Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.015
Filter
Add more filters

Publication year range
1.
Cell ; 183(6): 1520-1535.e14, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33157038

ABSTRACT

ß-Coronaviruses are a family of positive-strand enveloped RNA viruses that includes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Much is known regarding their cellular entry and replication pathways, but their mode of egress remains uncertain. Using imaging methodologies and virus-specific reporters, we demonstrate that ß-coronaviruses utilize lysosomal trafficking for egress rather than the biosynthetic secretory pathway more commonly used by other enveloped viruses. This unconventional egress is regulated by the Arf-like small GTPase Arl8b and can be blocked by the Rab7 GTPase competitive inhibitor CID1067700. Such non-lytic release of ß-coronaviruses results in lysosome deacidification, inactivation of lysosomal degradation enzymes, and disruption of antigen presentation pathways. ß-Coronavirus-induced exploitation of lysosomal organelles for egress provides insights into the cellular and immunological abnormalities observed in patients and suggests new therapeutic modalities.


Subject(s)
COVID-19/metabolism , SARS-CoV-2/metabolism , Secretory Pathway , Virus Release , ADP-Ribosylation Factors/metabolism , Animals , COVID-19/pathology , Female , HeLa Cells , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Lysosomes , Mice , Thiourea/analogs & derivatives , Thiourea/pharmacology , rab GTP-Binding Proteins/antagonists & inhibitors , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins , COVID-19 Drug Treatment
2.
Cell ; 167(5): 1398-1414.e24, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863251

ABSTRACT

Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Subject(s)
Epigenomics , Immune System Diseases/genetics , Monocytes/metabolism , Neutrophils/metabolism , T-Lymphocytes/metabolism , Transcription, Genetic , Adult , Aged , Alternative Splicing , Female , Genetic Predisposition to Disease , Hematopoietic Stem Cells/metabolism , Histone Code , Humans , Male , Middle Aged , Quantitative Trait Loci , Young Adult
3.
PLoS Pathog ; 20(7): e1012371, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39052678

ABSTRACT

Sialoglycan-binding enveloped viruses often possess receptor-destroying activity to avoid being immobilized by non-functional decoy receptors. Sialic acid (Sia)-binding paramyxoviruses contain a hemagglutinin-neuraminidase (HN) protein that possesses both Sia-binding and -cleavage activities. The multivalent, dynamic receptor interactions of paramyxovirus particles provide virion motility and are a key determinant of host tropism. However, such multivalent interactions have not been exhaustively analyzed, because such studies are complicated by the low affinity of the individual interactions and the requirement of high titer virus stocks. Moreover, the dynamics of multivalent particle-receptor interactions are difficult to predict from Michaelis-Menten enzyme kinetics. Therefore, we here developed Ni-NTA nanoparticles that multivalently display recombinant soluble HN tetramers via their His tags (HN-NPs). Applying this HN-NP platform to Newcastle disease virus (NDV), we investigated using biolayer interferometry (BLI) the role of important HN residues in receptor-interactions and analyzed long-range effects between the catalytic site and the second Sia binding site (2SBS). The HN-NP system was also applicable to other paramyxoviruses. Comparative analysis of HN-NPs revealed and confirmed differences in dynamic receptor-interactions between type 1 human and murine parainfluenza viruses as well as of lab-adapted and clinical isolates of human parainfluenza virus type 3, which are likely to contribute to differences in tropism of these viruses. We propose this novel platform to be applicable to elucidate the dynamics of multivalent-receptor interactions important for host tropism and pathogenesis, particularly for difficult to grow sialoglycan-binding (paramyxo)viruses.


Subject(s)
HN Protein , Nanoparticles , Newcastle disease virus , Receptors, Virus , HN Protein/metabolism , HN Protein/genetics , Animals , Newcastle disease virus/metabolism , Newcastle disease virus/physiology , Newcastle disease virus/genetics , Receptors, Virus/metabolism , Humans , N-Acetylneuraminic Acid/metabolism
4.
Blood ; 143(18): 1856-1872, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38427583

ABSTRACT

ABSTRACT: Allogeneic stem cell transplantation (alloSCT) is a curative treatment for hematological malignancies. After HLA-matched alloSCT, antitumor immunity is caused by donor T cells recognizing polymorphic peptides, designated minor histocompatibility antigens (MiHAs), that are presented by HLA on malignant patient cells. However, T cells often target MiHAs on healthy nonhematopoietic tissues of patients, thereby inducing side effects known as graft-versus-host disease. Here, we aimed to identify the dominant repertoire of HLA-I-restricted MiHAs to enable strategies to predict, monitor or modulate immune responses after alloSCT. To systematically identify novel MiHAs by genome-wide association screening, T-cell clones were isolated from 39 transplanted patients and tested for reactivity against 191 Epstein-Barr virus transformed B cell lines of the 1000 Genomes Project. By discovering 81 new MiHAs, we more than doubled the antigen repertoire to 159 MiHAs and demonstrated that, despite many genetic differences between patients and donors, often the same MiHAs are targeted in multiple patients. Furthermore, we showed that one quarter of the antigens are cryptic, that is translated from unconventional open reading frames, for example long noncoding RNAs, showing that these antigen types are relevant targets in natural immune responses. Finally, using single cell RNA-seq data, we analyzed tissue expression of MiHA-encoding genes to explore their potential role in clinical outcome, and characterized 11 new hematopoietic-restricted MiHAs as potential targets for immunotherapy. In conclusion, we expanded the repertoire of HLA-I-restricted MiHAs and identified recurrent, cryptic and hematopoietic-restricted antigens, which are fundamental to predict, follow or manipulate immune responses to improve clinical outcome after alloSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Histocompatibility Antigens Class I , Minor Histocompatibility Antigens , Humans , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Hematologic Neoplasms/immunology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/genetics , T-Lymphocytes/immunology , Genome-Wide Association Study , Transplantation, Homologous , Female , Male
5.
Proc Natl Acad Sci U S A ; 120(31): e2304992120, 2023 08.
Article in English | MEDLINE | ID: mdl-37467282

ABSTRACT

To become established upon zoonotic transfer, influenza A viruses (IAV) need to switch binding from "avian-type" α2-3-linked sialic acid receptors (2-3Sia) to "human-type" Siaα2-6-linked sialic acid receptors (2-6Sia). For the 1968 H3N2 pandemic virus, this was accomplished by two canonical amino acid substitutions in its hemagglutinin (HA) although a full specificity shift had not occurred. The receptor repertoire on epithelial cells is highly diverse and simultaneous interaction of a virus particle with a range of low- to very low-affinity receptors results in tight heteromultivalent binding. How this range of affinities determines binding selectivity and virus motility remains largely unknown as the analysis of low-affinity monovalent HA-receptor interactions is technically challenging. Here, a biolayer interferometry assay enabled a comprehensive analysis of receptor-binding kinetics evolution upon host-switching. Virus-binding kinetics of H3N2 virus isolates slowly evolved from 1968 to 1979 from mixed 2-3/2-6Sia specificity to high 2-6Sia specificity, surprisingly followed by a decline in selectivity after 1992. By using genetically tuned HEK293 cells, presenting either a simplified 2-3Sia- or 2-6Sia-specific receptor repertoire, receptor-specific binding was shown to correlate strongly with receptor-specific entry. In conclusion, the slow and continuous evolution of entry and receptor-binding specificity of seasonal H3N2 viruses contrasts with the paradigm that human IAVs need to rapidly acquire and maintain a high specificity for 2-6Sia. Analysis of the kinetic parameters of receptor binding provides a basis for understanding virus-binding specificity, motility, and HA/neuraminidase balance at the molecular level.


Subject(s)
Influenza A virus , Influenza, Human , Humans , Influenza A virus/metabolism , Influenza A Virus, H3N2 Subtype/genetics , Binding Sites , HEK293 Cells , Pandemics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Receptors, Virus/metabolism
6.
PLoS Pathog ; 19(3): e1011273, 2023 03.
Article in English | MEDLINE | ID: mdl-36972304

ABSTRACT

Many viruses initiate infection by binding to sialoglycan receptors at the cell surface. Binding to such receptors comes at a cost, however, as the sheer abundance of sialoglycans e.g. in mucus, may immobilize virions to non-functional decoy receptors. As a solution, sialoglycan-binding as well as sialoglycan-cleavage activities are often present in these viruses, which for paramyxoviruses are combined in the hemagglutinin-neuraminidase (HN) protein. The dynamic interactions of sialoglycan-binding paramyxoviruses with their receptors are thought to be key determinants of species tropism, replication and pathogenesis. Here we used biolayer interferometry to perform kinetic analyses of receptor interactions of animal and human paramyxoviruses (Newcastle disease virus, Sendai virus, and human parainfluenza virus 3). We show that these viruses display strikingly different receptor interaction dynamics, which correlated with their receptor-binding and -cleavage activities and the presence of a second sialic acid binding site. Virion binding was followed by sialidase-driven release, during which virions cleaved sialoglycans until a virus-specific density was reached, which was largely independent of virion concentration. Sialidase-driven virion release was furthermore shown to be a cooperative process and to be affected by pH. We propose that paramyxoviruses display sialidase-driven virion motility on a receptor-coated surface, until a threshold receptor density is reached at which virions start to dissociate. Similar motility has previously been observed for influenza viruses and is likely to also apply to sialoglycan-interacting embecoviruses. Analysis of the balance between receptor-binding and -cleavage increases our understanding of host species tropism determinants and zoonotic potential of viruses.


Subject(s)
Neuraminidase , Viral Proteins , Animals , Humans , Neuraminidase/metabolism , Kinetics , Protein Binding , Viral Proteins/metabolism , Virion/metabolism , HN Protein/genetics , HN Protein/metabolism
7.
J Virol ; 97(10): e0060223, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37754760

ABSTRACT

IMPORTANCE: Influenza A viruses (IAVs) contain hemagglutinin (HA) proteins involved in sialoglycan receptor binding and neuraminidase (NA) proteins that cleave sialic acids. While the importance of the NA protein in virion egress is well established, its role in virus entry remains to be fully elucidated. NA activity is needed for the release of virions from mucus decoy receptors, but conflicting results have been reported on the importance of NA activity in virus entry in the absence of decoy receptors. We now show that inhibition of NA activity affects virus entry depending on the receptor-binding properties of HA and the receptor repertoire present on cells. Inhibition of entry by the presence of mucus correlated with the importance of NA activity for virus entry, with the strongest inhibition being observed when mucus and OsC were combined. These results shed light on the importance in virus entry of the NA protein, an important antiviral drug target.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Neuraminidase , Receptors, Virus , Viral Proteins , Virus Internalization , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/enzymology , Influenza A virus/metabolism , Influenza, Human/enzymology , Influenza, Human/metabolism , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Protein Binding , Receptors, Virus/metabolism , Substrate Specificity , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Cell Line , Mucus
8.
Magn Reson Med ; 92(2): 618-630, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38441315

ABSTRACT

PURPOSE: MR-STAT is a relatively new multiparametric quantitative MRI technique in which quantitative paramater maps are obtained by solving a large-scale nonlinear optimization problem. Managing reconstruction times is one of the main challenges of MR-STAT. In this work we leverage GPU hardware to reduce MR-STAT reconstruction times. A highly optimized, GPU-compatible Bloch simulation toolbox is developed as part of this work that can be utilized for other quantitative MRI techniques as well. METHODS: The Julia programming language was used to develop a flexible yet highly performant and GPU-compatible Bloch simulation toolbox called BlochSimulators.jl. The runtime performance of the toolbox is benchmarked against other Bloch simulation toolboxes. Furthermore, a (partially matrix-free) modification of a previously presented (matrix-free) MR-STAT reconstruction algorithm is proposed and implemented using the Julia language on GPU hardware. The proposed algorithm is combined with BlochSimulators.jl and the resulting MR-STAT reconstruction times on GPU hardware are compared to previously presented MR-STAT reconstruction times. RESULTS: The BlochSimulators.jl package demonstrates superior runtime performance on both CPU and GPU hardware when compared to other existing Bloch simulation toolboxes. The GPU-accelerated partially matrix-free MR-STAT reconstruction algorithm, which relies on BlochSimulators.jl, allows for reconstructions of 68 seconds per two-dimensional (2D slice). CONCLUSION: By combining the proposed Bloch simulation toolbox and the partially matrix-free reconstruction algorithm, 2D MR-STAT reconstructions can be performed in the order of one minute on a modern GPU card. The Bloch simulation toolbox can be utilized for other quantitative MRI techniques as well, for example for online dictionary generation for MR Fingerprinting.


Subject(s)
Algorithms , Computer Simulation , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Programming Languages , Magnetic Resonance Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Computer Graphics , Brain/diagnostic imaging , Phantoms, Imaging , Software , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results
9.
Magn Reson Med ; 92(5): 2246-2260, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38860561

ABSTRACT

PURPOSE: A previously published method for MRI-based transfer function assessment makes use of the so-called transceive phase assumption (TPA). This limits its applicability to shorter leads and/or lower field strengths. A new method is presented where the background electric field is determined from both B 1 + $$ {\mathrm{B}}_1^{+} $$ - and B 1 - $$ {\mathrm{B}}_1^{-} $$ -field distributions, avoiding the TPA and making it more generally applicable. THEORY AND METHODS: These B 1 $$ {\mathrm{B}}_1 $$ -distributions are determined from a spoiled gradient echo multiflip angle acquisition. From the separated B 1 $$ {\mathrm{B}}_1 $$ -components the background electrical field and the induced current are computed. Further improvement is achieved by recasting the B 1 $$ {\mathrm{B}}_1 $$ -field model as a "magnitude squared least squares" problem. The proposed reconstruction method is used to determine transfer functions of various copper wire lengths up to 40 cm inside an elliptical ASTM phantom. The method is first tested on EM-simulated data and subsequently phantom and bench measurements are used to determine transfer functions experimentally. RESULTS: In silica reconstructions demonstrate the validity of the proposed B 1 $$ {\mathrm{B}}_1 $$ -field model resulting in highly accurate reconstructed B 1 $$ {\mathrm{B}}_1 $$ -fields, currents, incident electric fields and transfer functions. The experimental results show slight deviations in the field model, however, resulting transfer functions are accurately determined with high similarity to simulations and comparable to bench measurements. CONCLUSION: A more generally applicable method for MRI-based transfer function assessment is presented. The proposed method circumvents phase assumptions making it applicable for longer objects and/or higher field strengths. Additional improvements are implemented in the B 1 $$ {\mathrm{B}}_1 $$ -mapping method and the solution algorithm.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Phantoms, Imaging , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Humans , Reproducibility of Results , Computer Simulation
10.
Magn Reson Med ; 92(1): 226-235, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38326909

ABSTRACT

PURPOSE: To demonstrate the feasibility and robustness of the Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) framework for fast, high SNR relaxometry at 7T. METHODS: To deploy MR-STAT on 7T-systems, we designed optimized flip-angles using the BLAKJac-framework that incorporates the SAR-constraints. Transmit RF-inhomogeneities were mitigated by including a measured B 1 + $$ {B}_1^{+} $$ -map in the reconstruction. Experiments were performed on a gel-phantom and on five volunteers to explore the robustness of the sequence and its sensitivity to B 1 + $$ {B}_1^{+} $$ inhomogeneities. The SNR-gain at 7T was explored by comparing phantom and in vivo results to MR-STAT at 3T in terms of SNR-efficiency. RESULTS: The higher SNR at 7T enabled two-fold acceleration with respect to current 2D MR-STAT protocols at lower field strengths. The resulting scan had whole-brain coverage, with 1 x 1 x 3 mm3 resolution (1.5 mm slice-gap) and was acquired within 3 min including the B 1 + $$ {B}_1^{+} $$ -mapping. After B 1 + $$ {B}_1^{+} $$ -correction, the estimated T1 and T2 in a phantom showed a mean relative error of, respectively, 1.7% and 4.4%. In vivo, the estimated T1 and T2 in gray and white matter corresponded to the range of values reported in literature with a variation over the subjects of 1.0%-2.1% (WM-GM) for T1 and 4.3%-5.3% (WM-GM) for T2. We measured a higher SNR-efficiency at 7T (R = 2) than at 3T for both T1 and T2 with, respectively, a 4.1 and 2.3 times increase in SNR-efficiency. CONCLUSION: We presented an accelerated version of MR-STAT tailored to high field (7T) MRI using a low-SAR flip-angle train and showed high quality parameter maps with an increased SNR-efficiency compared to MR-STAT at 3T.


Subject(s)
Brain , Magnetic Resonance Imaging , Phantoms, Imaging , Signal-To-Noise Ratio , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods , Adult , Male , Female
11.
Magn Reson Med ; 92(6): 2734-2748, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39099149

ABSTRACT

PURPOSE: To demonstrate the feasibility of using a nonlinear gradient field for spatial encoding at the ultrasonic switching frequency of 20 kHz and present a framework to reconstruct data acquired in this way. METHODS: Nonlinear encoding at 20 kHz was realized by using a single-axis silent gradient insert for imaging in the periphery, that, is the nonlinear region, of the gradient field. The gradient insert induces a rapidly oscillating gradient field in the phase-encode direction, which enables nonlinear encoding when combined with a Cartesian readout from the linear whole-body gradients. Data from a 2D gradient echo sequence were reconstructed using a point spread function (PSF) framework. Accelerated scans were also simulated via retrospective undersampling (R = 1 to R = 8) to determine the effectiveness of the PSF-framework for accelerated imaging. RESULTS: Using a nonlinear gradient field switched at 20 kHz and the PSF-framework resulted in images of comparable quality to images from conventional Cartesian linear encoding. At increased acceleration factors (R ≤ 8), the PSF-framework outperformed linear SENSE reconstructions by improved controlling of aliasing artifacts. CONCLUSION: Using the PSF-framework, images of comparable quality to conventional SENSE reconstructions are possible via combining traditional linear and ultrasonic oscillating nonlinear encoding fields. Using nonlinear gradient fields relaxes the demand for strictly linear gradient fields, enabling much higher slew rates with a reduced risk of peripheral nerve stimulation or cardiac stimulation, which could aid in extension to ultrasonic whole-body MRI. The lack of aliasing artifacts also highlights the potential of accelerated imaging using the PSF-framework.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Phantoms, Imaging , Magnetic Resonance Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Artifacts , Nonlinear Dynamics , Computer Simulation
12.
NMR Biomed ; 37(1): e5044, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37772434

ABSTRACT

In quantitative measurement of the T 2 value of tissues, the diffusion of water molecules has been recognized as a confounder. This is most notably so for transient-state quantitative mapping techniques, which allow simultaneous estimation of T 1 and T 2 . In prior work, apparently conflicting conclusions are presented on the level of diffusion-induced bias on the T2 estimate. So far there is a lack of studies on the effect of the RF pulse angle sequence on the level of diffusion-induced bias. In this work, we show that the specific transient-state RF pulse sequence has a large effect on this level of bias. In particular, the bias level is strongly influenced by the mean value of the RF pulse angles. Also, for realistic values of the spoiling gradient area, we infer that the diffusion-induced bias is negligible for non-liquid human tissues; yet, for phantoms, the effect can be substantial (15% of the true T 2 value) for some RF pulse sequences. This should be taken into account in validation procedures.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Diffusion , Algorithms
13.
NMR Biomed ; 37(2): e5050, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37857335

ABSTRACT

Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) is a multiparametric quantitative MR framework, which allows for simultaneously acquiring quantitative tissue parameters such as T1, T2, and proton density from one single short scan. A typical two-dimensional (2D) MR-STAT acquisition uses a gradient-spoiled, gradient-echo sequence with a slowly varying RF flip-angle train and Cartesian readouts, and the quantitative tissue maps are reconstructed by an iterative, model-based optimization algorithm. In this work, we design a three-dimensional (3D) MR-STAT framework based on previous 2D work, in order to achieve better image signal-to-noise ratio, higher though-plane resolution, and better tissue characterization. Specifically, we design a 7-min, high-resolution 3D MR-STAT sequence, and the corresponding two-step reconstruction algorithm for the large-scale dataset. To reduce the long acquisition time, Cartesian undersampling strategies such as SENSE are adopted in our transient-state quantitative framework. To reduce the computational burden, a data-splitting scheme is designed for decoupling the 3D reconstruction problem into independent 2D reconstructions. The proposed 3D framework is validated by numerical simulations, phantom experiments, and in vivo experiments. High-quality knee quantitative maps with 0.8 × 0.8 × 1.5 mm3 resolution and bilateral lower leg maps with 1.6 mm isotropic resolution can be acquired using the proposed 7-min acquisition sequence and the 3-min-per-slice decoupled reconstruction algorithm. The proposed 3D MR-STAT framework could have wide clinical applications in the future.


Subject(s)
Imaging, Three-Dimensional , Multiparametric Magnetic Resonance Imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Algorithms , Magnetic Resonance Spectroscopy , Phantoms, Imaging , Image Processing, Computer-Assisted/methods , Brain
14.
Haematologica ; 109(3): 824-834, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37439337

ABSTRACT

Clonal expansion of CD5-expressing B cells, commonly designated as monoclonal B lymphocytosis (MBL), is a precursor condition for chronic lymphocytic leukemia (CLL). The mechanisms driving subclinical MBL B-cell expansion and progression to CLL, occurring in approximately 1% of affected individuals, are unknown. An autonomously signaling B-cell receptor (BCR) is essential for the pathogenesis of CLL. The objectives of this study were functional characterization of the BCR of MBL in siblings of CLL patients and a comparison of genetic variants in MBL-CLL sibling pairs. Screening of peripheral blood by flow cytometry detected 0.2-480 clonal CLL-phenotype cells per microliter (median: 37/µL) in 34 of 191 (17.8%) siblings of CLL patients. Clonal BCR isolated from highly purified CLL-phenotype cells induced robust calcium mobilization in BCR-deficient murine pre-B cells in the absence of external antigen and without experimental crosslinking. This autonomous BCR signal was less intense than the signal originating from the CLL BCR of their CLL siblings. According to genotyping by single nucleotide polymorphism array, whole exome, and targeted panel sequencing, CLL risk alleles were found with high and similar prevalence in CLL patients and MBL siblings, respectively. Likewise, the prevalence of recurrent CLL-associated genetic variants was similar between CLL and matched MBL samples. However, copy number variations and small variants were frequently subclonal in MBL cells, suggesting their acquisition during subclinical clonal expansion. These findings support a stepwise model of CLL pathogenesis, in which autonomous BCR signaling leads to a non-malignant (oligo)clonal expansion of CD5+ B cells, followed by malignant progression to CLL after acquisition of pathogenic genetic variants.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia , Lymphocytosis , Humans , Animals , Mice , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Siblings , DNA Copy Number Variations , Lymphocytosis/genetics , Receptors, Antigen, B-Cell/genetics , Phenotype
15.
Environ Sci Technol ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360607

ABSTRACT

Molybdenum-based nanosheets (NSMoS2) are increasingly applied in various fields and undergoing relevant risk evaluations on subjectively hypothesized toxicity pathways. However, risk assessment should be unbiased and focus on appropriate end points to avoid biased prescreening. Here, we developed an adverse biological outcome screening strategy based on nontargeted functional protein profiles in earthworm (Eisenia fetida) immune cells exposed to NSMoS2 and their ionic counterpart (Na2MoO4). Through this framework, the apoptosis-related processes with distinct mechanisms were rapidly identified and thoroughly validated phenotypically. Specifically, upon exposure to 50 µg Mo/mL Na2MoO4, cellular signaling and energy homeostasis were disrupted within the transcription-translation biological chain. The autophagic pathway was activated, which, together with energy deprivation, phenotypically induced significant autophagy that ultimately led to apoptosis. In contrast, NSMoS2, tested at the same concentration, caused a reprogramming of apoptotic gene and protein expressions. Transcriptome plasticity facilitated the endocytic-adaptive transcriptional profile characterized by cytoskeleton remodeling and lysosome organization/movement under NSMoS2 exposure. Subcellular dynamics further revealed NSMoS2-induced lysosomal damage with a time-sensitive physiological window, ultimately mediating apoptosis. These findings provide a mechanistic and visual understanding of the distinct risk profile of NSMoS2 compared to molybdate, highlighting the importance of integrating nontargeted screening and phenotypic validation in early risk warning.

16.
Environ Sci Technol ; 58(13): 5705-5715, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38460143

ABSTRACT

Extensive rare earth element (REE) mining activities have caused REE contamination of ambient agricultural soils, posing threats to associated food webs. Here, a simulated lettuce-snail food chain was conducted to evaluate the trophic transfer characteristics and the consequent effects of REEs on consumers. After 50-day exposure to soil, lettuce roots dose-dependently accumulated 9.4-76 mg kg-1 REEs and translocated 3.7-20 mg kg-1 REEs to shoots. Snails feeding on REE-contaminated shoots accumulated 3.0-6.7 mg kg-1 REEs with trophic transfer factors of 0.20-0.98, indicating trophic dilution in the lettuce-snail system. REE profiles in lettuce and snails indicated light REE (LREE) enrichment only in snails and the varied REE profiles along the food chain. This was corroborated by toxicokinetics. Estimated uptake (Ku) and elimination (Ke) parameters were 0.010-2.9 kgshoot kgsnail-1 day-1 and 0.010-1.8 day-1, respectively, with higher Ku values for LREE and HREE. The relatively high Ke, compared to Ku, indicating a fast REE elimination, supports the trophic dilution. Dietary exposure to REEs dose-dependently affected gut microbiota and metabolites in snails. These effects are mainly related to oxidative damage and energy expenditure, which are further substantiated by targeted analysis. Our study provides essential information about REE bioaccumulation characteristics and its associated risks to terrestrial food chains near REE mining areas.


Subject(s)
Food Chain , Metals, Rare Earth , Herbivory , Plants , Soil , Lactuca
17.
Environ Sci Technol ; 58(35): 15438-15449, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39174873

ABSTRACT

Nanoplastics (NPs) are widely detected in the atmosphere and are likely to be deposited on plant leaves. However, our understanding of their foliar uptake, translocation, and trophic transfer profiles is limited due to a lack of quantitative analytical tools to effectively probe mechanisms of action. Here, using synthesized deuterium (2H) stable isotope-labeled polystyrene nanoplastics (2H-PSNPs), the foliar accumulation and translocation of NPs in lettuce and the dynamics of NP transfer along a lettuce-snail terrestrial food chain were investigated. Raman imaging and scanning electron microscopy demonstrated that foliar-applied NPs aggregated on the leaf surface, entered the mesophyll tissue via the stomatal pathway, and eventually translocated to root tissues. Quantitative analysis showed that increasing levels of foliar exposure to 2H-PSNPs (0.1, 1, and 5 mg/L in spray solutions, equivalent to receiving 0.15, 1.5, and 7.5 µg/d of NPs per plant) enhanced NP accumulation in leaves, with concentrations ranging from 0.73 to 15.6 µg/g (dw), but only limited translocation (<5%) to roots. After feeding on 5 mg/L 2H-PSNP-contaminated lettuce leaves for 14 days, snails accumulated NPs at 0.33 to 10.7 µg/kg (dw), with an overall kinetic trophic transfer factor of 0.45, demonstrating trophic dilution in this food chain. The reduced ingestion rate of 3.18 mg/g/day in exposed snails compared to 6.43 mg/g/day can be attributed to the accumulation of 2H-PSNPs and elevated levels of chemical defense metabolites in the lettuce leaves, which decreased the palatability for snails and disrupted their digestive function. This study provides critical quantitative information on the characteristics of airborne NP bioaccumulation and the associated risks to terrestrial food chains.


Subject(s)
Deuterium , Food Chain , Lactuca , Plant Leaves , Lactuca/metabolism , Plant Leaves/metabolism , Animals
18.
MAGMA ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180686

ABSTRACT

OBJECTIVE: The image quality of synthetized FLAIR (fluid attenuated inversion recovery) images is generally inferior to its conventional counterpart, especially regarding the lesion contrast mismatch. This work aimed to improve the lesion appearance through a hybrid methodology. MATERIALS AND METHODS: We combined a full brain 5-min MR-STAT acquisition followed by FLAIR synthetization step with an ultra-under sampled conventional FLAIR sequence and performed the retrospective and prospective analysis of the proposed method on the patient datasets and a healthy volunteer. RESULTS: All performance metrics of the proposed hybrid FLAIR images on patient datasets were significantly higher than those of the physics-based FLAIR images (p < 0.005), and comparable to those of conventional FLAIR images. The small difference between prospective and retrospective analysis on a healthy volunteer demonstrated the validity of the retrospective analysis of the hybrid method as presented for the patient datasets. DISCUSSION: The proposed hybrid FLAIR achieved an improved lesion appearance in the clinical cases with neurological diseases compared to the physics-based FLAIR images, Future prospective work on patient data will address the validation of the method from a diagnostic perspective by radiological inspection of the new images over a larger patient cohort.

19.
Biophys J ; 122(23): 4503-4517, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37905401

ABSTRACT

Lipid oxidation is a universal degradative process of cell membrane lipids that is induced by oxidative stress and reactive oxygen and nitrogen species (RONS) in multiple pathophysiological situations. It has been shown that certain oxidized lipids alter membrane properties, leading to a loss of membrane function. Alteration of membrane properties is thought to depend on the initial membrane lipid composition, such as the number of acyl chain unsaturations. However, it is unclear how oxidative damage is related to biophysical properties of membranes. We therefore set out to quantify lipid oxidation through various analytical methods and determine key biophysical membrane parameters using model membranes containing lipids with different degrees of lipid unsaturation. As source for RONS, we used cold plasma, which is currently developed as treatment for infections and cancer. Our data revealed complex lipid oxidation that can lead to two main permeabilization mechanisms. The first one appears upon direct contact of membranes with RONS and depends on the formation of truncated oxidized phospholipids. These lipids seem to be partly released from the bilayer, implying that they are likely to interact with other membranes and potentially act as signaling molecules. This mechanism is independent of lipid unsaturation, does not rely on large variations in lipid packing, and is most probably mediated via short-living RONS. The second mechanism takes over after longer incubation periods and probably depends on the continued formation of lipid oxygen adducts such as lipid hydroperoxides or ketones. This mechanism depends on lipid unsaturation and involves large variations in lipid packing. This study indicates that polyunsaturated lipids, which are present in mammalian membranes rather than in bacteria, do not sensitize membranes to instant permeabilization by RONS but could promote long-term damage.


Subject(s)
Lipid Bilayers , Membrane Lipids , Animals , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Phospholipids/metabolism , Reactive Oxygen Species , Oxygen , Mammals/metabolism
20.
Hum Brain Mapp ; 44(15): 4986-5001, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37466309

ABSTRACT

Magnetic resonance electrical properties tomography (MR-EPT) is a non-invasive measurement technique that derives the electrical properties (EPs, e.g., conductivity or permittivity) of tissues in the radiofrequency range (64 MHz for 1.5 T and 128 MHz for 3 T MR systems). Clinical studies have shown the potential of tissue conductivity as a biomarker. To date, model-based conductivity reconstructions rely on numerical assumptions and approximations, leading to inaccuracies in the reconstructed maps. To address such limitations, we propose an artificial neural network (ANN)-based non-linear conductivity estimator trained on simulated data for conductivity brain imaging. Network training was performed on 201 synthesized T2-weighted spin-echo (SE) data obtained from the finite-difference time-domain (FDTD) electromagnetic (EM) simulation. The dataset was composed of an approximated T2-w SE magnitude and transceive phase information. The proposed method was tested three in-silico and in-vivo on two volunteers and three patients' data. For comparison purposes, various conventional phase-based EPT reconstruction methods were used that ignore B 1 + magnitude information, such as Savitzky-Golay kernel combined with Gaussian filter (S-G Kernel), phase-based convection-reaction EPT (cr-EPT), magnitude-weighted polynomial-fitting phase-based EPT (Poly-Fit), and integral-based phase-based EPT (Integral-based). From the in-silico experiments, quantitative analysis showed that the proposed method provides more accurate and improved quality (e.g., high structural preservation) conductivity maps compared to conventional reconstruction methods. Representatively, in the healthy brain in-silico phantom experiment, the proposed method yielded mean conductivity values of 1.97 ± 0.20 S/m for CSF, 0.33 ± 0.04 S/m for WM, and 0.52 ± 0.08 S/m for GM, which were closer to the ground-truth conductivity (2.00, 0.30, 0.50 S/m) than the integral-based method (2.56 ± 2.31, 0.39 ± 0.12, 0.68 ± 0.33 S/m). In-vivo ANN-based conductivity reconstructions were also of improved quality compared to conventional reconstructions and demonstrated network generalizability and robustness to in-vivo data and pathologies. The reported in-vivo brain conductivity values were in agreement with literatures. In addition, the proposed method was observed for various SNR levels (SNR levels = 10, 20, 40, and 58) and repeatability conditions (the eight acquisitions with the number of signal averages = 1). The preliminary investigations on brain tumor patient datasets suggest that the network trained on simulated dataset can generalize to unforeseen in-vivo pathologies, thus demonstrating its potential for clinical applications.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Electric Conductivity , Phantoms, Imaging , Neuroimaging , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL