Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Rep ; 14(1): 3381, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336916

ABSTRACT

The intestinal microbiome plays an important role in mammalian health, disease, and immune function. In light of this function, recent studies have aimed to characterize the microbiomes of various bat species, which are noteworthy for their roles as reservoir hosts for several viruses known to be highly pathogenic in other mammals. Despite ongoing bat microbiome research, its role in immune function and disease, especially the effects of changes in the microbiome on host health, remains nebulous. Here, we describe a novel methodology to investigate the intestinal microbiome of captive Jamaican fruit bats (Artibeus jamaicensis). We observed a high degree of individual variation in addition to sex- and cohort-linked differences. The intestinal microbiome was correlated with intestinal metabolite composition, possibly contributing to differences in immune status. This work provides a basis for future infection and field studies to examine in detail the role of the intestinal microbiome in antiviral immunity.


Subject(s)
Chiroptera , Gastrointestinal Microbiome , Humans , Animals , Female , Male , Jamaica , Sex Characteristics , Mammals , Metabolome
2.
NPJ Vaccines ; 7(1): 171, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36543806

ABSTRACT

Nipah virus (NiV) is a highly pathogenic and re-emerging virus, which causes sporadic but severe infections in humans. Currently, no vaccines against NiV have been approved. We previously showed that ChAdOx1 NiV provides full protection against a lethal challenge with NiV Bangladesh (NiV-B) in hamsters. Here, we investigated the efficacy of ChAdOx1 NiV in the lethal African green monkey (AGM) NiV challenge model. AGMs were vaccinated either 4 weeks before challenge (prime vaccination), or 8 and 4 weeks before challenge with ChAdOx1 NiV (prime-boost vaccination). A robust humoral and cellular response was detected starting 14 days post-initial vaccination. Upon challenge, control animals displayed a variety of signs and had to be euthanized between 5 and 7 days post inoculation. In contrast, vaccinated animals showed no signs of disease, and we were unable to detect infectious virus in tissues and all but one swab. No to limited antibodies against fusion protein or nucleoprotein antigen could be detected 42 days post challenge, suggesting that vaccination induced a very robust protective immune response preventing extensive virus replication.

3.
Lab Anim ; 55(5): 417-427, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34044662

ABSTRACT

Complete blood count, serum chemistry values, and biological reference intervals were compared between two age groups (34-49 and 84-120 days old) of healthy male and female laboratory raised natal multimammate mice (Mastomys natalensis). Blood was collected via cardiocentesis under isoflurane anesthesia. Data sets of machine automated complete blood counts and clinical chemistries were analyzed. Significant differences between sex and age groups of the data sets were defined. The baseline hematologic and serum biochemistry values described here can improve interpretation of laboratory research using natal multimammate mice.


Subject(s)
Laboratories , Murinae , Animals , Female , Male , Mice , Reference Values
4.
NPJ Vaccines ; 6(1): 32, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33654106

ABSTRACT

Lassa virus (LASV) infects hundreds of thousands of individuals each year, highlighting the need for the accelerated development of preventive, diagnostic, and therapeutic interventions. To date, no vaccine has been licensed for LASV. ChAdOx1-Lassa-GPC is a chimpanzee adenovirus-vectored vaccine encoding the Josiah strain LASV glycoprotein precursor (GPC) gene. In the following study, we show that ChAdOx1-Lassa-GPC is immunogenic, inducing robust T-cell and antibody responses in mice. Furthermore, a single dose of ChAdOx1-Lassa-GPC fully protects Hartley guinea pigs against morbidity and mortality following lethal challenge with a guinea pig-adapted LASV (strain Josiah). By contrast, control vaccinated animals reached euthanasia criteria 10-12 days after infection. Limited amounts of LASV RNA were detected in the tissues of vaccinated animals. Viable LASV was detected in only one animal receiving a single dose of the vaccine. A prime-boost regimen of ChAdOx1-Lassa-GPC in guinea pigs significantly increased antigen-specific antibody titers and cleared viable LASV from the tissues. These data support further development of ChAdOx1-Lassa-GPC and testing in non-human primate models of infection.

5.
mBio ; 10(6)2019 12 17.
Article in English | MEDLINE | ID: mdl-31848292

ABSTRACT

Klebsiella pneumoniae is a human gut communal organism and notorious opportunistic pathogen. The relative high burden of asymptomatic colonization by K. pneumoniae is often compounded by multidrug resistance-a potential problem for individuals with significant comorbidities or other risk factors for infection. A carbapenem-resistant K. pneumoniae strain classified as multilocus sequence type 258 (ST258) is widespread in the United States and is usually multidrug resistant. Thus, treatment of ST258 infections is often difficult. Inasmuch as new preventive and/or therapeutic measures are needed for treatment of such infections, we developed an ST258 pneumonia model in cynomolgus macaques and tested the ability of an ST258 capsule polysaccharide type 2 (CPS2) vaccine to moderate disease severity. Compared with sham-vaccinated animals, those vaccinated with ST258 CPS2 had significantly less disease as assessed by radiography 24 h after intrabronchial installation of 108 CFU of ST258. All macaques vaccinated with CPS2 ultimately developed ST258-specific antibodies that significantly enhanced serum bactericidal activity and killing of ST258 by macaque neutrophils ex vivo Consistent with a protective immune response to CPS2, transcripts encoding inflammatory mediators were increased in infected lung tissues obtained from CPS-vaccinated animals compared with control, sham-vaccinated macaques. Taken together, our data provide support for the idea that vaccination with ST258 CPS can be used to prevent or moderate infections caused by ST258. As with studies performed decades earlier, we propose that this prime-boost vaccination approach can be extended to include multiple capsule types.IMPORTANCE Multidrug-resistant bacteria continue to be a major problem worldwide, especially among individuals with significant comorbidities and other risk factors for infection. K. pneumoniae is among the leading causes of health care-associated infections, and the organism is often resistant to multiple classes of antibiotics. A carbapenem-resistant K. pneumoniae strain known as multilocus sequence type 258 (ST258) is the predominant carbapenem-resistant Enterobacteriaceae in the health care setting in the United States. Infections caused by ST258 are often difficult to treat and new prophylactic measures and therapeutic approaches are needed. To that end, we developed a lower respiratory tract infection model in cynomolgus macaques in which to test the ability of ST258 CPS to protect against severe ST258 infection.


Subject(s)
Bacterial Vaccines/immunology , Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/immunology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/prevention & control , Animals , Biopsy , Immunization , Klebsiella Infections/diagnosis , Klebsiella Infections/microbiology , Klebsiella Infections/prevention & control , Primates , Radiography , Respiratory Tract Infections/diagnosis , Transcriptome , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL