Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Proc Natl Acad Sci U S A ; 121(30): e2319574121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39024113

ABSTRACT

Regulated cell cycle progression ensures homeostasis and prevents cancer. In proliferating cells, premature S phase entry is avoided by the E3 ubiquitin ligase anaphasepromoting complex/cyclosome (APC/C), although the APC/C substrates whose degradation restrains G1-S progression are not fully known. The APC/C is also active in arrested cells that exited the cell cycle, but it is not clear whether APC/C maintains all types of arrest. Here, by expressing the APC/C inhibitor, EMI1, we show that APC/C activity is essential to prevent S phase entry in cells arrested by pharmacological cyclin-dependent kinases 4 and 6 (CDK4/6) inhibition (Palbociclib). Thus, active protein degradation is required for arrest alongside repressed cell cycle gene expression. The mechanism of rapid and robust arrest bypass from inhibiting APC/C involves CDKs acting in an atypical order to inactivate retinoblastoma-mediated E2F repression. Inactivating APC/C first causes mitotic cyclin B accumulation which then promotes cyclin A expression. We propose that cyclin A is the key substrate for maintaining arrest because APC/C-resistant cyclin A, but not cyclin B, is sufficient to induce S phase entry. Cells bypassing arrest from CDK4/6 inhibition initiate DNA replication with severely reduced origin licensing. The simultaneous accumulation of S phase licensing inhibitors, such as cyclin A and geminin, with G1 licensing activators disrupts the normal order of G1-S progression. As a result, DNA synthesis and cell proliferation are profoundly impaired. Our findings predict that cancers with elevated EMI1 expression will tend to escape CDK4/6 inhibition into a premature, underlicensed S phase and suffer enhanced genome instability.


Subject(s)
Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Humans , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Anaphase-Promoting Complex-Cyclosome/metabolism , Anaphase-Promoting Complex-Cyclosome/genetics , Cell Line, Tumor , S Phase/drug effects , Pyridines/pharmacology , Piperazines/pharmacology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , E2F Transcription Factors/metabolism , E2F Transcription Factors/genetics , Cell Cycle Checkpoints/drug effects , Cyclins/metabolism , Cyclins/genetics , F-Box Proteins
2.
Arterioscler Thromb Vasc Biol ; 44(6): 1265-1282, 2024 06.
Article in English | MEDLINE | ID: mdl-38602102

ABSTRACT

BACKGROUND: Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. METHODS: Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time-to-cell cycle reentry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA-seq (single-cell RNA sequencing) analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. RESULTS: Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous flow-exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. CONCLUSIONS: Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence misregulation that leads to vascular dysfunction and disease.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p27 , Endothelial Cells , Zebrafish , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Animals , Humans , Endothelial Cells/metabolism , Mechanotransduction, Cellular , Inhibitor of Differentiation Proteins/metabolism , Inhibitor of Differentiation Proteins/genetics , Cell Cycle , Mice , Cells, Cultured , Time Factors , Regional Blood Flow , Human Umbilical Vein Endothelial Cells/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Cell Proliferation , Neoplasm Proteins
3.
Nucleic Acids Res ; 50(17): 9601-9620, 2022 09 23.
Article in English | MEDLINE | ID: mdl-35079814

ABSTRACT

Eukaryotic chromosomes contain regions of varying accessibility, yet DNA replication factors must access all regions. The first replication step is loading MCM complexes to license replication origins during the G1 cell cycle phase. It is not yet known how mammalian MCM complexes are adequately distributed to both accessible euchromatin regions and less accessible heterochromatin regions. To address this question, we combined time-lapse live-cell imaging with immunofluorescence imaging of single human cells to quantify the relative rates of MCM loading in euchromatin and heterochromatin throughout G1. We report here that MCM loading in euchromatin is faster than that in heterochromatin in early G1, but surprisingly, heterochromatin loading accelerates relative to euchromatin loading in middle and late G1. This differential acceleration allows both chromatin types to begin S phase with similar concentrations of loaded MCM. The different loading dynamics require ORCA-dependent differences in origin recognition complex distribution. A consequence of heterochromatin licensing dynamics is that cells experiencing a truncated G1 phase from premature cyclin E expression enter S phase with underlicensed heterochromatin, and DNA damage accumulates preferentially in heterochromatin in the subsequent S/G2 phase. Thus, G1 length is critical for sufficient MCM loading, particularly in heterochromatin, to ensure complete genome duplication and to maintain genome stability.


In this study the authors have, for the first time, quantified DNA replication origin licensing dynamics and distribution in single cells at subnuclear resolution. The cell cycle and DNA replication fields have long appreciated that origin licensing is both absolutely essential for replication and that licensing is strictly confined to G1 phase. The biochemical process of origin licensing- which is the DNA loading of MCM complexes- is known in considerable detail. What has never been explored in any system, is the dynamics of origin licensing itself. Here the authors define the dynamics of human MCM loading at different times within G1 in both euchromatin and heterochromatin, and explore the consequences of those dynamics for genome stability.


Subject(s)
Chromatin , DNA Replication , Minichromosome Maintenance Proteins/metabolism , Animals , Cell Cycle , Cell Cycle Proteins/metabolism , Chromatin/metabolism , Euchromatin , Eukaryotic Cells , Heterochromatin , Humans , Origin Recognition Complex/metabolism , Replication Origin
4.
Mol Syst Biol ; 18(9): e11087, 2022 09.
Article in English | MEDLINE | ID: mdl-36161508

ABSTRACT

The cellular decision governing the transition between proliferative and arrested states is crucial to the development and function of every tissue. While the molecular mechanisms that regulate the proliferative cell cycle are well established, we know comparatively little about what happens to cells as they diverge into cell cycle arrest. We performed hyperplexed imaging of 47 cell cycle effectors to obtain a map of the molecular architecture that governs cell cycle exit and progression into reversible ("quiescent") and irreversible ("senescent") arrest states. Using this map, we found multiple points of divergence from the proliferative cell cycle; identified stress-specific states of arrest; and resolved the molecular mechanisms governing these fate decisions, which we validated by single-cell, time-lapse imaging. Notably, we found that cells can exit into senescence from either G1 or G2; however, both subpopulations converge onto a single senescent state with a G1-like molecular signature. Cells can escape from this "irreversible" arrest state through the upregulation of G1 cyclins. This map provides a more comprehensive understanding of the overall organization of cell proliferation and arrest.


Subject(s)
Cyclins , Cell Cycle , Cell Cycle Checkpoints , Cell Division , Cell Proliferation , Cyclins/genetics , Cyclins/metabolism
5.
PLoS Genet ; 16(8): e1008988, 2020 08.
Article in English | MEDLINE | ID: mdl-32841231

ABSTRACT

Achieving complete and precise genome duplication requires that each genomic segment be replicated only once per cell division cycle. Protecting large eukaryotic genomes from re-replication requires an overlapping set of molecular mechanisms that prevent the first DNA replication step, the DNA loading of MCM helicase complexes to license replication origins, after S phase begins. Previous reports have defined many such origin licensing inhibition mechanisms, but the temporal relationships among them are not clear, particularly with respect to preventing re-replication in G2 and M phases. Using a combination of mutagenesis, biochemistry, and single cell analyses in human cells, we define a new mechanism that prevents re-replication through hyperphosphorylation of the essential MCM loading protein, Cdt1. We demonstrate that Cyclin A/CDK1 can hyperphosphorylate Cdt1 to inhibit MCM re-loading in G2 phase. The mechanism of inhibition is to block Cdt1 binding to MCM independently of other known Cdt1 inactivation mechanisms such as Cdt1 degradation during S phase or Geminin binding. Moreover, our findings suggest that Cdt1 dephosphorylation at the mitosis-to-G1 phase transition re-activates Cdt1. We propose that multiple distinct, non-redundant licensing inhibition mechanisms act in a series of sequential relays through each cell cycle phase to ensure precise genome duplication.


Subject(s)
DNA Replication/genetics , Genome, Human/genetics , Replication Origin/genetics , Segmental Duplications, Genomic/genetics , CDC2 Protein Kinase/genetics , Cell Cycle Proteins/genetics , Cyclin A/genetics , G2 Phase/genetics , Geminin/genetics , Genes, Duplicate/genetics , HEK293 Cells , Humans , Minichromosome Maintenance Proteins/genetics , Phosphorylation/genetics , S Phase/genetics
6.
Genes Dev ; 29(16): 1734-46, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26272819

ABSTRACT

Timely ubiquitin-mediated protein degradation is fundamental to cell cycle control, but the precise degradation order at each cell cycle phase transition is still unclear. We investigated the degradation order among substrates of a single human E3 ubiquitin ligase, CRL4(Cdt2), which mediates the S-phase degradation of key cell cycle proteins, including Cdt1, PR-Set7, and p21. Our analysis of synchronized cells and asynchronously proliferating live single cells revealed a consistent order of replication-coupled destruction during both S-phase entry and DNA repair; Cdt1 is destroyed first, whereas p21 destruction is always substantially later than that of Cdt1. These differences are attributable to the CRL4(Cdt2) targeting motif known as the PIP degron, which binds DNA-loaded proliferating cell nuclear antigen (PCNA(DNA)) and recruits CRL4(Cdt2). Fusing Cdt1's PIP degron to p21 causes p21 to be destroyed nearly concurrently with Cdt1 rather than consecutively. This accelerated degradation conferred by the Cdt1 PIP degron is accompanied by more effective Cdt2 recruitment by Cdt1 even though p21 has higher affinity for PCNA(DNA). Importantly, cells with artificially accelerated p21 degradation display evidence of stalled replication in mid-S phase and sensitivity to replication arrest. We therefore propose that sequential degradation ensures orderly S-phase progression to avoid replication stress and genome instability.


Subject(s)
G1 Phase/physiology , Genomic Instability , Proteolysis , S Phase/physiology , Amino Acid Motifs , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Repair , DNA Replication , Humans , Nuclear Proteins/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , Ubiquitin-Protein Ligases/metabolism
7.
BMC Genomics ; 23(1): 337, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35501690

ABSTRACT

BACKGROUND: The cohesin complex is essential for proper chromosome structure and gene expression. Defects in cohesin subunits and regulators cause changes in cohesin complex dynamics and thereby alter three-dimensional genome organization. However, the molecular mechanisms that drive cohesin localization and function remain poorly understood. RESULTS: In this study, we observe that loss of WIZ causes changes to cohesin localization that are distinct from loss of the known WIZ binding partner G9a. Whereas loss of WIZ uniformly increases cohesin levels on chromatin at known binding sites and leads to new, ectopic cohesin binding sites, loss of G9a does not. Ectopic cohesin binding on chromatin after the loss of WIZ occurs at regions that are enriched for activating histone modifications and transcription factors motifs. Furthermore, loss of WIZ causes changes in cohesin localization that are distinct from those observed by loss of WAPL, the canonical cohesin unloading factor. CONCLUSIONS: The evidence presented here suggests that WIZ can function independently from its previously identified role with G9a and GLP in heterochromatin formation. Furthermore, while WIZ limits the levels and localization pattern of cohesin across the genome, it appears to function independently of WAPL-mediated cohesin unloading.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Transcription Factors/metabolism , Cohesins
8.
J Biol Chem ; 295(8): 2359-2374, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31896573

ABSTRACT

The maternal embryonic leucine zipper kinase (MELK) has been implicated in the regulation of cancer cell proliferation. RNAi-mediated MELK depletion impairs growth and causes G2/M arrest in numerous cancers, but the mechanisms underlying these effects are poorly understood. Furthermore, the MELK inhibitor OTSSP167 has recently been shown to have poor selectivity for MELK, complicating the use of this inhibitor as a tool compound to investigate MELK function. Here, using a cell-based proteomics technique called multiplexed kinase inhibitor beads/mass spectrometry (MIB/MS), we profiled the selectivity of two additional MELK inhibitors, NVS-MELK8a (8a) and HTH-01-091. Our results revealed that 8a is a highly selective MELK inhibitor, which we further used for functional studies. Resazurin and crystal violet assays indicated that 8a decreases triple-negative breast cancer cell viability, and immunoblotting revealed that impaired growth is due to perturbation of cell cycle progression rather than induction of apoptosis. Using double-thymidine synchronization and immunoblotting, we observed that MELK inhibition delays mitotic entry, which was associated with delayed activation of Aurora A, Aurora B, and cyclin-dependent kinase 1 (CDK1). Following this delay, cells entered and completed mitosis. Using live-cell microscopy of cells harboring fluorescent proliferating cell nuclear antigen, we confirmed that 8a significantly and dose-dependently lengthens G2 phase. Collectively, our results provide a rationale for using 8a as a tool compound for functional studies of MELK and indicate that MELK inhibition delays mitotic entry, likely via transient G2/M checkpoint activation.


Subject(s)
Mass Spectrometry , Mitosis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Histones/metabolism , Humans , Mitosis/drug effects , Neoplasm Proteins/metabolism , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms/enzymology , Triple Negative Breast Neoplasms/pathology
9.
Biochem Soc Trans ; 49(5): 2133-2141, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34545932

ABSTRACT

The cell division cycle must be strictly regulated during both development and adult maintenance, and efficient and well-controlled DNA replication is a key event in the cell cycle. DNA replication origins are prepared in G1 phase of the cell cycle in a process known as origin licensing which is essential for DNA replication initiation in the subsequent S phase. Appropriate origin licensing includes: (1) Licensing enough origins at adequate origin licensing speed to complete licensing before G1 phase ends; (2) Licensing origins such that they are well-distributed on all chromosomes. Both aspects of licensing are critical for replication efficiency and accuracy. In this minireview, we will discuss recent advances in defining how origin licensing speed and distribution are critical to ensure DNA replication completion and genome stability.


Subject(s)
DNA Replication/genetics , DNA/metabolism , G1 Phase Cell Cycle Checkpoints/genetics , Minichromosome Maintenance Proteins/metabolism , Replication Origin , Animals , Cell Division/genetics , Chromosomes/genetics , Chromosomes/metabolism , DNA/genetics , Genomic Instability/genetics , Humans , Protein Binding
10.
Mol Syst Biol ; 15(3): e8604, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30886052

ABSTRACT

The cell cycle is canonically described as a series of four consecutive phases: G1, S, G2, and M. In single cells, the duration of each phase varies, but the quantitative laws that govern phase durations are not well understood. Using time-lapse microscopy, we found that each phase duration follows an Erlang distribution and is statistically independent from other phases. We challenged this observation by perturbing phase durations through oncogene activation, inhibition of DNA synthesis, reduced temperature, and DNA damage. Despite large changes in durations in cell populations, phase durations remained uncoupled in individual cells. These results suggested that the independence of phase durations may arise from a large number of molecular factors that each exerts a minor influence on the rate of cell cycle progression. We tested this model by experimentally forcing phase coupling through inhibition of cyclin-dependent kinase 2 (CDK2) or overexpression of cyclin D. Our work provides an explanation for the historical observation that phase durations are both inherited and independent and suggests how cell cycle progression may be altered in disease states.


Subject(s)
Cell Cycle/physiology , Cyclin-Dependent Kinase 2/antagonists & inhibitors , DNA Replication/genetics , Cyclin D/genetics , Cyclin D/metabolism , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , DNA Damage , Humans , Oncogenes/genetics , Temperature
11.
J Biol Chem ; 290(1): 556-67, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25411249

ABSTRACT

Replication-coupled destruction of a cohort of cell cycle proteins ensures efficient and precise genome duplication. Three proteins destroyed during replication via the CRL4(CDT2) ubiquitin E3 ligase, CDT1, p21, and SET8 (PR-SET7), are also essential or important during mitosis, making their reaccumulation after S phase a critical cell cycle event. During early and mid-S phase and during DNA repair, proliferating cell nuclear antigen (PCNA) loading onto DNA (PCNA(DNA)) triggers the interaction between CRL4(CDT2) and its substrates, resulting in their degradation. We have discovered that, beginning in late S phase, PCNA(DNA) is no longer sufficient to trigger CRL4(CDT2)-mediated degradation. A CDK1-dependent mechanism that blocks CRL4(CDT2) activity by interfering with CDT2 recruitment to chromatin actively protects CRL4(CDT2) substrates. We postulate that deliberate override of replication-coupled destruction allows anticipatory accumulation in late S phase. We further show that (as for CDT1) de novo SET8 reaccumulation is important for normal mitotic progression. In this manner, CDK1-dependent CRL4(CDT2) inactivation contributes to efficient transition from S phase to mitosis.


Subject(s)
Chromatin/metabolism , Cyclin-Dependent Kinases/genetics , Mitosis , Nuclear Proteins/genetics , S Phase , Ubiquitin-Protein Ligases/genetics , CDC2 Protein Kinase , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/chemistry , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinases/metabolism , Gene Expression Regulation , HCT116 Cells , HEK293 Cells , HeLa Cells , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Nuclear Proteins/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Proteolysis , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
12.
bioRxiv ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39282338

ABSTRACT

The CMG helicase (CDC45-MCM2-7-GINS) unwinds DNA as a component of eukaryotic replisomes. Replisome (dis)assembly is tightly coordinated with cell cycle progression to ensure genome stability. However, factors that prevent premature CMG unloading and replisome disassembly are poorly described. Since disassembly is catalyzed by ubiquitination, deubiquitinases (DUBs) represent attractive candidates for safeguarding against untimely and deleterious CMG unloading. We combined a targeted loss-of-function screen with quantitative, single-cell analysis to identify human USP37 as a key DUB preventing replisome disassembly. We demonstrate that USP37 maintains active replisomes on S-phase chromatin and promotes normal cell cycle progression. Proteomics and enzyme assays revealed USP37 interacts with the CMG complex to deubiquitinate MCM7, thus antagonizing replisome disassembly. Significantly, USP37 protects normal epithelial cells from oncoprotein-induced replication stress. Our findings reveal USP37 to be critical to the maintenance of replisomes in S-phase and suggest USP37-targeting as a potential strategy for treating malignancies with defective DNA replication control.

13.
bioRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37662222

ABSTRACT

Background: Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. Methods: Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time to cell cycle re-entry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA seq analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. Results: Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous-flow exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. Conclusions: Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence mis-regulation that leads to vascular dysfunction and disease.

14.
Cancers (Basel) ; 15(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37760529

ABSTRACT

G1 cell cycle phase dynamics are regulated by intricate networks involving cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors, which control G1 progression and ensure proper cell cycle transitions. Moreover, adequate origin licensing in G1 phase, the first committed step of DNA replication in the subsequent S phase, is essential to maintain genome integrity. In this review, we highlight the intriguing parallels and disparities in G1 dynamics between stem cells and cancer cells, focusing on their regulatory mechanisms and functional outcomes. Notably, SOX2, OCT4, KLF4, and the pluripotency reprogramming facilitator c-MYC, known for their role in establishing and maintaining stem cell pluripotency, are also aberrantly expressed in certain cancer cells. In this review, we discuss recent advances in understanding the regulatory role of these pluripotency factors in G1 dynamics in the context of stem cells and cancer cells, which may offer new insights into the interconnections between pluripotency and tumorigenesis.

15.
Fac Rev ; 12: 5, 2023.
Article in English | MEDLINE | ID: mdl-36923701

ABSTRACT

Cell proliferation control is essential during development and for maintaining adult tissues. Loss of that control promotes not only oncogenesis when cells proliferate inappropriately but also developmental abnormalities or degeneration when cells fail to proliferate when and where needed. To ensure that cells are produced at the right place and time, an intricate balance of pro-proliferative and anti-proliferative signals impacts the probability that cells undergo cell cycle exit to quiescence, or G0 phase. This brief review describes recent advances in our understanding of how and when quiescence is initiated and maintained in mammalian cells. We highlight the growing appreciation for quiescence as a collection of context-dependent distinct states.

16.
bioRxiv ; 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37986787

ABSTRACT

Regulated cell cycle progression ensures homeostasis and prevents cancer. In proliferating cells, premature S phase entry is avoided by the E3 ubiquitin ligase APC/C (anaphase promoting complex/cyclosome), although the APC/C substrates whose degradation restrains G1-S progression are not fully known. The APC/C is also active in arrested cells that exited the cell cycle, but it is not clear if APC/C maintains all types of arrest. Here by expressing the APC/C inhibitor, EMI1, we show that APC/C activity is essential to prevent S phase entry in cells arrested by pharmacological CDK4/6 inhibition (Palbociclib). Thus, active protein degradation is required for arrest alongside repressed cell cycle gene expression. The mechanism of rapid and robust arrest bypass from inhibiting APC/C involves cyclin-dependent kinases acting in an atypical order to inactivate RB-mediated E2F repression. Inactivating APC/C first causes mitotic cyclin B accumulation which then promotes cyclin A expression. We propose that cyclin A is the key substrate for maintaining arrest because APC/C-resistant cyclin A, but not cyclin B, is sufficient to induce S phase entry. Cells bypassing arrest from CDK4/6 inhibition initiate DNA replication with severely reduced origin licensing. The simultaneous accumulation of S phase licensing inhibitors, such as cyclin A and geminin, with G1 licensing activators disrupts the normal order of G1-S progression. As a result, DNA synthesis and cell proliferation are profoundly impaired. Our findings predict that cancers with elevated EMI1 expression will tend to escape CDK4/6 inhibition into a premature, underlicensed S phase and suffer enhanced genome instability.

17.
Adv Sci (Weinh) ; 10(3): e2203718, 2023 01.
Article in English | MEDLINE | ID: mdl-36445063

ABSTRACT

STING is an innate immune sensor for immune surveillance of viral/bacterial infection and maintenance of an immune-friendly microenvironment to prevent tumorigenesis. However, if and how STING exerts innate immunity-independent function remains elusive. Here, the authors report that STING expression is increased in renal cell carcinoma (RCC) patients and governs tumor growth through non-canonical innate immune signaling involving mitochondrial ROS maintenance and calcium homeostasis. Mitochondrial voltage-dependent anion channel VDAC2 is identified as a new STING binding partner. STING depletion potentiates VDAC2/GRP75-mediated MERC (mitochondria-ER contact) formation to increase mitochondrial ROS/calcium levels, impairs mitochondria function, and suppresses mTORC1/S6K signaling leading to RCC growth retardation. STING interaction with VDAC2 occurs through STING-C88/C91 palmitoylation and inhibiting STING palmitoyl-transferases ZDHHCs by 2-BP significantly impedes RCC cell growth alone or in combination with sorafenib. Together, these studies reveal an innate immunity-independent function of STING in regulating mitochondrial function and growth in RCC, providing a rationale to target the STING/VDAC2 interaction in treating RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Calcium/metabolism , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Immunity, Innate , Tumor Microenvironment , Voltage-Dependent Anion Channel 2/metabolism
18.
Cell Chem Biol ; 30(12): 1525-1541.e7, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37858336

ABSTRACT

We report a novel translation-regulatory function of G9a, a histone methyltransferase and well-understood transcriptional repressor, in promoting hyperinflammation and lymphopenia; two hallmarks of endotoxin tolerance (ET)-associated chronic inflammatory complications. Using multiple approaches, we demonstrate that G9a interacts with multiple translation regulators during ET, particularly the N6-methyladenosine (m6A) RNA methyltransferase METTL3, to co-upregulate expression of certain m6A-modified mRNAs that encode immune-checkpoint and anti-inflammatory proteins. Mechanistically, G9a promotes m6A methyltransferase activity of METTL3 at translational/post-translational level by regulating its expression, its methylation, and its cytosolic localization during ET. Additionally, from a broader view extended from the G9a-METTL3-m6A translation regulatory axis, our translatome proteomics approach identified numerous "G9a-translated" proteins that unite the networks associated with inflammation dysregulation, T cell dysfunction, and systemic cytokine response. In sum, we identified a previously unrecognized function of G9a in protein-specific translation that can be leveraged to treat ET-related chronic inflammatory diseases.


Subject(s)
Histocompatibility Antigens , Histone-Lysine N-Methyltransferase , Inflammation , Humans , Histone Methyltransferases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Inflammation/genetics , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism
19.
Elife ; 112022 09 06.
Article in English | MEDLINE | ID: mdl-36066348

ABSTRACT

Concerns about the mental health of students, trainees and staff at universities and medical schools have been growing for many years. Recently, these have been exacerbated by the COVID-19 pandemic and a period of heightened reckoning and protests about systemic racism in the United States in 2020. To better understand the mental health of medical students and biomedical doctoral students at the University of North Carolina at Chapel Hill during this challenging period, we performed a cross-sectional study (n=957) using institutional annual survey data on measures of depression, anxiety, hazardous alcohol use, problems related to substance use, and suicidal ideation. These data were collected in 2019 and 2020, and were analyzed by type of training program, race/ethnicity, gender, sexual orientation, and survey year. Results indicated significant differences for rates of depression, anxiety, and suicidal ideation, with biomedical doctoral students showing greater incidence than medical students, and historically excluded students (e.g., people of color, women, LGBQ+ trainees) showing greater incidence compared to their peers. Of note, mental health remained poor for biomedical doctoral students in 2020 and declined for those belonging to historically excluded populations. The high rates of depression, anxiety, and suicidal ideation reported suggest that training environments need to be improved and support for mental health increased.


Subject(s)
COVID-19 , Students, Medical , Anxiety/psychology , COVID-19/epidemiology , Cross-Sectional Studies , Depression/epidemiology , Female , Humans , Male , Mental Health , Pandemics , Students, Medical/psychology , United States/epidemiology , Universities
20.
Life Sci Alliance ; 5(5)2022 05.
Article in English | MEDLINE | ID: mdl-35173014

ABSTRACT

Cyclin E/CDK2 drives cell cycle progression from G1 to S phase. Despite the toxicity of cyclin E overproduction in mammalian cells, the cyclin E gene is overexpressed in some cancers. To further understand how cells can tolerate high cyclin E, we characterized non-transformed epithelial cells subjected to chronic cyclin E overproduction. Cells overproducing cyclin E, but not cyclins D or A, briefly experienced truncated G1 phases followed by a transient period of DNA replication origin underlicensing, replication stress, and impaired proliferation. Individual cells displayed substantial intercellular heterogeneity in cell cycle dynamics and CDK activity. Each phenotype improved rapidly despite high cyclin E-associated activity. Transcriptome analysis revealed adapted cells down-regulated a cohort of G1-regulated genes. Withdrawing cyclin E from adapted cells only partially reversed underlicensing indicating that adaptation is at least partly non-genetic. This study provides evidence that mammalian cyclin E/CDK inhibits origin licensing indirectly through premature S phase onset and provides mechanistic insight into the relationship between CDKs and licensing. It serves as an example of oncogene adaptation that may recapitulate molecular changes during tumorigenesis.


Subject(s)
Cyclin E/genetics , Cyclin E/metabolism , Cyclin-Dependent Kinase 2/genetics , Animals , Cell Cycle , Cell Division , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , DNA Replication , G1 Phase , Gene Expression/genetics , Gene Expression Regulation/genetics , Humans , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , S Phase
SELECTION OF CITATIONS
SEARCH DETAIL