Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
PLoS Biol ; 18(4): e3000698, 2020 04.
Article in English | MEDLINE | ID: mdl-32243442

ABSTRACT

Have you ever sought to use metagenomic DNA sequences reported in scientific publications? Were you successful? Here, we reveal that metagenomes from no fewer than 20% of the papers found in our literature search, published between 2016 and 2019, were not deposited in a repository or were simply inaccessible. The proportion of inaccessible data within the literature has been increasing year-on-year. Noncompliance with Open Data is best predicted by the scientific discipline of the journal. The number of citations, journal type (e.g., Open Access or subscription journals), and publisher are not good predictors of data accessibility. However, many publications in high-impact factor journals do display a higher likelihood of accessible metagenomic data sets. Twenty-first century science demands compliance with the ethical standard of data sharing of metagenomes and DNA sequence data more broadly. Data accessibility must become one of the routine and mandatory components of manuscript submissions-a requirement that should be applicable across the increasing number of disciplines using metagenomics. Compliance must be ensured and reinforced by funders, publishers, editors, reviewers, and, ultimately, the authors.


Subject(s)
Access to Information , Metagenome , Publications/statistics & numerical data , Bibliometrics , Journal Impact Factor , Open Access Publishing
2.
Environ Sci Technol ; 57(26): 9713-9721, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37310875

ABSTRACT

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.) for profiling ARGs and suggest a universal unit (ARG copy per cell) for reporting such biological measurements of samples and improving the comparability of different surveillance efforts.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Animals , Humans , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Drug Resistance, Microbial/genetics , Metagenomics/methods
3.
Appl Environ Microbiol ; 88(9): e0252221, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35416683

ABSTRACT

This study shows that Escherichia coli can be temporarily enriched in zooplankton under natural conditions and that these bacteria can belong to different phylogroups and sequence types (STs), including environmental, clinical, and animal isolates. We isolated 10 E. coli strains and sequenced the genomes of two of them. Phylogenetically, the two isolates were closer to strains isolated from poultry meat than to freshwater E. coli, albeit their genomes were smaller than those of the poultry isolates. After isolation and fluorescent protein tagging of strains ED1 and ED157, we show that Daphnia sp. can take up these strains and release them alive again, thus becoming a temporary host for E. coli. In a chemostat experiment, we show that this association does not prolong bacterial long-term survival, but at low abundances it also does not significantly reduce bacterial numbers. We demonstrate that E. coli does not belong to the core microbiota of Daphnia, suffers from competition by the natural Daphnia microbiota, but can profit from its carapax to survive in water. All in all, this study suggests that the association of E. coli with Daphnia is only temporary, but the cells are viable therein, and this might allow encounters with other bacteria for genetic exchange and potential genomic adaptation to the freshwater environment. IMPORTANCE The contamination of freshwater with feces-derived bacteria is a major concern regarding drinking water acquisition and recreational activities. Ecological interactions promoting their persistence are still very scarcely studied. This study, which analyses the survival of E. coli in the presence of zooplankton, is thus of ecological and water safety relevance.


Subject(s)
Drinking Water , Escherichia coli , Animals , Bacteria , Daphnia/microbiology , Escherichia coli/genetics , Feces/microbiology , Fresh Water/microbiology , Zooplankton/microbiology
4.
Mol Ecol ; 28(5): 1170-1182, 2019 03.
Article in English | MEDLINE | ID: mdl-30697889

ABSTRACT

Notwithstanding the fundamental role that environmental microbes play for ecosystem functioning, data on how microbes react to disturbances are still scarce, and most factors that confer stability to microbial communities are unknown. In this context, antibiotic discharge into the environment is considered a worldwide threat for ecosystems with potential risks to human health. We therefore tested resilience of microbial communities challenged by the presence of an antibiotic. In a continuous culture experiment, we compared the abundance, composition and diversity of microbial communities undisturbed or disturbed by the constant addiction of tetracycline in low (10 µg/L) or intermediate (100 µg/L) concentration (press disturbance). Further, the bacterial communities in the three treatments had to face the sudden pulse disturbance of adding an allochthonous bacterium (Escherichia coli). Tetracycline, even at low concentrations, affected microbial communities by changing their phylogenetic composition and causing cell aggregation. This, however, did not coincide with a reduced microbial diversity, but was mainly caused by a shift in dominance of specific bacterial families. Moreover, the less disturbed community (10 µg/L tetracycline) was sometimes more similar to the control and sometimes more similar to heavily disturbed community (100 µg/L tetracycline). All in all, we could not see a pattern where the communities disturbed with antibiotics were less resilient to a second disturbance introducing E. coli, but they seemed to be able to buffer the input of the allochthonous strain in a similar manner as the control.


Subject(s)
Bacteria/drug effects , Ecosystem , Microbiota/genetics , Phylogeny , Anti-Bacterial Agents/adverse effects , Bacteria/genetics , Biodiversity , Food Chain , RNA, Ribosomal, 16S/genetics
5.
J Phycol ; 53(6): 1151-1158, 2017 12.
Article in English | MEDLINE | ID: mdl-28915336

ABSTRACT

Planktonic cyanobacteria belonging to the genus Synechococcus are ubiquitously distributed in marine and fresh waters, substantially contributing to total carbon fixation on a global scale. While their ecological relevance is acknowledged, increasing resolution in molecular techniques allows disentangling cyanobacteria's role at the micro-scale, where complex microbial interactions may drive the overall community assembly. The interplay between phylogenetically different Synechococcus clades and their associated bacterial communities can affect their ecological fate and susceptibility to protistan predation. In this study, we experimentally promoted different levels of ecological interaction by mixing two Synechococcus ribotypes (MW101C3 and LL) and their associated bacteria, with and without a nanoflagellate grazer (Poterioochromonas sp.) in laboratory cultures. The beta-diversity of the Synechococcus-associated microbiome in laboratory cultures indicated that the presence of the LL ribotype was the main factor determining community composition changes (41% of total variance), and prevailed over the effect of protistan predation (18% of total variance). Our outcomes also showed that species coexistence and predation may promote microbial diversity, thus highlighting the underrated ecological relevance of such micro-scale factors.


Subject(s)
Life History Traits , Microbiota , Synechococcus/physiology , Chrysophyta/physiology , Food Chain , Ribotyping , Synechococcus/genetics
6.
Environ Sci Technol ; 50(18): 10153-61, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27548377

ABSTRACT

Antibiotic resistance genes (ARGs) are increasingly appreciated to be important as micropollutants. Indirectly produced by human activities, they are released into the environment, as they are untargeted by conventional wastewater treatments. In order to understand the fate of ARGs and of other resistant forms (e.g., phenotypical adaptations) in urban wastewater treatment plants (WWTPs), we monitored three WWTPs with different disinfection processes (chlorine, peracetic acid (PAA), and ultraviolet light (UV)). We monitored WWTPs influx and pre- and postdisinfection effluent over 24 h, followed by incubation experiments lasting for 96 h. We measured bacterial abundance, size distribution and aggregational behavior, the proportion of intact (active) cells, and the abundances of four ARGs and of the mobile element integron1. While all the predisinfection treatments of all WWTPs removed the majority of bacteria and of associated ARGs, of the disinfection processes only PAA efficiently removed bacterial cells. However, the stress imposed by PAA selected for bacterial aggregates and, similarly to chlorine, stimulated the selection of ARGs during the incubation experiment. This suggests disinfections based on chemically aggressive destruction of bacterial cell structures can promote a residual microbial community that is more resistant to antibiotics and, given the altered aggregational behavior, to competitive stress in nature.


Subject(s)
Disinfection , Wastewater/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial/drug effects , Humans
7.
Archaea ; 2015: 590434, 2015.
Article in English | MEDLINE | ID: mdl-26379473

ABSTRACT

Ammonia-oxidizing Archaea (AOA) play an important role in the oxidation of ammonia in terrestrial, marine, and geothermal habitats, as confirmed by a number of studies specifically focused on those environments. Much less is known about the ecological role of AOA in freshwaters. In order to reach a high resolution at the Thaumarchaea community level, the probe MGI-535 was specifically designed for this study and applied to fluorescence in situ hybridization and catalyzed reporter deposition (CARD-FISH) analysis. We then applied it to a fine analysis of diversity and relative abundance of AOA in the deepest layers of the oligotrophic Lake Maggiore, confirming previous published results of AOA presence, but showing differences in abundance and distribution within the water column without significant seasonal trends with respect to Bacteria. Furthermore, phylogenetic analysis of AOA clone libraries from deep lake water and from a lake tributary, River Maggia, suggested the riverine origin of AOA of the deep hypolimnion of the lake.


Subject(s)
Archaea/classification , Archaea/genetics , Biodiversity , Geologic Sediments/microbiology , Lakes/microbiology , Ammonia/metabolism , Archaea/metabolism , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , Sequence Analysis, DNA
8.
Mol Ecol ; 24(15): 3888-900, 2015 08.
Article in English | MEDLINE | ID: mdl-26118321

ABSTRACT

The fate of antibiotic resistance genes (ARGs) in environmental microbial communities is of primary concern as prodromal of a potential transfer to pathogenic bacteria. Although of diverse origin, the persistence of ARGs in aquatic environments is highly influenced by anthropic activities, allowing potential control actions in well-studied environments. However, knowledge of abundance and space-time distribution of ARGs in ecosystems is still scarce. Using quantitative real-time PCR, we investigated the presence and the abundance of twelve ARGs (against tetracyclines, ß-lactams, aminoglycosides, quinolones and sulphonamides) at different sampling sites, depths and seasons, in Lake Maggiore, a large subalpine lake, and in the area of its watershed. We then evaluated the correlation between each ARG and a number of ecological parameters in the water column in the deepest part of the lake. Our results suggest the constitutive presence of at least four ARGs within the bacterial community with a high proportion of bacteria potentially resistant to tetracyclines and sulphonamides. The presence of these ARGs was independent of the total bacterial density and temperature. The dynamics of tet(A) and sulII genes were, however, positively correlated with dissolved oxygen and negatively to chlorophyll a, suggesting that the resistant microbes inhabit specific niches. These observations indicate that the lake is a reservoir of antibiotic resistances, highlighting the need of a deeper understanding of the sources of ARGs and the factors allowing their persistence in waters.


Subject(s)
Bacteria/genetics , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Lakes/microbiology , DNA, Bacterial/genetics , Italy , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Switzerland
9.
Environ Pollut ; 342: 123065, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38043766

ABSTRACT

The presence of antimicrobial resistance genes (ARGs) in the microbiome of freshwater communities is a consequence of thousands of years of evolution but also of the pressure exerted by anthropogenic activities, with potential negative impact on environmental and human health. In this study, we investigated the distribution of ARGs in Lake Tanganyika (LT)'s water column to define the resistome of this ancient lake. Additionally, we compared the resistome of LT with that of Lake Baikal (LB), the oldest known lake with different environmental characteristics and a lower anthropogenic pollution than LT. We found that richness and abundance of several antimicrobial resistance classes were higher in the deep water layers in both lakes. LT Kigoma region, known for its higher anthropogenic pollution, showed a greater richness and number of ARG positive MAGs compared to Mahale. Our results provide a comprehensive understanding of the antimicrobial resistome of LT and underscore its importance as reservoir of antimicrobial resistance. In particular, the deepest water layers of LT are the main repository of diverse ARGs, mirroring what was observed in LB and in other aquatic ecosystems. These findings suggest that the deep waters might play a crucial role in the preservation of ARGs in aquatic ecosystems.


Subject(s)
Anti-Infective Agents , Microbiota , Humans , Lakes , Water , Tanzania , Genes, Bacterial , Anti-Bacterial Agents
10.
J Hazard Mater ; 465: 133166, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38101010

ABSTRACT

Microplastic particles are persistent micropollutants that provide a substrate for the growth of bacterial biofilms, posing a threat to the environment. This study explores the changes in commercially available food containers made of conventional (polypropylene PP, polyethylene terephthalate PET), innovative biodegradable (Mater-Bi) and natural (wood and cellulose) materials, when introduced in the surface waters of Lake Maggiore for 43 days. Spectral changes revealed by FT-IR spectroscopy in PET and Mater-Bi, and changes in thermal properties of all human-made material tested indicated a degradation process occurred during environmental exposure. Despite similar bacterial richness, biofilms on PET, PP, and Mater-Bi differed from natural material biofilms and the planktonic community. Human-made material communities showed a higher proportion of potential pathogens, with PET and PP also exhibiting increased abundances of antibiotic resistance genes. Overall, these findings stress the need for dedicated strategies to curb the spread of human-made polymers in freshwaters, including innovative materials that, due to their biodegradable properties, might be perceived less hazardous for the environment.


Subject(s)
Biodegradable Plastics , Humans , Plastics , Plankton , Spectroscopy, Fourier Transform Infrared , Polypropylenes , Microplastics , Bacteria
11.
Mar Pollut Bull ; 203: 116495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759465

ABSTRACT

Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems.


Subject(s)
Bacteria , Microplastics , Bacteria/genetics , Bacteria/drug effects , Microplastics/toxicity , Water Pollutants, Chemical/analysis , Microbiota/drug effects , Drug Resistance, Bacterial/genetics , Environmental Monitoring , Seawater/microbiology , Seawater/chemistry
12.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38389242

ABSTRACT

Antibiotic resistance genes (ARGs) are abundant in aquatic ecosystems affected by human activities. Understanding the fate of ARGs across different ecosystems is essential because of the significant role aquatic environments play in the cycle of antibiotic resistance. We quantified selected ARGs in Lake Maggiore, its main tributaries, and the effluent of the main wastewater treatment plant (WWTP) discharging directly into the lake. We linked their dynamics to the different anthropogenic impacts in each tributary's watershed. The dynamics of tetA in the lake were influenced by those of the rivers and the WWTP effluent, and by the concentration of N-NH4, related to anthropogenic pollution, while sul2 abundance in the lake was not influenced by any water inflow. The dynamics of the different ARGs varied across the different rivers. Rivers with watersheds characterized by high population density, touristic activities, and secondary industries released more ARGs, while ermB correlated with higher numbers of primary industries. This study suggests a limited contribution of treated wastewater in the spread of ARGs, indicating as prevalent origin other sources of pollution, calling for a reconsideration on what are considered the major sources of ARGs into the environment.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Lakes , Ecosystem , Drug Resistance, Microbial/genetics , Rivers
13.
J Hazard Mater ; 475: 134885, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38876022

ABSTRACT

Aquatic ecosystems are crucial in the antimicrobial resistance cycle. While intracellular DNA has been extensively studied to understand human activity's impact on antimicrobial resistance gene (ARG) dissemination, extracellular DNA is frequently overlooked. This study examines the effect of anthropogenic water pollution on microbial community diversity, the resistome, and ARG dissemination. We analyzed intracellular and extracellular DNA from wastewater treatment plant effluents and lake surface water by shotgun sequencing. We also conducted experiments to evaluate anthropogenic pollution's effect on transforming extracellular DNA (using Gfp-plasmids carrying ARGs) within a natural microbial community. Chemical analysis showed treated wastewater had higher anthropogenic pollution-related parameters than lake water. The richness of microbial community, antimicrobial resistome, and high-risk ARGs was greater in treated wastewaters than in lake waters both for intracellular and extracellular DNA. Except for the high-risk ARGs, richness was significantly higher in intracellular than in extracellular DNA. Several ARGs were associated with mobile genetic elements and located on plasmids. Furthermore, Gfp-plasmid transformation within a natural microbial community was enhanced by anthropogenic pollution levels. Our findings underscore anthropogenic pollution's pivotal role in shaping microbial communities and their antimicrobial resistome. Additionally, it may facilitate ARG dissemination through extracellular DNA plasmid uptake.


Subject(s)
Wastewater , Wastewater/microbiology , Drug Resistance, Microbial/genetics , Lakes/microbiology , Genes, Bacterial/drug effects , Water Pollution , Water Microbiology , Microbiota/drug effects , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Drug Resistance, Bacterial/genetics , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification
15.
Environ Pollut ; 323: 121325, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36828358

ABSTRACT

Wastewater treatment plants are among the main hotspots for the release of antibiotic resistance genes (ARGs) into the environment. ARGs in treated wastewater can be found in the intracellular DNA (iDNA) and in the extracellular DNA (eDNA). In this study, we investigated the fate and the distribution (either in eDNA or in iDNA) of ARGs in the treated wastewaters pre and post-disinfection by shotgun metagenomics. The richness of the intracellular resistome was found to be higher than the extracellular one. However, the latter included different high risk ARGs. About 11% of the recovered metagenome assembled genomes (MAGs) from the extracted DNA was positive for at least one ARG and, among them, several were positive for more ARGs. The high-risk ARG bacA was the most frequently detected gene among the MAGs. The disinfection demonstrated to be an important driver of the composition of the antibiotic resistomes. Our results demonstrated that eDNA represents an important fraction of the overall ARGs, including a number of high-risk ARGs, which reach the environment with treated wastewater effluents. The studied disinfections only marginally affect the whole antibiotic resistome but cause important shifts from intracellular to extracellular DNA, potentially threating human health.


Subject(s)
Anti-Bacterial Agents , Wastewater , Humans , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , DNA , Drug Resistance, Microbial/genetics
16.
Chemosphere ; 313: 137578, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36529163

ABSTRACT

The impact of Fenton oxidation (FO) and Air stripping (AS) pre-treatments on the bacterial community of a biological activated sludge (B-AS) process for the co-treatment of mature landfill leachate (MLL) and urban wastewater (UWW) was assessed. In this work high-throughput sequencing was used to identify changes in the composition of the bacterial communities when exposed to different landfill leachate's pre-treatments. The combination of FO and AS to increase biodegradability (BOD5/COD) and reduce ammonia concentration (NH3) respectively, allowed to successfully operate the B-AS and effectively treat MLL. In particular, BOD5/COD resulted to be the key factor for bacterial community shifting. The microbiological community of the B-AS, mainly composed by the phylum Bacteroidota (Saprospiraceae, PHOS-HE51, Chitinophagaceae) after FO pre-treatment, shifted to Pseudomonadota (Caulobacteraceae and Hyphomicrobiaceae) when FO was not used. At the same time a drastic reduction in BOD5 removal was observed (90%-58%). On the other hand, high NH3 concentration affected the abundance of the family Saprospiraceae, known to play a key role in the degradation of complex organic compounds in B-AS. The results obtained suggest that a suitable combination of pre-treatments can reduce the negative effect of MLL on the B-AS process, reducing the pressure on autochthonous bacteria and therefore the acclimatization time of the biological process.


Subject(s)
Wastewater , Water Pollutants, Chemical , Sewage , Water Pollutants, Chemical/analysis , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxidation-Reduction , Acclimatization , Bacteria/genetics
17.
Environ Pollut ; 316(Pt 2): 120568, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36351482

ABSTRACT

Stochastic or deterministic processes control the bacterial community assembly in waters and their understanding is a fundamental question to correctly manage aquatic environments exposed to the release of antibiotics from anthropogenic sources. It has been suggested that microdiversity (i.e. the rare biosphere) convers freshwater communities with stability, meaning that previously rare taxa bloom when the community is disturbed. Since there might be a seed bank of similar, but not abundant, bacterial taxa in different waters, we tested whether a disturbance by an antibiotic cocktail would increase similarity in bacterial communities from different freshwater systems (a wastewater effluent and two lakes). In a continuous culture set-up in chemostats, we show that disturbance with antibiotics causes communities from different environments to become more similar. Once the antibiotic pressure is released the communities tend to become more dissimilar again. This shows that there is a similar shift in community composition even in waters from very different origins when they are disturbed by antibiotics, even at low concentrations. Antibiotics impact the bacterial communities at the cell and the community level, independently by the original degree of anthropogenic stress they are adapted to, altering the original phenotypes, genotypes, and the relations between bacteria.


Subject(s)
Anti-Bacterial Agents , Microbiota , Anti-Bacterial Agents/toxicity , Bacteria/genetics , Lakes/microbiology , Wastewater
18.
Microbiol Spectr ; : e0110123, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37724865

ABSTRACT

Bacteriophages are known as players in the transmission of antimicrobial resistance genes (ARGs) by horizontal gene transfer. In this study, we characterized the bacteriophage community and the associated ARGs to estimate the potential for phages to spread ARGs in aquatic ecosystems analyzing the intra- and extracellular DNA isolated from two wastewater treatment plants (WWTPs) by shotgun metagenomics. We compared the phage antimicrobial resistome with the bacterial resistome and investigated the effect of the final disinfection treatment on the phage community and its resistome. Phage community was mainly composed by Siphoviridae and other members of the order Caudovirales. The final disinfection only marginally affected the composition of the phage community, and it was not possible to measure its effect on the antimicrobial resistome. Indeed, only three phage metagenome-assembled genomes (pMAGs) annotated as Siphoviridae, Padoviridae, and Myoviridae were positive for putative ARGs. Among the detected ARGs, i.e., dfrB6, rpoB mutants, and EF-Tu mutants, the first one was not annotated in the bacterial MAGs. Overall, these results demonstrate that bacteriophages limitedly contribute to the whole antimicrobial resistome. However, in order to obtain a comprehensive understanding of the antimicrobial resistome within a microbial community, the role of bacteriophages needs to be investigated. IMPORTANCE WWTPs are considered hotspots for the spread of ARGs by horizontal gene transfer. In this study, we evaluated the phage composition and the associated antimicrobial resistome by shotgun metagenomics of samples collected before and after the final disinfection treatment. Only a few bacteriophages carried ARGs. However, since one of the detected genes was not found in the bacterial metagenome-assembled genomes, it is necessary to investigate the phage community in order to gain a comprehensive overview of the antimicrobial resistome. This investigation could help assess the potential threats to human health.

19.
Environ Sci Pollut Res Int ; 30(12): 35294-35306, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36527555

ABSTRACT

This study investigates the antibiotic resistance fate in the urban water cycle, evaluating the dynamics of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in three different full-scale wastewater treatment plants (WWTPs) and two drinking water treatment plants (DWTPs) located in the same geographical area (North-West of Italy). ARB (tetracycline-, ampicillin-, and sulfonamide-resistant bacteria) were quantified by plate counting and the abundances of selected ARGs (i.e., tetA, blaTEM, and sulII) and intI1 gene were measured using quantitative real-time PCR (qPCR). Higher concentrations of ARB and ARGs were observed in the WWTPs with respect to the DWTPs identifying the WWTP as hotspot for the spread of antibiotic resistances. Although a significant reduction of ARB and ARGs was observed in WWTPs and DWTPs after the treatment, none of the detected ARB or ARGs was completely removed in drinking water. The stability of the antibiotic-resistant rates between inlet and outlet associated with the reduction of relative ARG abundances underlined that both the treatments (WWTs and DWTs) did not apply any selective pressure. The overall results highlighted the importance to investigate the antibiotic resistance dynamics in aquatic ecosystems involved in urban water cycle integrating the information obtained by culture-dependent method with the culture-independent one and the need to monitor the presence of ARB and ARGs mainly in drinking water that represents a potential route of transmission to human.


Subject(s)
Drinking Water , Water Purification , Humans , Wastewater , Waste Disposal, Fluid/methods , Genes, Bacterial , Bacteria/genetics , Ecosystem , Drinking Water/analysis , Angiotensin Receptor Antagonists/analysis , Water Cycle , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis
20.
Environ Pollut ; 316(Pt 2): 120601, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36351483

ABSTRACT

The risk for human health posed by polluted aquatic environments, and especially those carrying antibiotic resistance genes (ARGs) of clinical interest, is still debated. This is because of our limited knowledge of the dynamics of antimicrobial resistance in the environment, the selection mechanisms underlying the spread of ARGs, and the ecological factors potentially favoring their return to humans. The Class 1 integron is one of the most effective platforms for the dissemination of ARGs. In this study we investigated a freshwater system consisting of a lake-river-lake continuum, determining the abundance of class 1 integrons and their associated ARGs by a modulated metagenomic approach. Bacterial abundance and community composition were used to identify the potential carriers of class 1 integrons and their associated ARGs over a period of six months. Class 1 integrons and their ARG cargoes were significantly more abundant in riverine sampling sites receiving treated wastewater. Further, class 1 integrons carried ARGs ranked at the highest risk for human health (e.g., catB genes), in particular, genes encoding resistance to aminoglycosides. Genera of potential pathogens, such as Pseudomonas and Escherichia-Shigella, were correlated with class 1 integrons. The lake-river-lake system demonstrated a clear relationship between the integrase gene of class 1 integrons (intI1) and anthropogenic impact, but also a strong environmental filtering that favored the elimination of intI1 once the human derived stressors were reduced. Overall, the results of this study underline the role class 1 integrons as proxy of anthropogenic pollution and suggest this genetic platform as an important driver of aminoglycoside resistance genes, including high risk ARGs, of potential concern for human health.


Subject(s)
Anti-Bacterial Agents , Integrons , Humans , Integrons/genetics , Anti-Bacterial Agents/pharmacology , Anthropogenic Effects , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Lakes
SELECTION OF CITATIONS
SEARCH DETAIL