects expression data provide evidence for an unusual ratio of productive/unproductive transcripts which arise from the TRG V-J gene rearrangement and for a "public" gamma delta TR repertoire. The productive cDNA sequences, shared both in the same and in different individuals, include biases of the TRGV1 and TRGJ2 genes. The high frequency of TRGV1-J2/TRDV1- D1-J4 productive rearrangements in dolphins may represent an interesting oligo-clonal population comparable to that found in human with the TRGV9- JP/TRDV2-D-J T cells and in primates. CONCLUSIONS: Although the features of the TRG and TRA/TRD loci organization reflect those of the so far examined artiodactyls, genomic results highlight in dolphin an unusually simple TRG locus. The cDNA analysis reveal productive TRA/TRD transcripts and unusual ratios of productive/unproductive TRG transcripts. Comparing multiple different individuals, evidence is found for a "public" gamma delta TCR repertoire thus suggesting that in dolphins as in human the gamma delta TCR repertoire is accompanied by selection for public gamma chain.


Subject(s)
Bottle-Nosed Dolphin/genetics , Gene Expression Regulation , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Amino Acid Sequence , Animals , Bottle-Nosed Dolphin/metabolism , Gene Expression Profiling , Genetic Loci , Humans , Molecular Sequence Data , Phylogeny , Protein Structure, Secondary , RNA/blood , RNA/isolation & purification , RNA/metabolism , Receptors, Antigen, T-Cell, alpha-beta/classification , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/classification , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Sequence Alignment , Skin/metabolism
10.
Brief Bioinform ; 13(6): 682-95, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22786784

ABSTRACT

Metagenomics is providing an unprecedented access to the environmental microbial diversity. The amplicon-based metagenomics approach involves the PCR-targeted sequencing of a genetic locus fitting different features. Namely, it must be ubiquitous in the taxonomic range of interest, variable enough to discriminate between different species but flanked by highly conserved sequences, and of suitable size to be sequenced through next-generation platforms. The internal transcribed spacers 1 and 2 (ITS1 and ITS2) of the ribosomal DNA operon and one or more hyper-variable regions of 16S ribosomal RNA gene are typically used to identify fungal and bacterial species, respectively. In this context, reliable reference databases and taxonomies are crucial to assign amplicon sequence reads to the correct phylogenetic ranks. Several resources provide consistent phylogenetic classification of publicly available 16S ribosomal DNA sequences, whereas the state of ribosomal internal transcribed spacers reference databases is notably less advanced. In this review, we aim to give an overview of existing reference resources for both types of markers, highlighting strengths and possible shortcomings of their use for metagenomics purposes. Moreover, we present a new database, ITSoneDB, of well annotated and phylogenetically classified ITS1 sequences to be used as a reference collection in metagenomic studies of environmental fungal communities. ITSoneDB is available for download and browsing at http://itsonedb.ba.itb.cnr.it/.


Subject(s)
Databases, Genetic , Metagenomics/methods , Algorithms , Fungi/classification , Fungi/genetics , Genes, rRNA , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
11.
Adv Protein Chem Struct Biol ; 141: 331-360, 2024.
Article in English | MEDLINE | ID: mdl-38960479

ABSTRACT

We recently identified TMEM230 as a master regulator of the endomembrane system of cells. TMEM230 expression is necessary for promoting motor protein dependent intracellular trafficking of metalloproteins for cellular energy production in mitochondria. TMEM230 is also required for transport and secretion of metalloproteinases for autophagy and phagosome dependent clearance of misfolded proteins, defective RNAs and damaged cells, activities that decline with aging. This suggests that aberrant levels of TMEM230 may contribute to aging and regain of proper levels may have therapeutic applications. The components of the endomembrane system include the Golgi complex, other membrane bound organelles, and secreted vesicles and factors. Secreted cellular components modulate immune response and tissue regeneration in aging. Upregulation of intracellular packaging, trafficking and secretion of endosome components while necessary for tissue homeostasis and normal wound healing, also promote secretion of pro-inflammatory and pro-senescence factors. We recently determined that TMEM230 is co-regulated with trafficked cargo of the endomembrane system, including lysosome factors such as RNASET2. Normal tissue regeneration (in aging), repair (following injury) and aberrant destructive tissue remodeling (in cancer or autoimmunity) likely are regulated by TMEM230 activities of the endomembrane system, mitochondria and autophagosomes. The role of TMEM230 in aging is supported by its ability to regulate the pro-inflammatory secretome and senescence-associated secretory phenotype in tissue cells of patients with advanced age and chronic disease. Identifying secreted factors regulated by TMEM230 in young patients and patients of advanced age will facilitate identification of aging associated targets that aberrantly promote, inhibit or reverse aging. Ex situ culture of patient derived cells for identifying secreted factors in tissue regeneration and aging provides opportunities in developing therapeutic and personalized medicine strategies. Identification and validation of human secreted factors in tissue regeneration requires long-term stabile scaffold culture conditions that are different from those previously reported for cell lines used as cell models for aging. We describe a 3 dimensional (3D) platform utilizing non-biogenic and non-labile poly ε-caprolactone scaffolds that supports maintenance of long-term continuous cultures of human stem cells, in vitro generated 3D organoids and patient derived tissue. Combined with animal component free culture media, non-biogenic scaffolds are suitable for proteomic and glycobiological analyses to identify human factors in aging. Applications of electrospun nanofiber technologies in 3D cell culture allow for ex situ screening and the development of patient personalized therapeutic strategies and predicting their effectiveness in mitigating or promoting aging.


Subject(s)
Aging , Organoids , Humans , Organoids/metabolism , Aging/metabolism , Membrane Proteins/metabolism , Cellular Senescence , Female , Tissue Scaffolds/chemistry , Mammary Glands, Human/metabolism , Mammary Glands, Human/cytology
12.
Nat Commun ; 14(1): 5102, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37666818

ABSTRACT

Flow cytometry (FCM) can investigate dozens of parameters from millions of cells and hundreds of specimens in a short time and at a reasonable cost, but the amount of data that is generated is considerable. Computational approaches are useful to identify novel subpopulations and molecular biomarkers, but generally require deep expertize in bioinformatics and the use of different platforms. To overcome these limitations, we introduce CRUSTY, an interactive, user-friendly webtool incorporating the most popular algorithms for FCM data analysis, and capable of visualizing graphical and tabular results and automatically generating publication-quality figures within minutes. CRUSTY also hosts an interactive interface for the exploration of results in real time. Thus, CRUSTY enables a large number of users to mine complex datasets and reduce the time required for data exploration and interpretation. CRUSTY is accessible at https://crusty.humanitas.it/ .


Subject(s)
Algorithms , Computational Biology , Flow Cytometry , Data Analysis
13.
PLoS One ; 18(5): e0286104, 2023.
Article in English | MEDLINE | ID: mdl-37252915

ABSTRACT

Long non-coding RNAs (lncRNAs) have emerged as key regulators of cellular senescence by transcriptionally and post-transcriptionally modulating the expression of many important genes involved in senescence-associated pathways and processes. Among the different lncRNAs associated to senescence, Senescence Associated Long Non-coding RNA (SALNR) was found to be down-regulated in different cellular models of senescence. Since its release in 2015, SALNR has not been annotated in any database or public repository, and no other experimental data have been published. The SALNR sequence is located on the long arm of chromosome 10, at band 10q23.33, and it overlaps the 3' end of the HELLS gene. This investigation helped to unravel the mystery of the existence of SALNR by analyzing publicly available short- and long-read RNA sequencing data sets and RT-PCR analysis in human tissues and cell lines. Additionally, the expression of HELLS has been studied in cellular models of replicative senescence, both in silico and in vitro. Our findings, while not supporting the actual existence of SALNR as an independent transcript in the analyzed experimental models, demonstrate the expression of a predicted HELLS isoform entirely covering the SALNR genomic region. Furthermore, we observed a strong down-regulation of HELLS in senescent cells versus proliferating cells, supporting its role in the senescence and aging process.


Subject(s)
RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Cellular Senescence/genetics , Down-Regulation , Cell Line , Fibroblasts/physiology , DNA Helicases/genetics
14.
BMC Bioinformatics ; 13 Suppl 4: S21, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22536968

ABSTRACT

BACKGROUND: It is known from recent studies that more than 90% of human multi-exon genes are subject to Alternative Splicing (AS), a key molecular mechanism in which multiple transcripts may be generated from a single gene. It is widely recognized that a breakdown in AS mechanisms plays an important role in cellular differentiation and pathologies. Polymerase Chain Reactions, microarrays and sequencing technologies have been applied to the study of transcript diversity arising from alternative expression. Last generation Affymetrix GeneChip Human Exon 1.0 ST Arrays offer a more detailed view of the gene expression profile providing information on the AS patterns. The exon array technology, with more than five million data points, can detect approximately one million exons, and it allows performing analyses at both gene and exon level. In this paper we describe BEAT, an integrated user-friendly bioinformatics framework to store, analyze and visualize exon arrays datasets. It combines a data warehouse approach with some rigorous statistical methods for assessing the AS of genes involved in diseases. Meta statistics are proposed as a novel approach to explore the analysis results. BEAT is available at http://beat.ba.itb.cnr.it. RESULTS: BEAT is a web tool which allows uploading and analyzing exon array datasets using standard statistical methods and an easy-to-use graphical web front-end. BEAT has been tested on a dataset with 173 samples and tuned using new datasets of exon array experiments from 28 colorectal cancer and 26 renal cell cancer samples produced at the Medical Genetics Unit of IRCCS Casa Sollievo della Sofferenza.To highlight all possible AS events, alternative names, accession Ids, Gene Ontology terms and biochemical pathways annotations are integrated with exon and gene level expression plots. The user can customize the results choosing custom thresholds for the statistical parameters and exploiting the available clinical data of the samples for a multivariate AS analysis. CONCLUSIONS: Despite exon array chips being widely used for transcriptomics studies, there is a lack of analysis tools offering advanced statistical features and requiring no programming knowledge. BEAT provides a user-friendly platform for a comprehensive study of AS events in human diseases, displaying the analysis results with easily interpretable and interactive tables and graphics.


Subject(s)
Databases, Genetic , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Alternative Splicing , Carcinoma, Renal Cell/genetics , Colorectal Neoplasms/genetics , Humans , Internet , Kidney Neoplasms/genetics
15.
Nutrients ; 14(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35405953

ABSTRACT

Intestinal microorganisms impact health by maintaining gut homeostasis and shaping the host immunity, while gut dysbiosis associates with many conditions, including autism, a complex neurodevelopmental disorder with multifactorial aetiology. In autism, gut dysbiosis correlates with symptom severity and is characterised by a reduced bacterial variability and a diminished beneficial commensal relationship. Microbiota can influence the expression of host microRNAs that, in turn, regulate the growth of intestinal bacteria by means of bidirectional host-gut microbiota cross-talk. We investigated possible interactions among intestinal microbes and between them and host transcriptional modulators in autism. To this purpose, we analysed, by "omics" technologies, faecal microbiome, mycobiome, and small non-coding-RNAs (particularly miRNAs and piRNAs) of children with autism and neurotypical development. Patients displayed gut dysbiosis related to a reduction of healthy gut micro- and mycobiota as well as up-regulated transcriptional modulators. The targets of dysregulated non-coding-RNAs are involved in intestinal permeability, inflammation, and autism. Furthermore, microbial families, underrepresented in patients, participate in the production of human essential metabolites negatively influencing the health condition. Here, we propose a novel approach to analyse faeces as a whole, and for the first time, we detected miRNAs and piRNAs in faecal samples of patients with autism.


Subject(s)
Autistic Disorder , Gastrointestinal Microbiome , MicroRNAs , Microbiota , Autistic Disorder/genetics , Child , Dysbiosis/microbiology , Feces/microbiology , Gastrointestinal Microbiome/genetics , Humans , MicroRNAs/genetics , RNA, Small Interfering , RNA, Untranslated
17.
Front Cell Neurosci ; 15: 703431, 2021.
Article in English | MEDLINE | ID: mdl-34867197

ABSTRACT

Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12-15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis.

18.
Front Genet ; 11: 552490, 2020.
Article in English | MEDLINE | ID: mdl-33193626

ABSTRACT

MicroRNAs (miRNAs) are ubiquitous regulators of gene expression, evolutionarily conserved in plants and mammals. In recent years, although a growing number of papers debate the role of plant miRNAs on human gene expression, the molecular mechanisms through which this effect is achieved are still not completely elucidated. Some evidence suggest that this interaction might be sequence specific, and in this work, we investigated this possibility by transcriptomic and bioinformatics approaches. Plant and human miRNA sequences from primary databases were collected and compared for their similarities (global or local alignments). Out of 2,588 human miRNAs, 1,606 showed a perfect match of their seed sequence with the 5' end of 3,172 plant miRNAs. Further selections were applied based on the role of the human target genes or of the miRNA in cell cycle regulation (as an oncogene, tumor suppressor, or a biomarker for prognosis, or diagnosis in cancer). Based on these criteria, 20 human miRNAs were selected as potential functional analogous of 7 plant miRNAs, which were in turn transfected in different cell lines to evaluate their effect on cell proliferation. A significant decrease was observed in colorectal carcinoma HCT116 cell line. RNA-Seq demonstrated that 446 genes were differentially expressed 72 h after transfection. Noteworthy, we demonstrated that the plant mtr-miR-5754 and gma-miR4995 directly target the tumor-associated long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and nuclear paraspeckle assembly transcript 1 (NEAT1) in a sequence-specific manner. In conclusion, according to other recent discoveries, our study strengthens and expands the hypothesis that plant miRNAs can have a regulatory effect in mammals by targeting both protein-coding and non-coding RNA, thus suggesting new biotechnological applications.

19.
Brain Sci ; 9(10)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652596

ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) is a childhood-onset neurodevelopmental disorder, whose etiology and pathogenesis are still largely unknown. In order to uncover novel regulatory networks and molecular pathways possibly related to ADHD, we performed an integrated miRNA and mRNA expression profiling analysis in peripheral blood samples of children with ADHD and age-matched typically developing (TD) children. The expression levels of 13 miRNAs were evaluated with microfluidic qPCR, and differentially expressed (DE) mRNAs were detected on an Illumina HiSeq 2500 genome analyzer. The miRNA targetome was identified using an integrated approach of validated and predicted interaction data extracted from seven different bioinformatic tools. Gene Ontology (GO) and pathway enrichment analyses were carried out. Results showed that six miRNAs (miR-652-3p, miR-942-5p, let-7b-5p, miR-181a-5p, miR-320a, and miR-148b-3p) and 560 genes were significantly DE in children with ADHD compared to TD subjects. After correction for multiple testing, only three miRNAs (miR-652-3p, miR-148b-3p, and miR-942-5p) remained significant. Genes known to be associated with ADHD (e.g., B4GALT2, SLC6A9 TLE1, ANK3, TRIO, TAF1, and SYNE1) were confirmed to be significantly DE in our study. Integrated miRNA and mRNA expression data identified critical key hubs involved in ADHD. Finally, the GO and pathway enrichment analyses of all DE genes showed their deep involvement in immune functions, reinforcing the hypothesis that an immune imbalance might contribute to the ADHD etiology. Despite the relatively small sample size, in this study we were able to build a complex miRNA-target interaction network in children with ADHD that might help in deciphering the disease pathogenesis. Validation in larger samples should be performed in order to possibly suggest novel therapeutic strategies for treating this complex disease.

20.
Brain Behav ; 9(2): e01199, 2019 02.
Article in English | MEDLINE | ID: mdl-30656857

ABSTRACT

INTRODUCTION: The Pediatric onset of Multiple Sclerosis (PedMS) occurs in up to 10% of all cases. Cognitive impairment is one of the frequent symptoms, exerting severe impact in patients' quality of life and school performances. The underlying pathogenic mechanisms are not fully understood, and molecular markers predictive of cognitive dysfunctions need to be identified. On these grounds, we searched for molecular signature/s (i.e., miRNAs and target genes) associated with cognitive impairment in a selected population of PedMS patients. Additionally, changes of their regional brain volumes associated with the miRNAs of interest were investigated. METHODS: Nineteen PedMS subjects received a full cognitive evaluation; total RNA from peripheral blood samples was processed by next-generation sequencing followed by a bioinformatics/biostatistics analysis. RESULTS: The expression of 11 miRNAs significantly correlated with the scores obtained at different cognitive tests; among the others, eight miRNAs correlated with the Trail Making Tests. The computational target prediction identified 337 genes targeted by the miRNAs of interest; a tangled network of molecular connections was hypothesized, where genes like BST1, NTNG2, SPTB, and STAB1, already associated with cognitive dysfunctions, were nodes of the net. Furthermore, the expression of some miRNAs significantly correlated with cerebral volumes, for example, four miRNAs with the cerebellum cortex. CONCLUSIONS: As far as we know, this is the first evaluation exploring miRNAs in the cognitive performances of PedMS. Although none of these results survived the multiple tests' corrections, we believe that they may represent a step forward the identification of biomarkers useful for monitoring and targeting the onset/progression of cognitive impairments in MS.


Subject(s)
Cognition/physiology , Cognitive Dysfunction/genetics , MicroRNAs/genetics , Multiple Sclerosis , Quality of Life , Cell Adhesion Molecules, Neuronal/genetics , Child , Disease Progression , Female , Genetic Markers , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Male , Multiple Sclerosis/diagnosis , Multiple Sclerosis/genetics , Multiple Sclerosis/psychology , Neuropsychological Tests , Pilot Projects , Receptors, Lymphocyte Homing
SELECTION OF CITATIONS
SEARCH DETAIL